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Direct inter-conduction-subband optical absorption
of thin zinc-blende-structure-semiconductor rectangular wires
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The optical absorption in direct-inter-conduction-subband transitions has been calculated in the
electric-dipole approximation for a semiconducting thin wire fabricated from zinc-blende-structure
material. Due to inversion asymmetry of the microscopic crystal potential, the 2X 2 Hamiltonian in
the spin- —, basis has nonvanishing off-diagonal elements. We have solved the equivalent matrix ei-

genvalue problem obtained by expanding the eigenvectors in an X-term double Fourier series
chosen to satisfy the zero boundary conditions automatically. We have found that (1) the spin split-
tings are significant and are anisotropic depending on the magnitudes and orientations of the free-
propagation wave vector, (2) the eigenvector is a mixture of spin states, and (3) the oscillator
strengths are nonzero for the forbidden transitions. The optical-absorption spectrum for z-
polarized incident light with an energy Ace is discussed.

I. INTRODUCTION II. THEORETICAL MODEL

The spin splitting of the bands of zinc-blende-type
semiconductors which possess inversion asymmetry has
been known for a long time. ' Christensen and Cardo-
na have shown that the splitting of the spin degeneracy
of the lowest conduction band of GaAs for k along [110]
is proportional to k and has a maximum value of =75
meV. Evidently, the contributions of the k terms in the
conduction band for zinc-blende-type semiconductors are
significant and are not negligible. Recently, Eppenga and
Schuurmans calculated the splittings from a 2 X 2 Ham-
iltonian in the spin s =+—,

' basis including the inversion
asymmetry of the microscopic crystal potential for
GaAs/AIAs quantum wells [one-dimensional (1D)
confinement]. They solved the eigenenergies of the Ham-
iltonian by adopting Nedorezov's method with appropri-
ate boundary conditions, and found that the spin splitting
of the conduction band is proportional to the wave vector
k when k is near the Brillouin-zone center, and is strong-
ly anisotropic for quantum-well structures. We attempt-
ed to extend their technique to calculate the spin split-
tings of the conduction subbands of zinc-blende-type
semiconductors in wire structures (2D confinement).
However, we found that it was difficult to generalize
Nedorezov's method because the eigenfunctions are no
longer separable.

In this paper, we examine the effects of inversion asym-
metry on GaAs quantum-wire structures using a different
scheme. In Sec. II, a theoretical model is presented for
calculating the eigenenergies and the corresponding
eigenfunctions of the Hamiltonian, and then the direct-
inter-subband optical absorption is discussed. In Sec. III,
detailed numerical results of the spin splittings, oscillator
strengths, and optical-absorption coefficient are reported.
Finally, a summary is presented.
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where the conduction-band edge is chosen to be zero, m *

is the I -point conduction-band effective mass, y is the
spin-splitting parameter, k=(k„,k, k, ) is the wave vec-

tor, and y is the angle between k„and [100]. Here k,
and k are assumed to be in [100]and [010]plane as indi-

cated in the inset of Fig. 1. We consider a thin rectangu-
lar GaAs wire with cross-sectional dimensions I. and L,
along y and z, respectively. The electron motion is free
in the longitudinal direction x, but is completely confined
in the transverse direction (y, z) by a 2D infinite potential
well. In order to evaluate the conduction subbands, we
treat k as a continuum and replace k„and k, by —i By

The Hamiltonian H describing the energy spectrum for
the conduction band including the effects of the inversion
asymmetry of the microscopic crystal potential is formu-
lated in a spin s =+—, basis and is given in the atomic
units by
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and —i Bz, respectively. We wish to solve the

Schrodinger equation
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plus the boundary conditions

g (x, O, z) = f, (x,L,z) =P~(x,y, O)

=P (x,y, L, )=0, j =1,2 .

