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Love-temperature behavior of random-anisotropy magnets
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An improved computer annealing algorithm has been used to study the low-energy states of mag-
nets with strong random anisotropy on simple-cubic lattices. For classical Heisenberg spins with

isotropically random uniaxial anisotropy, the ferromagnetic correlations at T=O can be described

by a scaling exponent g of about 0.2 and a correlation length of about 10 lattice units. The ground-
state energy Eo is (—1.118+0.003)J. For XFspins with random p-fold anisotropy, the ground states
are ferromagnetic, with magnetizations of 0.45+0.02, 0.715+0.015, and 0.843+0.006, for @=2, 3,
and 4, respectively, and the values of Eo/J are —1.5075+0.0015, —2.229%0.003, and
—2.543+0.002.

I. INTRODUCTION

HHpz= J g gS S Dg g (ni'St) 1

(lJ) Q=1 i a=1

where S; is an m-component spin and the n; are uncorre-
lated random m-component unit vectors. HPZ showed
that a mean-field approximation gives a ferromagnetic
phase for this Hamiltonian at low temperatures. Equa-
tion (1) can also give rise to spin-glass behavior under cer-
tain conditions, as was made clear by later work.

When we go to the strong-anisotropy limit, D/J~ ao,
each spin is constrained to be parallel to its local anisot-
ropy axis. Equation (1) then reduces to

H = —J g (n nj)SSJ (2)

in the absence of an external magnetic field. Each S,- is
now an Ising variable, which takes on only the values +1.
This Hamiltonian. was solved in the infinite range case by
Derrida and Vannimenus, and it is convenient for both
computer modeling ' and high-temperature series expan-
sion.

The behavior of magnets with random local anisotropy
has attracted a great deal of attention for nearly twenty
years. Despite the large volume of work that has been
done, and the real progress that has been made, some of
the simplest questions about the nature of the ground
state of a strongly disordered three-dimensional magnet
have remained unanswered. The reason for this is that
actually finding the ground state of such a system is an
extremely difficult computational problem. In this work,
we will use a simulated-annealing technique to study
several such systems. We will see how the behavior of
the magnetic order in the ground state depends on the
type of random anisotropy which is used.

The canonical model for random-anisotropy magnets
was proposed by Harris, Plischke, and Zuckermann'
(HPZ):

The random-anisotropy term in Eq. (1) can easily be
generalized to higher-order types of anisotropy. It is par-
ticularly interesting to do this for the trt=2 case. For
m )2, higher-order random anisotropies will generate
random uniaxial anisotropy terms under a renor-
malization-group transformation, ' so that no qualitative-
ly new behavior is expected. For XY spins we can trans-
form each spin variable, S;, into an angular variable, 8;.
Equation (1) is then generalized to the case of p-fold ran-
dom anisotropy by writing

H~= —J g cos(8, —8 ) Dg Icos—[p(8; —(();)]—1I,
(& t

where P, is the angular coordinate of n;. Equation (3) has
been studied" in two spatial dimensions (d=2) and also'
in d =2+@. It was shown that, at least for small D, the
Kosterlitz-Thouless phase survives the addition of the
random anisotropy term if p & 3. What makes this par-
ticularly noteworthy is the argument by Pelcovits, Pytte,
and Rudnick, ' who claim that there can be no fer-
romagnetism at finite temperature in the presence of a
random anisotropy term when d (4. (The analysis given
by Pelcovits' is for the p =2 case, but it easily generalizes
to arbitrary p. ) If we were to accept that the lower criti-
cal dimension for ferromagnetism in the presence of ran-
dom anisotropy is d=4, then it becomes extremely
difKicult to explain how the ferromagnetic correlations
can decay slowly at large distances in d=2, so as to allow
the survival of the Kosterlitz-Thouless phase.

Part of the resolution of this apparent paradox seems
to be that the lower critical dimension for ferromagne-
tism when m =2 is d=3, rather than 4. This result is in-
dicated by the analysis of high-temperature series expan-
sions9 for Eq. (2). The question is not completely
answered, however, since neither the series expansions
nor other techniques' suggest that the magnetic correla-
tions decay slowly at large distances for d=2. What is
claimed in the work by Houghton, Kenway, and Ying, "
and Cardy and Ostland" is that, if D is small, there is an
intermediate range of temperatures where the range of
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the ferromagnetic correlations is determined by the dis-

tance between vortex pairs. The Kosterlitz-Thouless
mechanism would then operate in this range of tempera-
tures.

