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A second-variation full-potential linear augmented-plane-wave total-energy method for thin-film
ferromagnetic systems is used to study the spin-orbit-interaction contribution to the magnetic an-
isotropy. For a free-standing Fe monolayer, the spin magnetization is determined to lie in the
plane. Results for Fe monolayers on Au(001), Ag(001), and Pd(001) substrates indicate a preference
for the spin direction to be perpendicular to the plane of the film. Computational details for this
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magnetic anisotropy are also discussed.

I. INTRODUCTION

Magnetic transition metals on noble-metal substrates
have been a focus in recent years of both experimen-
tal' 7!° and theoretical'' " !° studies of surface and inter-
face magnetism. A large amount of work has been done
on epitaxial Fe thin films on Ag, Au, and Pd because of
the close match (less than 3%) of the lattice constants of
these fcc substrates with beec Fe(001). Of particular in-
terest and importance is the magnetic anisotropy.

The advent of the surface and thin-film technology has
made it possible for experimentalists to prepare well-
characterized magnetic thin films. The magnetic-
anisotropy properties of ferromagnetic thin films (Fe, Co,
Ni, etc.) on various substrates have been studied via sur-
face magneto-optic Kerr effect (SMOKE), ferromagnetic
resonance (FMR), spin-polarized photoemission, etc. In
ultrathin Fe(001) films on Ag(001) (less than 2.5 mono-
layers), the magnetization is found to lie along the surface
normal.®® Both in-plane’ and perpendicular anisotro-
py“) are observed for monolayer-range Fe(001) on
Au(001). Liu et al.'® reported a universal behavior of
perpendicular spin orientation below a critical thickness
of 6 monolayers or less in fcc Fe(100) on Cu(100), fcc
Fe(111) on Ru(0001), bet Fe(100) on Pd(100), and bcc
Fe(100) on Au(100).

The origin of magnetic anisotropy of 3d ferromagnetic
materials was proposed by Van Vleck!® more than 50
years ago to be the spin-orbit interaction. Still today, the
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theoretical understanding of the magnetic anisotropy in
realistic systems remains a great challenge, because it is
necessary to know in precise detail both the electronic
structure and the total energy (the latter to +107° eV).
First-principles magnetic-anisotropy calculations for bulk
Fe, Ni, and Co have been reported by a few groups.'’ !
Pioneering calculations for the spin anisotropy of fer-
romagnetic monolayers of Fe, Ni, and V were carried out
by Gay and Richter?® using a self-consistent local-orbit
(SCLO) approach. From these studies it became especial-
ly obvious that to obtain a realistic result for the anisot-
ropy energy an accurate determination of the electronic
structure is extremely important, and that the numerical
details of the computational approach need to be treated
carefully.

To study the magnetic anisotropy of metal surfaces and
thin films, we developed a so-called ‘“‘second-variation”
method based on our highly precise total-energy full-
potential linear augmented-plane-wave (FLAPW) ap-
proach, i.e., to solve the relativistic Dirac equation of the
electronic system with a charge density obtained from a
previous semirelativistic self-consistent calculation. By
doing so, relativistic electronic wave functions are ob-
tained, and the total energy of the system is solved as a
function of the spatial orientation of the spin polariza-
tion, which yields the magnetic anisotropy.

However, the magnetic anisotropy so determined, i.e.,
the total-energy difference among various spin directions,
is extremely sensitive to the convergence of the computa-
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tional parameters, as well as to slight alterations of the
physical environment of the magnetic atoms in the model
calculation. First of all, the anisotropy energy arises pri-
marily from the detailed electronic structure—especially
the energy-band structures in regions near band crossings
and the electron states close to the Fermi energy. Thus, a
fine mesh of k points [ ~6000 k points in the two-
dimensional Brillouin zone (2D BZ)] is essential for ob-
taining a realistic result. (By contrast ~50 k points in an
irreducible wedge of the 2D BZ were sufficient for obtain-
ing a well-converged charge density from a semirelativis-
tic calculation.) Furthermore, because of the nature of
this fully relativistic calculation, in which the electronic
wave functions are not eigenvectors of the spin operator,
a larger set of LAPW basis functions is required for the
convergence of the magnetic anisotropy energy.