Examination of Eqs. (2)—(4) shows that operators, H, /,

822, and H„contain first-, second-, and third-order
derivatives with respect to y or z. If we adopt
Nedorezov's method and choose the trial wave function
as

P (x,y, z)=e ' g A, (k, k, )e
k, k

Z

the secular equation has the form

k„(Atomic Units)

FIG. 1. The spins splittings AE „vs k, for y=O. The inset

shows the definitions of crystal orientations [ij k], wave vector

(k„ky, k, ) and quantum wire's directions (x,p, z).

k , k,

where A are unknowns. We notice that the zero bound-
ary conditions apparently include the y and z depen-
dences. Similar difficulties have been encountered by
Suemune and Coldren when they studied the Kohn-
Luttinger Hamiltonian for the valence subbands in
quantum-wire structures. They argued that by assuming
various y and z values, the valence subband structures
can be obtained numerically and are independent of the
assigned y and z values. However, they did not give any
mathematical proof, and we believe that the proof may
not be easy. Therefore, we seek a difFerent numerical
scheme to solve the problem.

In order to satisfy the zero boundary conditions au-
tomatically, we chose the eigenvector to be
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where ak'l' are unknowns. A straightforward manipula-
tion after substituting Eq. (6) into Eq. (5) gives the com-
plicated set of coupled equations,

f (k„,k, k, ;E)=0,
which correlates k as a function of (k„,k„'E). The zero
boundary conditions are then given by where
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Here, s, t, k, I, m, and n are integers; j =y or z. If we assume that k, I, m, and n have a finite range from 1 to N, where N
is an arbitrary integer, Eqs. (7) and (8) can be cast into a matrix with a dimension of 2N . Therefore, the problem be-
comes a typical matrix eigenvalue calculation. By increasing N step by step, we examine the convergence of the
eigenenergies until a preset criterion is met. As a guideline for our numerical manipulations, we perform a degenerate
perturbation calculation. We treat H, 2 as a small perturbation and evaluate the first-order correction. The results are
surprisingly simple and are given by
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where a „has been defined in Eqs. (7) and (8). There-
fore, the spin splittings due to the inversion asymmetry
are b,E „=2ha „. Once the eigenenergies and the cor-
responding eigenvectors are determined, we proceed to
investigate the direct-inter-subband absorption.

The linear response of a thin quantum-wire structure
to a light wave is calculated by a conventional procedure
and was discussed in detail in Ref. 9. The optical absorp-
tion due to direct-inter-subband transitions and including
broadening effects can be obtained by using an electric-
dipole approximation. When the electromagnetic wave is
polarized along the z axis, a direction of size quantization
in the thin wire, the conductivity tensor in z can be writ-
ten as

an integration over k„ from —~ to + 00 must be per-
formed to obtain cr33 in Eq. (10). Since cr33 is complex, so
is the dielectric function, i.e., e=e&+i@2. The relation
between 0.

33 and e is given by

e~ =e& —4m Im(o 33)/N,

and

e=24~ R(eo3)3/~,

where eb is the bulk dielectric constant (=13.18 for
GaAs}. The optical-absorption coefficient g33 and the in-

dex of refraction n are obtained as

n —
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and
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where the following abbreviations have been adopted:

Aco ~ =E ~
—E

m co ~

is the oscillator strength; and fo(E ) is the Fermi-Dirac
distribution function. Here, s denotes electron spin
states, I is the half-width due to collisions, and la) = lk„;
m, n, o ) [la')] is the initial (final) state. The symbol
o =+ is used to indicate the spin splittings (increase or
decrease from a „). Note that since k„ is a continuum,

where c is the speed of light.
Before we end this section, we discuss some of the im-

plications of our model. The wave function defined by
Eq. (6) indicates that when the inversion asymmetry of
the semiconductor exists, i.e., y is not negligible, the
wave function t)'j must be a mixture of various eigen-
modes of sin(key/L ) and sin(lmz/L, ) because H, 2 in

