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Localization properties of the nonbonding n. states at the Fermi level in amorphous carbon
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The m.-electronic structure of graphitelike clusters of amorphous carbon (a-C) containing non-

bonding states (c=EF) is studied in the tight-binding approximation. The localization characteris-
tics of the eigenstates, especially around the Fermi level, are analyzed. These m. orbitals were found

to be more localized than in aromatic molecules. The nonbonding states are concentrated on sur-

face atoms of the clusters, which implies that the additional hydrogen atoms removing the rnidgap

states link probably to the circumference of the graphitelike regions of a-C.

In the last few years intense research has been devoted
to the experimental' and theoretical " study of
amorphous carbon (a-C) and hydrogenated amorphous
carbon (a-C:H). In a-C fourfold-coordinated (diamond-
like) and threefold-coordinated (graphitelike) atoms are
present at the same time. Graphitelike atoms form clus-
ters with three localized sp hybrid states per atom (o.
bonds) and m states remaining delocalized. ' These clus-
ters are slightly distorted planar islands inside the a-C
separated by one-dimensional internal surfaces from the
bulk material. The extra ~ electrons form bands close to
EF and there exists a pseudogap around the Fermi level
with some localized midgap states due to defects. ' '"
The density of states (DOS) at the Fermi level and the lo-
calization properties of the midgap states dominate the
hopping conductivity of a-C. ' It was also found that
a-C:H has a wider gap around EF than a-C, because the
addition of hydrogen removes the m states from the
gap' ' ' ' '" or, in the inverse process, the extraction of
hydrogen lowers the gap. It is still an open question as
to where the additional hydrogen atoms saturating the
midgap states bind to the cluster of graphitelike atoms.

Therefore the study of the n-electronic structure (espe-
cially around EF) is essential in order to derive informa-
tion on the electronic properties of a-C and a-C:H. These
defect states have been investigated by means of band-
structure calculations and also using quantum-chemical
cluster calculations based mainly on the Hiickel
theory, ' ' '" which is the equivalent version of the
tight-binding method for finite systems. Since the latter
method retains only first-neighbor interactions between
the atoms, the m-electronic structure obtained in this ap-
proximation reflects directly the topological arrangement
of the atoms.

Hence in this work we have used the Huckel theory for
graphitelike clusters in order to get details of the localiza-
tion properties of the midgap states, which may give
some insight into the problem of how the saturation of
these states by hydrogen possibly takes place.

In constructing the mathematical model applied, we
have considered the following facts. The graphitelike is-
lands have separated confined m-electronic structures em-
bedded in a o.-bonded diamondlike matrix. Therefore we

1 if atoms i and j are first neighbors,

0 otherwise.
A"= ' (2)

Parameters a and p in Eq. (1) simply fix the zero level
and unit of the energy scale. We will use a=0 and p= 1

without any loss of generality, i.e., we measure the energy
in units of p and a =EF =0. This way the eigenvalue
problem of the Hamiltonian Hg=sf is equivalent to the
same problem of the adjacency matrix. The eigenvectors
of the adjacency matrix A are called the topological
states of the system. ' The states corresponding to c. (0,
c.=0, and r. )0 are bonding, nonbonding, and antibond-
ing states, respectively. Hereby we focus our attention
mainly on the so-called nonbonding states with
c=EF =0. Based on graph-theoretical arguments,
Kugler and Laszlo have shown that the existence of
states at E„- may be predicted by analyzing the adjacency
matrix of the cluster. "

The clusters under consideration have been chosen
from the model C1120 (with 1120 atoms) of Beeman
et al. This model consists of the Cartesian coordinates
of the atoms and the o. bonds connecting first neighbors
are given as well.