In later sections of this paper, we present (i) the formal-
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ism and the computational approach to determining that
part of the magnetic anisotropy originating from the
spin-orbit interaction based on our FLAPW method, and
(ii) computational results of magnetic anisotropy for a
free-standing Fe monolayer, as well as for Fe monolayers
on Ag(001), Au(001), and Pd(001) substrates. The com-
putational conditions for this anisotropy are also dis-
cussed based on the electronic bands and Fermi surfaces.

II. FORMALISM AND METHODOLOGY

A. Spin-orbit interaction

The fully relativistic Kohn-Sham equation?' of a

single-particle wave function in an external magnetic field
is

r)]'L+pugBgr)-g®l, [V(r)=eW¥(r), (1)

W¥(r), respectively, and

V(r)=¢f{r)l,+ppg[Bey(r)+B,(r)]-a . @)
By defining
f=2mc?/2mc*+e—V) (8)

(=1, when mc?>>e—V¥), we obtain the set of equations
for ®@ and y:
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TABLE 1. Computational results using the semirelativistic FLAPW method for a free-standing Fe monolayer with the Ag(001) or
Au(001) lattice constant. The muffin-tin (MT) radii used for Fe atoms are 2.2 a.u.

Fe monolayer
(@a=a,;,=4.086 A)

Fe monolayer ]
(@ =a,,=4.078 A)

MT charge: s P d Total s P d Total
Spin up 0.162 0.040 4.507 4.710 0.161 0.039 4.506 4.708
Spin down 0.131 0.034 1.419 1.584 0.130 0.033 1.435 1.598
Magnetic moment 3.13up 3.11up
Fermi energy 4.40 eV 4.46 eV
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TABLE II. Computational parameters used in the second-variation procedure and magnetic-
anisotropy energy (E perpendicular —Ein plane) Tesults for free-standing Fe monolayer at Ag or Au lattice

constant.

Fe monolayer

Fe monolayer
(at a,,=4.086 A)

(at a,, =4.078 A)

MT radius (a.u.)

maximum [ for angular momentum

Energy grid for DOS (Ry)

Number of k points in an irreducible
wedge (%) of the first BZ

Magnetic-anisotropy energy
E-04=0"E =712, 4=0 (eV/atom)

2.20 2.20
10 10
3.0X107° 3.0X1073
1250 800
+4.3X107° +3.3X107°

the relativistic Kohn-Sham Hamiltonian is then clearly
the combination of the semirelativistic Hamiltonian and a
spin-orbit-interaction term:
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Denote the eigenfunctions of the semirelativistic Hamil-
tonian

P,
Xn

P,
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Thus, the matrix elements of the relativistic Hamiltonian
can be expressed in the set of basis functions consisting of
the semirelativistic eigenfunctions:

(mlH|n)={m|H opln)+{(m|H  |n), (16)
or
ﬂ mn :Snamn +(ﬂ S.0. )m" * (17)

In local-spin-density (LSD) theory, the exchange-
correlation magnetic field B, has the same spatial orien-
tation as the external field, i.e., B,||B.,. Thus, the
semirelativistic Hamiltonian has the following behavior:

[-I—I semi? Bext'l]=QZX2 . (18)

The spin part of the wave function can be expressed as an
eigenvector of the operator B,-g (which allows the
eigenfunctions of different spin directions to be solved in-
dependently). The semirelativistic Hamiltonian does not
give rise to the magnetic anisotropy—H ., is indepen-
dent of the spatial direction of B, (or g).

The spin-orbit-interaction term of the relativistic Ham-
iltonian connects the spin orientation with the spatial pa-

rameters of the crystal lattice, which results in the depen-
dence of the total energy of the electronic system on the
spin direction—the magnetic anisotropy. However, it is
important to note that the spin-orbit-interaction term is
not the only origin of magnetic anisotropy. The two
terms we ignored when introducing Eq. (6), namely the
angular-momentum and the magnetic field from the
internal current, also contribute to the magnetic anisotro-
py. However, because of the complex nature of these
terms, their effect on magnetic anisotropy is not yet clear-
ly understood, and their contributions to the magnetic
anisotropy have been neglected in the present approach.