Eq. (1) is nonzero. A direct consequence of the mixing of
the spin states is the spin splittings of the conduction sub-
bands as approximated and shown in Eq. (9). The spin
splittings are expected to be anisotropic in y. The con-
ductivity in Eq. (10} implies that when z-polarized light
with an energy Ace—=Rm ~ can be absorbed by the wire,
i.e., when the transition has a nonzero oscillator strength,
a strong resonance peak with a half-width I is expected
to show in the real part of cr33(co) This kind of. resonance
must also be reflected in the absorption coefficient be-
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cause r133 is proportional to Re(tr33} and n is a slow vary-
ing function of co. 40-

III. NUMERICAL RESULT AND DISCUSSION

hE „= yk,
2
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2
nor

L,
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(13)

indicating that hE „as a function of k have two zeros.
This explains why our numerical results have N-shaped
plots. In Fig. 3(a), we plot the variations of AE versus

y with k„ fixed at 0.05 a.u. , and in Fig. 3(b), we show the
variation of bE „ in polar coordinates (p=hE „,&p)

with AE'„=DE~„cosy and DE~=DE~„sing. We see
clearly that b,E „have 4mm symmetry. Again, this re-

In order to perform the numerical calculations for
0

GaAs quantum-wire structures, we chose L =80 A,
0 o3L, =60 A, m */m 0 =0.067, and y = 17 eV A . We solve

the coupled equations [Eqs. (7) and (8)] with k„=0.01
a.u. and rp=~/4 by increasing N step by step to see how
fast the eigenenergies converge. We show the results in
Table I. Notice that the eigenenergies have converged al-
ready to the fourth significant figure by order N=4. The
last row in Table I shows that when y is zero, i.e., the
crystal has inversion symmetry, the eigenenergies become
degenerate [E,=E2=a», E, =E4=a2„E,=E6=a,z,
and E7=Es=a»', a „ is defined in Eqs. (7) and (8)].
Usually, for a Ga1 „Al„As/GaAs quantum well, the po-
tential barrier V, is about 300 me V; thus, those
E„(k,=0) larger than V, become unrealistic, and a
finite-potential-barrier model must be used. Here, we
limit our model to an infinite potential well. In the dis-
cussions to follow, we take N=4, which yields a matrix
with a dimension of 32 X 32 to demonstrate our numeri-
cal results. The spin split tings are defined as
5E]& =E2 Ei EE2[ =E4 E3 AE&2 =E6 E5, and
b,E» =Es E7 (see—Table I). First, we examine the ener-

gy splittings AE „as a function of k, when k is parallel
to [100] (i.e., q&=0), and show the results in Fig. 1. The
inset figure is used to indicate the relation between crystal
axes and (k„,k~, k, ) together with (x,y, z). Here, we see
that the spin splittings AE „are linear functions of k„,
exactly as predicted by degenerate perturbation theory
[see Eq. (9)]. However, if y is n/4, i.e., k„. is along [110],
the variations of AE „with k are N shaped as shown in
Fig. 2. By setting rp=rr/4, Eq. (9), we have
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FIG. 2. The spin splittings hE „vs k, for y=m/4.

suit is exactly predicted by Eq. (9). We may conclude
that the variations of the spin splittings bE „can be well
approximated by first-order degenerate perturbation
theory within 5%%uo because of the stnallness of y (=17
eV A for GaAs).

In our numerical scheme, we define the probabil-
ity densities as p, = ig, (x,y, z)i, and f f f (p,
+p~}dx dy dz= 1 to ensure the wave functions are nor-
malized. By employing the results for E „and

gati
pro-

vided above, we proceed to evaluate the absorption
coefficient g33 and the index of refraction n as shown in
Eq. (12). The following parameters were chosen for nu-
merical calculations: y=0', I =2 meV, and k~T=6.64
meV (=77 K). We assume that the Fermi energy lies
above the ground-state energy E» at zone center by 20
meV; thus, all electrons populate only the ground state
because the energy differences between the excited states
and the ground state are much larger than k&T. For z-
polarized incident light, the oscillator strengths 0 ~ are
plotted in Fig. 4 as a function of k . The initial state is
ia) =

i 1, I, —) and the final state is ia') = ~m, n, rr ) with
k, omitted. Here, we notice that for each pair of
i m, n, + ) and