The localization properties of the eigenstates ~p, ) are
calculated using the linear combination of atomic orbitals
(LCAO) expansion coefficients c,„over an orthonortnal
atomic basis set I ~i ) I. Since in the following considera-
tion we will be dealing with a given state ~p ), index p will

be dropped where this cannot cause any confusion. The

impose free boundary condition for the eigenfunctions,
however in the effective Hamiltonian we must incorpo-
rate the influence of the infinite atomic network. This re-
quirement can be satisfied by choosing uniform on-site
and interaction parameters over the whole graphitelike
cluster, i.e., no distinction is made between bulk and sur-
face atoms at the dynamical level. Hence within the
Huckel theory the effective Hamiltonian reads as'

H=aI+pA,
where I is the unit matrix and A is the adjacency matrix
of the graph of the finite cluster due to the topological
structure. Matrix A is defined the following way:
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square modulus of these coefficients give the charge of
the eigenstate ~p) on site-atom i: Q,

=
~c, ~

. Due to nor-
malization we have Q~ Q; = 1 (N is the number of atoms).
In order to characterize the eigenvectors we define the
following quantities

1.2

0

& 0.4

N

D
—i y Q2 (3a)

O
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N
S=—g Q;lnQ, , (3b}
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0.4

where D, called the delocalization measure' or the parti-
cipation ratio, ' practically gives the number of sites the
eigenstate extends to, and S is the information entro-
py' ' which characterizes the shape of ~p). We have
shown' that for an orthonormal atomic basis-set rela-
tion,

0 0 1 i T I I

0.0 0.2 0.4 0.6 0.8 1.0
Filling factor

1&D&X (4)

generally holds. Moreover, we may normalize this quan-
tity to the system size in order to compare states in
different systems defining the filling factor q =D/N, with
1/N &q ~ 1. Defining the mean filling factor q for arbi-
trary M states as

M

@=1

it is possible to show that if M degenerate eigenstates are
mixed with unitary transformations a maximum delocali-
zation, i.e., filling factor (qm, „) exists, ' which depends
only on the total charge distribution.

The information entropy can be given as a sum of two
physically different terms: the structural entropy (S„)
and the extension entropy (S,„}.' ' The most simple
state is a steplike function which possesses extension only
with no further structure. This state extends over D
atoms and has equal (Q;=1/D) charge on these atoms
and Q;=0 on the other N Dones. Hen—ce the entropy
of such charge distribution is given as S,„=lnD [see Eq.
(3b)]. Therefore any structure in the charge distribution
will show up in the deviation from this value. We have
shown that S—lnD is a non-negative quantity' and we
may call it the structural entropy S„. Furthermore, us-

ing a continuous lattice model, we have shown that there
is a scale invariant functional relation between S„and q,
and this relation depends only on the form of the decay
function f(r) of the charge distribution and the dimen-
sion of the system. ' In Fig. 1, the solid curves show
some examples of this relation for various decay forms
quadratic decay f ( r) = ( 1+r ), exponential decay
f (r) =exp( r), and Gaussian dec—ay f(r) =exp( —r ).
The first application of this approach has been presented
on some aromatic molecules and conjugated hydrocar-
bons. '

In our present calculation we have used 11 topological-
ly inequivalent clusters (C,, . . . , Ci~) of 47 to 68 atoms
taken from the C1120 model of Beeman et al. %'e have
selected those atomic configurations that satisfy the topo-
logical requirement given in Ref. 11 in order to assure the
appearance of nonbonding states (E=O). These clusters

FIG. 1. Structural entropy S„=S—lnD vs filling factor

q =D/N. Curve labeled a is for quadratic decay in two dimen-
sions (d =2 j, b for exponential decay in d =2, c for Gaussian
decay in d =2 and exponential in d =1, and d for Gaussian de-

cay in d =1. Solid circles represent the results of our calcula-
tion. Inset shows the nonbonding orbitals on the Fermi level.

contain altogether 592 atoms, mostly in threefold-
coordinated configuration. The bordering atoms with
two neighbors or one single neighbor are considered to be
the surface atoms.