B. Computational approach: Second variation procedure

To estimate the magnetic anisotropy originating from
the spin-orbit interaction, we introduce here a ‘“‘second-
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FIG. 1. Magnetic-anisotropy energy of a free-standing
Fe(001) monolayer with Au lattice constant with respect to spin
directions. The reference level is set so that E(0=m/2, ¢
=0)=0. The solid line indicates the least-squares fitting of the
cos?(8) curve of the data points.
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variation” procedure based on our full-potential linear
augmented-plane-wave’> method (FLAPW) for a two-
dimensional periodic structure. Three steps are involved
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method, and (iii) obtain the relativistic eigenvalues of the
electronic states for various spin orientations in the real
space:

in this second-variation procedure: (i) again use the self-
consistent FLAPW method to obtain the set of semirela-
tivistic eigenfunctions described in Eq. (15), (ii) diagonal-
ize the relativistic Hamiltonian with the variational

H(ZW,(r)=¢,(2)¥,(r) , (19)

where 2 is the spatial orientation of the spin operator.
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FIG. 2. Electronic band structure of a free-standing Fe(001) monolayer with Au lattice constant from the second-variation
FLAPW method when spin-orbit interaction is taken into account. (a) All valence bands, and (b) states close to the Fermi level.
Solid lines and dotted lines represent the (6=0, $=0) and (6=m/2, $=0) spin directions, respectively; (c) notation for the k direc-
tions used in (a) and (b) for the two-dimensional BZ.



42 MAGNETIC ANISOTROPY IN LOW-DIMENSIONAL ...

My X, My
X3 X,
T
(©)

FIG. 2. (Continued).

The magnetic anisotropy energy is estimated as

AE=E(Z,)—E(3,) (20)

= 2 @) 3 (3 21)
occ. states occ. states
pp(Z) wp(=,)
=f_F leD(s,El)de—f g 2eD(5,22)d8, (22)

where pu(2) is the Fermi energy of the electronic system
and D (g,2) is the electronic density of states (DOS).

The FLAPW method is a local-spin-density?® (LSD)
-based computational method used to calculate the elec-
tronic structure and total energy of the electronic system
in a periodic lattice. In this method there is no shape ap-
proximation made for either the charge density or the po-
tential; all electrons are involved in the self-consistent
process; the core electrons are treated fully relativistically
and the valence electrons are treated semirelativistically.
The exchange-correlation potential is calculated with use
of the von Barth—Hedin?* form. In the calculations, lat-
tice harmonics with angular momenta up to /=8 are em-
ployed to expand the charge density and potential and to
construct wave functions inside the muffin-tin (MT)
spheres. To obtain the self-consistent semirelativistic
charge density of the electronic system, 55 uniformly dis-
tributed k points in an irreducible wedge (§) of the 2D
BZ are used.

In the second-variation calculations for the magnetic
anisotropy the spin-orbit interaction is not treated self-
consistently. As stated, the magnetic anisotropy is es-
timated as the difference in the eigenvalues of the occu-
pied electronic states with respect to the spatial orienta-
tions of the electron spin from a second-variation ap-
proach. These magnetic-anisotropy energies have an ex-
tremely small value (~107° eV), and so demand a very
careful numerical treatment to rule out the uncertainty
resulting from computational errors. In the second-
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(b)

FIG. 3. k-space analysis of magnetic anisotropy for Fe mono-
layer at Au lattice constant. (a) Density of states (DOS) as a
function of k—A(k)= ‘:FxD(s,k)ds, plotted in the first BZ.
(b) Magnetic anisotropy as a function of k—AE(k)

#F'El) ,uFlizi
= [ "eD(e,k,Z)de— [F PeD(e,k,2))de, where 3,
=(0=0, $=0), 2,=(6=m/2, $=0), plotted in the first BZ.

variation calculations we use identical computational pa-
rameters when solving the eigenvalues of the fully relativ-
istic Hamiltonian with respect to different spatial spin
orientations. When constructing matrix elements of the
spin-orbit term of the Hamiltonian, we include all the oc-
cupied valence-electron states, as well as about 10 unoc-
cupied states above the Fermi level. A very fine mesh of
k points in the first BZ—equivalent to ~800 k points in
the irreducible wedge of the 2D BZ for a semirelativistic
calculation—is used to determine the total DOS, from
which the Fermi energy and the sum of eigenvalues of the
occupied states are calculated. In a later section we dis-
cuss the reason for requiring such a fine k mesh when cal-
culating the magnetic anisotropy.