Taking the D/J ~~ limit of Eq. (3), we obtain

H~„= —J g cos
&ij)

(4)

II. CALCULATIONAL PROCEDURE

Taking the D/J ~ ~ limit gives an enormous
simplification in the nature of the problem of finding the
ground state, since it is then only necessary to deal with a
discrete phase space, rather than a continuous one.
There is no reason, however, to believe that the behavior
is singular in this limit. Our results will be qualitatively
valid for all large values of D/J. The first large-scale at-
tempt to study the structure of the ground state of a ran-
dom anisotropy model was performed by Jayaprakash
and Kirkpatrick, (JK), who studied the m =2 case of Eq.
(2) on square lattices, and the m =3 case on simple cubic
lattices. These authors were primarily interested in
studying finite temperature properties, so they used a
Monte Carlo spin-flip algorithm. This limited their abili-

ty to locate the ground states of large lattices. JK intro-
duced two techniques to the study of this problem which
were used in the current work: a multiple-spin-Hip algo-
rithrn, and repeated low-temperature annealing.

where p,j =p; p/—, and each q; is now a Z variable,
which takes on all integer values between 0 and p —1. If
we remove the randomness from Eq. (4) by setting all of
the P,"=0, we are left with the standard p-state vector
Potts (clock) model. ' For p & 3, the vector Potts model
has a first-order transition to the ferromagnetic state
when d=3. At the mean-field level, the inclusion of the
random P;~ terms changes the nature of the model in a
dramatic fashion. The ground state now has a macro-
scopic rotational invariance, rather than the discrete p-
fold invariance of the vector Potts model. This might ap-
pear to change the behavior of the domain-wall energy
from that characteristic of a system with discrete symme-
try to that of a system with continuous symmetry. But
the actual syrnrnetry group of the ground state is still
only the p-fold discrete rotation invariance, so it may not
be correct to use an Imry-Ma type argument' to claim
that the lower critical dimension must be d= 4.

This issue has arisen before, in the context of the Ising
spin glass. ' ' In order that the domain-wall energy
behave as in a system of continuous symmetry, it would
be necessary that there exist distinct ground states which
are not related by the p-fold invariance. The existence of
such states would allow domain walls to spread out in
space at a very low cost in energy, by mixing two non-
equivalent ground states. One of the results of the calcu-
lations described here is that such states do not exist for
m=2 random-anisotropy models in three dimensions.
This confirms the conclusion of the high-temperature
series work, that the lower critical dimension for fer-
romagnetism in these models is 0=3, not 4.

If one wishes to concentrate solely on the ground-state
properties, a Monte Carlo algorithm is very inefficient,
because a substantial fraction of the computing time is
used by calculating Boltzmann factors. This results from
the fact that the spin-spin interaction energies are
different for each spin. It is much better to use an energy
criterion: a spin is Hipped if and only if the energy cost is
less than e(t), which may be either positive or negative.
After each two or three passes through the entire lattice,
e is changed. At the end, one sets @=0,and then iterates
until a metastable state is reached. The annealing
schedule, e(t) should be adapted to the problem. It
would not be optimal to use the same e(t) for all values of
m and p.

Since each finite lattice with its own set of random axes
has different individual properties, it is necessary to study
a number of lattices of each size, in order to obtain the
properties of the distribution of lattices of that size. Nat-
urally, this substantially increases the amount of comput-
er time which is needed, relative to what one would need
to study a nonrandorn problem. It is particularly true
that the magnetization of the ground state can vary
greatly from one lattice to the next of a given size.

