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Random-walk simulation of the dielectric constant of a composite material
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We evaluate, by a random-walk method, the dielectric constant €, of a composite material con-
sisting of impenetrable, spherical conducting inclusions embedded in an insulating matrix. The
random-walk method permits an accurate evaluation of €, up to volume fractions corresponding to
near to close packing of the inclusions. We compare the €, results for different types of random
configurations with those for the simple-cubic and face-centered-cubic lattice configurations.

Many composite materials are composed of discrete in-
clusions embedded in a homogeneous matrix.! When the
inclusions are sufficiently large to be characterized by
their own material properties, such as a dielectric con-
stant, the properties of the composite material will de-
pend on the material properties of both phases, as well as
the volume fraction and arrangement in space of the in-
clusion phase. In this paper we present a simulation
method to evaluate the effective dielectric constant, €,, of
composites based on a recently introduced random walk
method.?™* The method has been successfully applied to
composites consisting of inclusions which can over-
lap;°~* here we show that it can provide accurate results
for discrete-inclusion composites.

There are many approaches to the prediction of the
effective dielectric constant of a composite material.
Among these are the following: (1) approximate methods
based on mean-field approaches, such as those of
Maxwell,> Maxwell-Garnett,® Clausius,” Mossotti,® and
Bruggeman’ (these methods are of uncertain quality at
high inclusion volume fractions); (2) analytic approaches
via diagrammatic expansions, 10,11 which are limited to
dilute inclusions; (3) rigorous variational techniques'?
which lead to upper and lower bounds on €, (when the
dielectric constants of the constituent phases are very
different, the bounds are not close); and (4) an analytic-
simulation method!® based on a multipolar expansion of
the fields around each inclusion arising from the presence
of the other inclusions (if a sufficient number of mul-
tipoles are included, then this simulation method will
converge even at high-volume fractions of the inclusions
and provide accurate €, values).

In developing the analytic-simulation method,!® we
found that the most difficult case (in terms of the number
of multipoles required to converge the results at a given
volume fraction) corresponded to conducting inclusions
in an insulating matrix, since here the electric field varies
very rapidly in the gap between closely separated in-
clusions. The simulations were carried out for N
spherical inclusions of radius R enclosed in a volume V,
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from which we define the volume fraction as
¢=(47R*/3)(N/V). For ¢ above 0.45, the number of
multipoles required for convergence was larger than
could be practically included with our computational
resources. Here, we extend the results for conducting in-
clusions to higher-volume fractions, by employing the
random-walk method, and show that it can be used to ob-
tain accurate results for these nonoverlapping inclusion
composites.

We validate the random-walk method by simulating €,
for a simple-cubic lattice and comparing the data with
that of McPhedran and McKenzie'* obtained by a mul-
tipole simulation. These authors were able to include a
very large number of multipoles in their simulation be-
cause they found empirically that only the /,m=0 com-
ponent among the (2/+ 1) moments for order / in a spher-
ical multipolar basis contribute to the effective dielectric
constant. Thus, their results are very accurate even at
volume fractions in the neighborhood of close packed.
Based on these results, we then present the data for simu-
lations of random distributions of inclusions at high-
volume fractions.

The random-walk methodology has been carefully de-
scribed by Tobochnik, Laing, and Wilson.* The method
relies on the equivalence of Laplace’s equation and the
diffusion equation. In particular, the dielectric constant
for the conductor-in-insulator matrix case can be related
to the diffusion constant of a random walker which walks
in the matrix phase of the composite with unit diffusion
constant and in the inclusion phase with infinite diffusion
constant. The diffusion constant D, of the composite is
obtained by monitoring the mean-square displacement of
the walker versus time and using the relation

(r?)=6D,t . (1

For the conductors-in-insulators case, Einstein’s connec-
tion between €, and D, has been shown to be'>>

€,=(1—¢)D, . )
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Thus, a simulation of D, provides €, .

To carry out the simulation of D, for nonoverlapping
spherical inclusions, we first generate configurations of
spheres by a Metropolis Monte Carlo algorithm. 16 This
method yields liquid-state disorder for ¢<0.45 and
disordered-solid-like configurations at higher-volume
fractions. At very high-volume fractions, near hexagonal
close packing, the Metropolis method is too time con-
suming to make it practical to obtain well-randomized
configurations, and so we use the following alternative
procedure. A face-centered-cubic (fcc) lattice is random-
ized by taking the Wigner-Seitz cell about each inclusion
and randomly displacing each particle within the largest
spherical region that can be inscribed in its Wigner-Seitz
cell. We typically used 864 inclusions in a given
configuration, performed ten independent random walks
on each configuration, with the walkers started at a ran-
domly chosen point close to the center of the simulation
cell, and then repeated this procedure for 100
configurations. Each configuration (the primary cell) is
periodically replicated and a walker which steps out of
the primary cell is allowed to continue its walk in the im-
age cells. The slopes of the mean squared displacement
versus time plots are quite linear after an initial induction
time and before the mean-square displacement becomes
so large that typical walkers are leaving the primary cell.
The slopes can be estimated to an accuracy of about 5%.