We have diagonalized the Hiickel Hamiltonian (1) for
each cluster and calculated the filling factor q =D/N and
structural entropy S„=S—lnD of the eigenvectors ac-
cording to Eqs. (3a) and (3b). In Fig. 1 we have plotted
the related S„versus q values for all of the eigenfunctions
obtained from various cluster configurations. The locali-
zation properties of the nonbonding states are shown sep-
arately also in the inset. Considering the q values, one
can see that the m-electronic states of these structures are
not very much extended, their filling factor is mainly in
the range of 0.1 ~

q ~ 0.6, which is lower than in aromat-
ic molecules (0.3 ~ q ~0.8). ' The mean filling factor (5)
of all of the states was found to be low, q =0.32. From
the inset we can deduce that the nonbonding states are
strongly localized (q=0. 12). For verification, we have
also calculated the maximum filling factor (q,„)for clus-
ters with degenerate nonbonding states, and found that
for these states q,„ is always considerably lower than q
for the total ~-electronic structure.

On the other hand, the structural entropy S„shows
that almost all states have faster decay than two-
dimensional (2D) exponential but slower than 1D Gauss-
ian. Some states exhibit steplike behavior (S„=O).

Based on the above properties the following question
arises: where are the nonbonding states localized? In or-
der to answer this question we have divided all clusters to
surface and bulk atoms according to the definition given
above. Since the total charge belonging to a given state is
unity (Q,„„f+Qb„,„=1), the portion of the charge accu-
mulated on surface atoms Q,„,f has been calculated and
plotted in Fig. 2(a) versus energy. Figure 2(b), shows the
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TABLE I. Localization properties (filling factor, structural
entropy, surface charge) of the 20 nonbonding states (v=0) ob-
tained by Huckel theory based on clusters (C„.. . , C») of the
model C1120 of Beeman et al. (Ref. 9).

0.0

Cluster

C,

q =D/1V

0.1484
0.1729
0.1784
0.0539

S„=S—lnD

0.3776
0.3554
0.3348
0.2532

Qsurr

0.7487
0.6885
0.7088
0.9679

Oa
Cq 0.0924

0.2101
0.3778
0.4175

0.8000
0.5348

—4.0 —2.0 0.0
Energy (units of

2.0 4.0

C3 0.0606

0.0797

0.0000

0.2335

1.0000

0.7273

FIG. 2. (a) Total charge of the ~-electronic states on the sur-
face atoms. (b) Cumulative density of states of the m-electronic
states of the topologically inequivalent clusters of the C1120
model using Huckel theory. The broadening parameter of the
Lorentzian curves is 5=0.04. The energy is measured in units
of P, the off-diagonal element of the Hamiltonian. The Fermi
energy is shifted to EF=0. The large peak at E =0 is due to the
nonbonding orbitals, which also produce a peak in the surface
charge vs energy.

calculated density of states obtained by the diagonaliza-
tion of the Hamiltonian given in Eq. (l). The Hiickel
one-electron energies have been smoothed with Lorent-
zian line broadening of 5=0.04. The large thin peak at
c.=0 accounts for the nonbonding states. Comparing
Figs. 2(a) and 2(b) it is clear that approaching the Fermi
level the surface charge is increasing with a maximum at
c.=0. Thus the midgap states are most likely localized on
the surface atoms. The detailed analysis of the localiza-
tion properties of the nonbonding states is given in Table
I. The data of Table I indicate that a considerable
amount of the total charge of the nonbonding states is lo-
cated on the surface atoms.

In the hydrogenation process the additional hydrogen
atom binds to an sp carbon of the graphitelike cluster
causing the formation of an sp bond and changing the
adjacency matrix this way. Kugler and Laszlo have
shown furthermore that this change removes one of the
nonbonding states from the gap. " In the above study we
have located the nonbonding states to the surface of the
clusters indicating that hydrogen atoms probably link to
the bordering atoms of the graphitelike islands in a-C.

C5 0.2541
0.1214
0.1631

0.1766
0.3538
0.2191

0.5629
0.6918
0.6454

0.1064
0.1064

0.0000
0.0000

1.0000
1.0000

C7

Cs

C9

Clo

0.2611

0.1905

0.1170

0.1641

0.3669

0.2130

0.5808

0.2312

0.4889

0.6250

0.7319

0.6667

0.1976
0.2393
0.1095

0.3896
0.3084
0.4549

0.8075
0.7372
0.9134
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Considering recent experimental evidences, ' this prop-
erty may be essential in the electronic structure and
transport properties of a-C. Deeper understanding of
this process deserves further investigations.
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