In this process we ignored the change of charge densi-
ties resulting from the spin-orbit interaction. However,
considering the fact that the change in the total energy
induced by the spin-orbit interaction is only <107°
eV/atom, we can reasonably assume that the effect on
charge densities is also extremely small—very likely
smaller than the error caused by computational uncer-
tainties.

III. RESULTS AND DISCUSSIONS

A. Free-standing Fe monolayer

As the first test of our second-variation FLAPW
method for calculating magnetic anisotropy, we studied
the free-standing Fe monolayer with a square lattice
structure and with lattice constants matching either fcc
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Ag(001) (with a,,=4.086 A) or fecc Au(001) (with
a,,=4.078 A).

The charge density of the monolayer Fe is determined
with use of the semirelativistic FLAPW method. Listed
in Table I are the calculated charge populations of both
spin directions inside the Fe MT sphere. The magnetic
moment is determined by the difference of the majority-
and minority-spin electron populations. As usual, the
calculated magnetic moment (~3.1up) for both lattice
constants is strongly enhanced (by ~41%) from the bulk
value (~2.2up). This enhancement results from the re-
duced bandwidth caused by the smaller number of neigh-
boring atoms in the Fe monolayer compared with the
bulk case. Only slight differences are seen between the
electronic structure of these monolayer Fe films with
different lattice constants.

The magnetic-anisotropy energy is estimated by the
second-variation procedure. Note, however, that the re-
sults of this anisotropy energy are rather sensitive to a
few computational parameters: (i) the maximum [ value
of the angular momentum used to express the charge
density, potential, and wave functions (an /=8 expansion
proves to be sufficient for obtaining convergence of the
anisotropy energy); (ii) the energy window size used when
obtaining semirelativistic wave functions which serve as
basis for the fully relativistic eigenvalue problem (it is
clear that all the occupied states and about 10 unoccu-
pied states above the Fermi energy are needed; these in-
clude all Fe 3d states and the s-p states close to the Fermi
energy); (iii) the energy grid when calculating the DOS of
the system; (iv) the number of k points used to set up the
k mesh in the first BZ (about 6000 k points in the first BZ
are needed for proper convergence of the magnetic-
anisotropy energy); and (v) the maximum magnitude of
reciprocal-lattice vector (G_,,) for plane-wave basis-
function expansion—G,,, = 3.5 is sufficient to reach con-
vergence for anisotropy calculations in the test case. The
computational parameters used in the second-variation
process and the magnetic-anisotropy energy for the free-
standing Fe monolayers at Ag or Au lattice constants are
listed in Table II.

In both systems a small in-plane reference of the spin
orientation of order ~3X107° eV/atom (or an
equivalent anisotropy magnetic field of ~1.7 kG along
the in-plane direction) is obtained from our calculations.
We also calculated the anisotropy between the two in-
plane  directions, namely (8=7/2,¢=0) and
(6=m/2, =m/4). This in-plane anisotropy energy is
found to be about 2 orders of magnitude smaller than the
perpendicular in-plane anisotropy, i.e., about 1% of the
anisotropy energy between the (6=0,¢=0) and
(6=m/2, $=0) directions. Plotted in Fig. 1 is the anisot-
ropy energy with respect to spin directions, 6=0, 7/6,
/4, m/3, and /2. As expected, the anisotropy shows a
cos?6-type curve.

Shown in Fig. 2 is the electronic band structure of a
free-standing Fe monolayer at the Au(001) lattice con-
stant with spin-orbit interaction taken into account. The
solid and dashed lines represent the spin directions
(6=0,$=0) and (6=m/2, $=0), respectively. The
majority-spin electron bands are located from —3.7 to

TABLE IIl. Calculated results for monolayer Fe on Ag(001), Au(001), and Pd(001) substrates, and some computational parameters used when determining magnetic-anisotropy

(MA) energy, AE 4 (in €V/atom), magnetic moments (in 1), and energy grid, Ae (in Ry).