Starting from an arbitrary initial configuration, we are
unlikely to reach a very low energy state in one annealing
cycle. Therefore, a number of initial configurations were
used for each lattice, and this number was increased as
the lattice size was made larger. For small lattices one
can then pick out the lowest-energy state which is found
by this procedure, and assume with a reasonable degree
of confidence that it is the ground state. For lattices of
1000 spins or more, however, it is not practical to use
enough initial configurations to find the ground state in
this way. For these larger lattices, one picks out a small
number of the lowest-energy states found by starting
from arbitrary initial configurations, and subjects them to
further annealing. This process eventually converges:
given sufficient annealing, the different states begin to
have a high degree of overlap. The fact that this occurs
tells us we have almost surely found a good approxima-
tion to the true ground state. It also tells us that the
ground state is essentially unique, and that the domain-
wall energy is not very small. The convergence of the
different states occurs fairly rapidly for XF spins, and
with some difficulty for m=3 spins. It was found that
lattices up to 20X20X20 could be studied for m=2, but
for m =3 it was only practical to go up to 16 X 16X 16.

The sets of random axes were chosen in the same way
as in the previous study. This made it possible to re-
study the same lattices which were used before. For most
of the larger lattices, the annealing algorithm was able to
find states of lower energy than found previously. This
was due partly to improvements in the program, and
partly to the availability of greater computing resources
than before. These improvements have also made it pos-
sible to work with larger lattices. The reader should un-
derstand that in some cases the program has not succeed-
ed in finding the exact ground states of these large lat-
tices. We must be satisfied with the more modest goal of
finding a metastable state which has a high degree of
overlap (typically about 95%) with the true ground state.
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This is suScient for our estimates of the properties of the
ground state to be reasonably accurate.

i I

ITl = 3

III. NUMERICAL RESULTS

L XL XL simple cubic lattices with periodic boundary
conditions were studied, with L up to 16 for the m=3
case of Eq. (2), and L up to 20 for the m =2 cases, Eq. (4),
with p=2, 3, and 4. It turns out that, for a given L, the
m=3 case requires much more computer time. This is
because the domain-wall energy is much lower for m =3,
which allows a much larger number of low-lying metasta-
ble states to exist. The results for the ground-state ener-
gy Eo and the square of the ground-state magnetization,
M, for m =3 lattices in the range 3 + L + 16 are given in
Table I. The improved algorithm for finding the ground
state has resulted in a lowering of the estimates of Eo for
the larger lattices, and small changes in the estimates of
M . A simple extrapolation of Ep(L) to large L gives

01—

0.05—

0.02 I I I I I

10 20

Eo=( —1.118+0.003)J for m =3 .

A log-log plot of M vs L is shown in Fig. 1. It is clear
that the slope of M (L) is becoming more negative as L
increases. It appears that the slope will eventually go to—3 for large L, which is the result for correlations of
finite range in d=3. The spin-spin correlations are de-
scribed by the usual form,

(5)

where g is the spin scaling exponent, and go is the zero-
temperature correlation length. The brackets, [ ]„indi-
cate a configuration average over the random axes. Since
gc is not infinite, il cannot be precisely defined, but we
can estimate that i'd=02 and pc=10. There is no true
ferromagnetism for m=3 on the simple cubic lattice.
This is probably true for all three-dimensional lattices. 9

These conclusions agree well with prior work, s s but are
more precise.

It is worth remarking, however, that the short-range
order is so strong that it will have large effects. Large
ferromagnetic correlation lengths have been observed in
small-angle neutron-scattering experiments' on amor-
phous RFe2 samples (where R stands for rare earth). We

FIG. 1. Configuration average of the square of the magneti-
zation, [M']„vs lattice size, L, for L XL XL simple cubic lat-
tices, for the random uniaxial anisotropy model with m =3 and
D/J=ao. Both axes have logarithmic scales. The error bars
show one standard deviation.

can see that the existence of a substantial correlation
length does not prove that D/J is small, as has sometimes
been assumed.