The random walk was carried out by a mean-first-
passage-time (MFPT) method.*!” In this method, for a
walker exterior to any inclusion, a sphere centered on the
walker is expanded until it touches the closest inclusion.
Then, the walker steps to a randomly chosen point on the
surface of this sphere with the time assigned to the step
chosen from the MFPT distribution characterizing the
distribution of times to transit this distance via diffusion. *
A new sphere is drawn around the new starting point for
the walker and the above procedure is repeated until the
walker is captured by an inclusion. When a walker is in-
side an inclusion, it is placed on a randomly chosen point
on the inclusion’s surface. No time is counted for this
event, since the inclusions’ conductivity (diffusivity) is
taken as infinitely large. The MFPT method is a useful
alternative to the conventional lattice walk method used
to simulate the walker’s diffusive motion. It eliminates
the necessity of carrying out walks with very small lattice
spacings, which would be required at high-volume frac-
tions. Also, elimination of the effect of the lattice spacing
on the results, by varying the lattice constant of the walk,
does not have to be carried out.

In order to implement the MFPT approach for nono-
verlapping inclusions, a criterion must be established for
when the walker is considered to be inside an inclusion.
Figure 1 defines the inclusion radius R, an outer radius
R, and a length a.. Consider the walker with the closest
inclusion, and define “@’’ as the minimum distance from
this inclusion’s surface to the walker’s location. If a is
greater than a,, then the MFPT walk is carried out. Oth-
erwise, the walker is placed on the surface of the outer
sphere with radius R, at a random location. If a is be-
tween zero and a,., then the walker is placed randomly on
R,.. A time equal to the diffusion time for a length
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FIG. 1. An inclusion of radius R, with two concentric
spheres of radii, R +a, and R, used to decide when a walker is
captured by the inclusion, as discussed in the text.

R.—R is counted toward the total diffusion time for this
step. We found that this procedure yields accurate re-
sults as long as (1) R,—R is chosen to be small with
respect to the gap between neighboring inclusions and (2)
R, is slightly bigger than a. +R.

The method was checked against the multipole data
obtained by McPhedran and McKenzie'* for a simple-
cubic (sc) lattice of conducting inclusions. The compar-
ison is shown in Table I. For the highest-volume fraction
used (¢=0.523), where we note that simple cubic close
packing is ¢=m/6~0.523 60, the choices a,=0.00008
and R.—R =0.000081 give results accurate to about
5%. The accuracy is better for lower-volume fractions
without the use of such small ¢, and R, —R values.

The results of the random-walk method for the disor-
dered configurations, generated by the Metropolis
method, are shown in Fig. 2. Also on Fig. 2 are data gen-
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FIG. 2. €, /€, vs inclusion volume fraction ¢. The solid line
is generated by the multipole method of Ref. 14 for the sc lat-
tice. The A’s (x’s) are generated by the random-walk method
for the Metropolis (randomized lattice) configurations. The
open squares are generated by the random-walk method for the
fcc lattice. The open circles are generated for the Metropolis
configurations by the multipole-simulation method of Ref. 13.




5344

BRIEF REPORTS 42

TABLE I. A comparison between the multipole-method results of McPhedran and McKenzie and
the random-walk-method results of the present work for the simple-cubic lattice.

¢ 0.05 0.1 0.2 0.3
€.* 1.1 1.4 1.8 2.3
€.’ 1.158 1.334 1.756 2.333

0.4 0.5 0.52 0.522 0.523
32 5.8 9.1 10.4 11.8
3.261 5.887 8.863

10.140 11.700

?Evaluated by random-walk method.
®Multipole-method data of Ref. 14.

erated by our recent multipolar simulations.!* The mul-
tipolar simulations converge only up to ¢ =0.45, and over
this range of volume fractions the two methods are in
good agreement. For higher-volume fractions, it is of in-
terest to observe that the Metropolis configuration results
are quite close to the face-centered-cubic lattice results of
McPhedran and McKenzie. Note, however, that at
volume fractions close to fcc closest packing, ¢=0.74,
the Metropolis method does not give independent ran-
dom configurations for the numbers of Monte Carlo steps
we found practical to use. Thus, we also generated
configurations by a method which provides better ran-
domization; namely, the randomization of each inclusion
within its Wigner-Seitz cell, as discussed above. To the
accuracy of the random-walk method, these results are
equivalent to those obtained for the fcc and Metropolis
randomization configurations. At these very high-
volume fractions, there is no way of providing extensive
configuration randomization. The data at ¢=0.5 are of
interest in that they suggest that the result for Metropolis
configurations is higher than the fcc lattice result. This
behavior is not expected, since random close packing
occurs at ¢ ~0.63;'® thus, €,(¢) should be increasing fas-

ter with ¢ than €,(¢) for the fcc lattice. Though, note
that this conclusion is based on data which is at the limit
of the accuracy of the random-walk method.

The developments presented here show that the
random-walk method can be used at very high-volume
fractions, even for the difficult insulator-in-conductor
case. A further advantage of the method is that non-
spherical geometries can also be simulated. When the
two phases have arbitrary dielectric constants, the
random-walk method can be carried out by random
walks both inside and outside the inclusions,* though this
will require substantially more computer time than that
required for the conductor-in-insulator case. On the oth-
er hand, composites consisting of inclusions which are
themselves composite are readily treated by the
multipole-simulation method,!® while these composites
would be tedious to treat by the random-walk method.
Finally, we note that there is as yet no random-walk
method to discuss frequency-dependent dielectric proper-
ties, as is important for the prediction of optical proper-
ties of composites. These problems are readily addressed
by the multipole methodology. !’
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