Fe/Pd

Fe/Ag

Fe/Au

Total

Total

Total

Fe charge:

4.72
1.71
3.01

0.10 4.45
1.47

0.09

0.16
0.14

0.08 4.44 4.67

0.07

0.15
0.12

4.69
1.71

0.09 4.46
1.50
2.98

0.08

0.14
0.12

Spin up

1.71
2.96

1.50

Spin down
Moment/pg

Pd

Ag

Au

Substrate:

0.07 4.00 4.19
3.65

0.07

0.12
0.12

4.52
4.49
0.03

0.06 4.32
4.26

0.07

0.14
0.15

0.08 3.99 4.27
3.90

0.07

0.20
0.21

Spin up

3.85
0.34

4.19
0.08

Spin down
Moment/pp

4.67 eV
3.15X107° Ry

4.63 eV
3X107° Ry

4.68 eV
4X107° Ry

E;

Ae
AE A"
*AEMA=E

—-3.5X10°*

—0.64X107*

—5.7x107*

o), 1.€., the energy difference between the perpendicular and in-plane directions.

0, ¢=0)_E(0:7r/2.¢:
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—1.7 eV below the Fermi energy, and all five 3d states
and one 4s state are fully occupied. The effect of the
spin-orbit interaction is seen to be relatively larger at
band crossings or for bands which are degenerate in the
semirelativistic solution. The five 3d minority-spin states
are located from —0.8 eV below Ep to +1.2 eV above
Ef, and are only partially filled. Thus, the electron states
close to the Fermi level are primarily those of minority
spin. Shown in Fig. 3(a) is the k-space analysis of the
density of states,

n

D)= [ "D(ek,3)de, (23)
where £=(6=0, $=0). Sharp steps indicate the posi-
tion of the Fermi surface. Figure 3(b) is the k-space
analysis of the magnetic anisotropy,

AE(k)=ffiz‘)p(s,k,zl)de—ffizz)p(s,k,zzme,
(24)
where
3,=(6=0, $=0), 3,=(6=7/2,$=0). (25)

The magnetic-anisotropy energy arises from differences in
the Fermi surfaces, as well as alterations of the energy
levels of the electron states in the band structure. How-
ever, an analysis of the contribution to the magnetic an-
isotropy from different regions of k space in the first BZ
shows that ~45% is from an area close to the Fermi sur-
face, while ~559% is from the rest.

The resulting magnetic anisotropy is sensitive to the
computational details, simply because of the precision re-
quired to determine such small values of their energies
quantitatively. It is clear that among all the computa-
tional uncertainties, the error arising from the determina-
tion of the Fermi surface is the most critical factor.
Thus, a very fine mesh of k points is needed to character-
ize the first BZ in reciprocal space. Moreover, a careful
calculation for DOS of the electronic system is also im-
portant.

In contrast with the results of Gay and Richter,*° but
in agreement with the work of Karas et al.,”* who also
used the FLAPW approach, we find that the spin mo-
ment resides in the plane for Fe lattice constants chosen
to match those of Ag and Au. (Since our calculated
anisotropy-energy value is 4.3X107° and 3.3X 107 ° eV,
respectively, and the value of Gay and Richter is 10 times
larger and that of Karas et al. is 100 times larger, the
sensitivity to details of the differing computational
schemes is apparent.)

B. Magnetic anisotropy of Fe monolayers
on Au(001), Ag(001), and Pd(001) surfaces

For these theoretical studies, the Fe-metal systems are
modeled by a single-slab geometry with one layer of
p(1X1) Fe coupled with one layer of Ag (or Au or Pd)
atoms, and the Fe atoms are located at the fourfold-
hollow site of the Ag (or Au or Pd) square lattice. The
experimental Ag, Au, and Pd lattice constants are as-
sumed. The charge and magnetic moments are listed in
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Table III. In all three systems the calculated magnetic
moments of the monolayer Fe atom, i.., 2.96up in
Fe/Ag, 2.98up in Fe/Au, and 3.01uy in Fe/Pd, are re-
markably close to that of the free Fe(001) surface value of
2.98up, and close in value to those obtained from the pre-
vious calculations with the Ag (Ref. 12) or Au (Ref. 13)
substrates represented by five-layer single slabs. Not
surprisingly, the Fe magnetic moment for 1Fe/1Pd
(3.01up) is somewhat smaller than the reference calcula-
tions (3.19u ) of Bliigel et al.,'> who used seven layers of
Pd. Thus, the magnetic properties of the monolayer Fe
atoms on Ag(001) and Au(001) substrates appear to be
well presented by the 1Fe/1Ag (or 1Au) model FLAPW
calculations, while the 1Fe/1Pd remains somewhat un-
certain.