The results for the XY model with strong random uni-
axial anisotropy [Eq. (2) with m=2, or, equivalently, Eq.
(4) with @=2] are given in Table II. In Fig. 2 we see a
semi-log plot of 1/M vs L. Going out to L= 20 does not
rigorously prove anything about the limit L ~ 00, but the
finite lattice data rule out a decrease of M to zero which
is faster than 1/log(L). The data are well fit by

Mo =0.45+0.02 and Eo =( —1.5075+0.0015)J
for L~~ with m=2 and @=2. This value of Mo, the
magnetization of the ground state, is only about 70%%uo of
the mean-field theory value, 2/n. It is not clear that fer-
romagnetism will be stable at even very low nonzero tem-
peratures, and it seems unlikely that M will remain finite
up to T, =1.78J, the temperature at which the inagnetic
susceptibihty diverges. So there is probably a range of

TABLE I. Ground-state data for L XL XL simple cubic lat-
tices with m=3. M and hM are the average and standard de-
viation of the distribution of ground-state magnetization
squared. Ep and EEp are the average and standard deviation of
the ground-state energy distribution (in units of P.

Samples AEp

TABLE II ~ Ground-state data for L XL XL simple cubic lat-
tices with m=2 and @=2. Column labels are the same as in
Table I ~

3
4
5
6
8

10
12
16

Samples

192
128
96
64
48
32
24
16

0.3224
0.2521
0.2015
0.1558
0.1128
0.0821
0.0593
0.0272

0.0687
0.0547
0.0412
0.0436
0.0470
0.0426
0.0238
0.0135

Ep

—1.1680
—1.1335
—1.1311
—1.1245
—1.1209
—1.1196
—1.1198
—1.1185

AEp

0.1129
0.0740
0.0504
0.0356
0.0208
0.0170
0.0132
0.0088

3
4
5

6
8

10
12
16
20

192
128
96
64
40
32
32
32
24

0.4779
0.4244
0.3837
0.3596
0.3193
0.2884
0.2665
0.2425
0.2290

0.0678
0.0562
0.0413
0.0416
0.0375
0.0290
0.0247
0.0307
0.0280

—1.5845
—1.5458
—1.5345
—1.5238
—1.5101
—1.5086
—1.5082
—1.5083
—1.5077

0.1496
0.1001
0.0517
0.0465
0.0312
0.0239
0.0137
0.0118
0.0057
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I I I I I I TABLE III. Ground-state data for L XL XL simple cubic
lattices with m=2 and p=3. Column labels are the same as in

Table I.

Samples

~
~ ~

X x

I I I I I I

~ ~

X

3

5

6
8

10
12
16
20

192
128
96
64
48
40
32
32
24

0.7298
0.6996
0.6698
0.6483
0.6253
0.6008
0.5818
0.5596
0.5460

0.0410
0.0319
0.0286
0.0290
0.0227
0.0185
0.0264
0.0194
0.0207

—2.2886
—2.2711
—2.2465
—2.2409
—2.2396
—2.2359
—2.2353
—2.2321
—2.2299

0.0848
0.0514
0.0349
0.0306
0.0178
0.0118
0.0088
0.0060
0.0044

PO

FIG. 2. Inverse of the square of the magnetization, 1/[M ]„
vs lattice size, L, for L XL XL simple cubic lattices, for the ran-

dom uniaxial anisotropy model with m=2 and D/I= 00. The
L axis is scaled logarithmically. The error bars show one stan-
dard deviation. Diamonds: p=2; squares: p= 3; crosses: p=4.

T, which may extend down to 0, where M=O and y= ~.
A phase of this type was originally predicted by Aharony
and Pytte, ' although their prediction was not specific to
the m=2 case.

The distribution of efFective fields for this system is
shown in Fig. 3. The shape of the distribution is qualita-
tively similar to what was found by JK (Ref. 5) for the
m=3 case. The density of states at low fields is some-
what smaller, and the peak is moved out, as one would
expect. This is simply a reflection of the fact that the dis-
tribution of effective fields is not sensitive to the existence

of long-range order in these random anisotropy magnets.
Even the infinite range model has a finite density of
states at zero field. Since the dominant low-energy exci-
tations are localized single spin lips, it is hard to accept
the validity of a spin-wave analysis' of the low-
temperature behavior.