The magnetic moments induced in the noble-metal
substrates, i.e., 0.03up in 1Fe/Ag, 0.08uy in 1Fe/1Au,
and 0.34up in 1Fe/1Pd, demonstrate the varying
influence of the Fe magnetic moment and are consistent
with previous, thicker-film FLAPW calculations. The Pd
substrate atoms have a magnetic moment about 1 order
of magnitude larger than do Ag or Au in the interface,
indicating a much stronger magnetic interaction between
the Fe 3d and Pd 4d band electrons. We will find that
this is also reflected in the spin- (magnetic-) anisotropy
results obtained using the second-variation FLAPW
method. The results and computational parameters used
are listed in Table III.

The computational results can be summarized as (1) in
all three systems, i.e., 1Fe/1Au, 1Fe/1Ag, and 1Fe/1Pd,
the easy direction of the spin orientation of the spin
orientation is perpendicular to the surface of the film, in

70.0

Fe/Au i
60.0

50.0
40.0 A
30.0

20.0

Eamsotropy (1.0x 10-° eV/atom)

10.0

0.0 " f(rad )
0 T
(perpendicular)

IE]
ENE]
(e

2
(in plane)

FIG. 4. Magnetic-anisotropy energy of (a) 1Fe/1Au, (b)
1Fe/1Ag, and (c) 1Fe/1Pd thin films with respect to spin direc-
tions; the reference level is set so that E(6=0, $=0)=0 [lines
indicate the least-squares fitting of the sin’(6) curves of the data
points].
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FIG. 5. Electronic band structure of a 1Fe/1Au(001) thin film with spin-orbit interaction taken into account. Solid lines and dot-
ted lines represent the (=0, $=0) and (8=m/2, $=0) spin directions, respectively.

contrast with our results for the free standing Fe(001)
monolayer; (2) the values of the magnetic-anisotropy en-
ergy for these systems are considerably larger than our
results from the free-standing Fe monolayer, i.e, 0.5
meV/atom for 1Fe/1Au, 0.1 meV/atom for 1Fe/1Ag,
and 0.4 meV/atom for 1Fe/1Pd. In this case, the result
for 1Fe/1Ag is in agreement with the preliminary result
reported by Gay and Richter for an Fe/Ag(001) slab with
five Ag layers sandwiched between a monolayer of Fe on
either side. (See Fig. 4.)

Shown in Fig. 5 is the electronic band structure of
1Fe/1Au when the spin-orbit interaction is taken into ac-
count. The solid and dashed lines represent the spin
directions (6=0, ¢ =0) and (6=1m/2, $=0), respectively.
As expected, the spin-orbit-interaction correction for the
states with a large weight at the Au atom is much larger
than for those with large weight at an Fe atom. Because
of the Fe-Au hybridization, the band structure at E is
very different from that of the free-standing Fe mono-
layer. This difference is primarily responsible for the
different magnetic anisotropy behavior of 1Fe/1Au (per-
pendicular) and a free-standing Fe monolayer (in plane).

By using 1 monolayer of Ag, Au, or Pd atoms to
represent the noble-metal (001) substrate, these computa-
tional models are still far from being realistic in compar-
ison to the experimentally used samples. However, con-
sidering the very short range of surface interface effects
on noble-metal (001) structures, 2 it is expected that these
results will yield some insight into the effect of the sub-
strate on the magnetic-anisotropy energy of monolayer
Fe(001) thin films. Because of the extremely
computational-time-consuming nature of the calcula-
tions, we estimate that the current results still carry an
uncertainty of at least ~40% based on experience ob-
tained from detailed calculations on an Fe monolayer.

We should thus consider these results to be qualitatively
correct at this time.

These computational results, namely, perpendicular
magnetic anisotropy of monolayer Fe on Au(001),
Ag(001), or Pd(001), is consistent with experimental ob-
servations of the perpendicular orientations of Fe mo-
ments on Pd(001), Au(001), and Ag(001) by a few groups.
The experimental determination of the magnitude of the
magnetic anisotropy is available via FMR measurements.
However, since the experimental values of the magnetic
anisotropy range from 107> to 10”3 eV/atom for various
Fe surface (thin-film) systems, the comparison of our cal-
culated value with experiments is not significant at this
time.

IV. CONCLUSIONS

The conclusion of this work is that the magnetic-
anisotropy energy originating from the spin-orbit interac-
tions, as obtained via use of a second-variation procedure,
is in qualitatively agreement with the experimental re-
sults of monolayer-range Fe(001) thin films on Ag(001),
Au(001), and Pd(001) substrates: all of these substrates
show perpendicular orientation of the magnetization. By
contrast, the free-standing Fe(001) monolayer model does
not give the correct direction of the magnetic anisotropy
of Fe thin films on these substrates. The magnetic-
anisotropy energy depends on the details of the electronic
structure of the system. We also propose that one layer
of Ag, Au, and Pd is possibly sufficient to simulate the
noble-metal substrate in the magnetic-anisotropy calcula-
tions. However, further studies of the magnetic anisotro-
py with a more realistic model, with second-variation or
self-consistent procedures, of the thin films on these sub-
strates are very important.
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APPENDIX: SPIN-ORBIT OPERATOR
IN SECOND-VARIATION FLAPW METHOD

We use the second-variation method to solve the fully
relativistic eigenvalue problem by expressing the fully rel-
ativistic Hamiltonian in the basis of semirelativistic
eigenfunctions. The spatial orientation of the spin system
is taken into account by placing a zero-value external

—io 1
2m [2mc +(e—V)/c]

—ia—-(VfXV)CbZ—
2m

The first term in (A7) has the form of o -1®, and contrib-
utes the primary part of the spin-orbit interaction
(~98% in the test case of a monolayer Fe film); hence,
the other two terms are ignored in the calculation.

Thus, in our calculations, magnetic anisotropy arises
from this g - part, which can be transformed into

1 1ov
[2me+(e—V/c]* r Or

(gD . (A8)

The four matrix elements of g -/ are

(+l@-1l+)=cosO 1, + Lsinfe "%l +LsinBe'®l_ , (A9)
z 2 2

(+|g-1|—)=sin@1,+sin’(6/2)e "l

—cos*(6/2)e'l _ (A10)
(=lgll+)=((+lg-1|- ", (A11)
(=lgl|=)=—(+lg-ll+), (A12)
where

lo=14il, . (A13)

S [V, Vil d—ilV-V,0+R(VH Vb=V, V'V, P)] .

magnetic field B along the (cos¢ sind, sing sin6, cosf)
directions. By doing so, the spin part of the semirelativis-
tic eigenfunction can be determined as

a a
B-a b +=i1B| b, (A1)
where
B, B,—iB,
Be=\p +ip, —B, | (A2)
and
a cos(6/2)e ¢/
I+)= b|. " | sin(6/2)e? |° (A3)
a sin(6/2)e 472
== 16| T | —costo/2)e7 (A
In spherical coordinates,
V=%V, +0V,+¢V,, (AS)
and
I=—itX(0V,+4V,) (A6)

is the angular-momentum operator.
Now, consider the spin-orbit term in the fully relativis-
tic Hamiltonian equation (10):

(A7)

It is worth noting that the second-variation procedure
does not give the “‘true” self-consistent solution of the
fully relativistic Hamiltonian—even when we assumed
that the charge density approximates the ground state,
the direction of spin polarization does not necessarily
represent the lowest energy. In principle, however, a
self-consistent procedure will yield the ground-state solu-
tion of the fully relativistic Hamiltonian. The so-
obtained ground state should be dependent on both the
spatial direction and the value of the external magnetic
field when spin-orbit interaction is present.

In the second-variation procedure presented in this
work, the total energy of the electron system is obtained
for a fixed spatial orientation of the spin polarization and
a zero external magnetic field—the difference of so-
determined total energies resembles the magnetic-
anisotropy energy. Such a procedure is well grounded for
the following reasons.

(i) The effect of the external magnetic field on the mag-
netic anisotropy can be ignored; this is fairly sound be-
cause the electronic structure is not affected by the exter-
nal magnetic field when the majority-spin bands are fully
filled, as is seen in monolayer Fe thin films.

(ii) We can thus assume that the fixed spatial orienta-
tion of spin polarization resembles the case in which the
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spin is aligned by a strong external magnetic field. The
isotropic magnetic energy, B-M, does not contribute to
the magnetic anisotropy, and thus can be replaced by a
zero field here.
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Finally, it goes without saying that a final judgment of
the validity of this second-variation procedure relies on
the self-consistent solution of the fully relativistic Hamil-
tonian.
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