The data for Eq. (4) with @=3 and @=4 are shown in
Tables III and IV, respectively. These systems are
strongly ferromagnetic, and they have rather large
domain-wall energies. Therefore the ferromagnetism
should be stable up to temperatures of about 2J in these
cases. The extrapolations to L ~~ are estimated to be

Mo =0.715+0.015 and Eo = —2.229+0.003J

for @=3,and

Mo =0.843+0.006 and Eo = —2.543+0.002J

3000
for p=4. The widths of the distributions for Mo and Eo
become progressively smaller as we move from p=2, to 3,
to 4. Clearly, the eFects of the randomness become
weaker as p increases.

2000
TABLE IV. Ground-state data for LXLXL simple cubic

lattices with m =2 and p=4. Column labels are the same as in

Table I.

1000 Samples aM'

4
Energy (u st.snof J)

FIG. 3. Density of states for the distribution of e8'ective

6elds for the L=20 lattices with XFspins and p=2.

3
4
5

6
8

10
12
16
20

192
128
96
64
48
40
32
32
24

0.8358
0.8144
0.8000
0.7840
0.7698
0.7521
0.7411
0.7307
0.7241

0.0281
0.0226
0.0193
0.0181
0.0149
0.0157
0.0146
0.0144
0.0129

—2.5749
—2.5604
—2.5554
—2.5523
—2.5497
—2.5466
—2.5448
—2.5441
—2.5437

0.0578
0.0301
0.0200
0.0147
0.0103
0.0081
0.0052
0.0042
0.0028
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IV. DISCUSSiON

The systems studied in this work display a fairly wide
range of behavior. For the m=2 mode1 with @=4, the
randomness does not seem to matter that much, since the
behavior is not that different from the nonrandom p=4
vector Potts model. Domain walls are very well defined,
and metastable states do not seem to be very important.
It may be, however, that more dramatic effects do occur
near the ferromagnetic transition temperature, T, . The
nonrandom vector Potts models have first-order transi-
tions in d=3. The effects of randomness on first-order
phase transitions are not, in general, we11 understood. It
is often stated that a "smearing" of the transition will
occur, but the meaning of this term is rather vague. It
~ould not be surprising if an Aharony-Pytte phase exist-
ed in a narrow band of temperature, between the fer-
romagnetic phase and the paramagnetic phase. This
question must be left to future work.

On the other hand, the behavior of the m=3 model is
dominated by the metastable states. In this case, the
analysis of Pelcovits, Pytte, and Rudnick, which assumes
that the domain walls can spread out as in a system of
continuous symmetry, seem to work rather well, despite
the discreteness induced by the strong anisotropy. The
short-range order is highly ferromagnetic, even in this
strong anisotropy limit. This indicates that there will be
a giant peak in the magnetic susceptibility at low temper-
atures, which may be dificult to distinguish experimently
from true ferromagnetism.

Chakrabarti has claimed that there is a spin-glass
freezing transition at a temperature Tf =1.0J for the
m =3 case on the simple cubic lattice. It is clear, howev-
er, that there is a large variation of the ferromagnetic
correlation length, g, in this temperature range, which
was missed by his calculation. It may be that there is a
spin-glass freezing at a somewhat lower temperature, e.g.,

0.5J, and that this is what prevents g from diverging as
T~O. Chakrabarti's results are a nonequilibrium effect,
which arise from his use of a single-spin-flip Monte Carlo
algorithm.

The case of m=2 with p=2 is intermediate between
these two extremes. It probably has ferromagnetic order
at T=O, but this order is rather weak, and will be easily
destroyed by thermal excitations. It should display an
Aharony-Pytte phase over a fairly wide range of tempera-
ture. It was predicted by Pelcovits, ' based on a spin-
wave analysis for the small D limit, that this behavior
would occur in 1=4 for XY spins. It would be very use-
ful to have a simple explanation of why the effect actually
occurs tn d=3.

V. SUMMARY

In this work, a computer annealing algorithm has been
used to study the ground-state properties of random an-
isotropy magnets of several types, on simple cubic lat-
tices. We see that the nature of the ground state depends
on the number of spin components. Random axes uni-
formly distributed over the sphere give rise to a fer-
romagnetic correlation length of about ten lattice units,
but no true long-range order. Ferromagnetism occurs for
random anisotropy distributed in a plane, for any value of
p. As p increases, the behavior becomes increasingly
similar to that of a vector Potts model.
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