~
m, n, —) states, only one of thetn has

significant oscillator strength. Therefore, with m and n
fixed, only one of the spin-splitting states, either 0.=+ or
0.= —,can be revealed in the absorption spectrum.
When a z-polarized light with an energy %co is absorbed

0 0TABLE I. Eigenenergies [F., (meV), j=1—8] of a quantum wire with parameters: L~ =80 A, L, =60 A, m /mo=0067, y=17
0 3eVA, k„=0.01 a.u. , and y=7T/4. 2N is the dimension of the matrix to be solved. The last row shows a „(rneV) for the case of

E, (rneV)

263.367 13
263.367 29
263.367 37

E2 (meV)

264.438 21
264.438 37
264.438 45

E3 (meV)

526.077 89
526.076 64
526.076 51

E4 (meV)

527.892 06
527.890 80
527.890 67

E5 (meV)

729.725 91
729.725 23
729.725 40

E, {mev)

733.438 37
733.437 68
733.437 93

E7 (meV)

996.943 51
963.876 17
963.872 68

E8 (meV)

966.921 94
966.91843

a 1 l

263.902 87
a21

526.986 19
a»

731.606 55
a31

965.458 39
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16-

14-

by the wire, the variations of the index of refraction n

and the optical-absorption coefficient g33 with the nor-
malized photon energy fico/E, (with E, =n/m. *L, ) are
shown in Figs. 5(a) and 5(b), respectively. From both
figures, we notice that resonances occur when Ace/E, is

near 3, 4.7, 8, 11.4, and 15. These resonances can be ex-
plained by the following simple argument. If y is zero,
A~ ~ is given by

A'co ~ (m —1)L,
+(n —1) .

Eo
z .V

(14)

16-
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O
8 0-

30
P (deg)

(a)

60 90
The oscillator strength with y =0 yields a selection rule
which requires that (i) the quantization state along y be
identical, i.e., m = 1, and (ii) the final state along z be even
integers, i.e., n =2,4, 6, . . . . Therefore, Ace ~ /E, equals
n —1 and yields 3 and 15 with n=2 and 4, respectively.
All other transitions are forbidden because the corre-
sponding oscillator strengths are zero. However, when y
is nonzero, the eigenvector is a mixture of the spin states
and the so-called forbidden transitions now have nonzero
oscillator strengths as discussed earlier in Fig. 4. These
forbidden transitions are identified as (2,2, +), (1,3,+),

4.8-
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-16-

-16 -12 -& -4 0 4

hE„(me V)

(b)

I I I

8 12 16 3 5

FIG. 3. (a) The variations of the spin splittings bE „with y;
(b) same as (a) but plotted in polar coordinates [(p =DE „,y)].
In both plots, k„=0.05 a.u.
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FIG. 4. The variations of the oscillator strengths 0 ~ with

kx. The transition state is indicated by (m, n, o. ).
FIG. 5. The variation of (a) the index of refraction and (b)

the absorption coefficient with %co/E, for cp=0.
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and (4,2, —) and are revealed in the absorption spectrum
as indicated in Fig. 5. The energy locations of these small
peaks can also be approximated by Eq. (14).

IV. SUMMARY

We have studied the direct-inter-conduction-subband
optical absorption of semiconducting thin wire of zinc-
blende-type material which possesses the inversion asym-
metry of the microscopic crystal potential. The inversion
asymmetry of the microscopic crystal potential is seen to
cause spin splitting of the conduction subbands. The
splittings were calculated from a 2 X 2 Hamiltonian ma-
trix, which contains nonzero off-diagonal elements in the
spin +—, basis. By using an ¹erm Fourier series expan-

sion for the wave functions chosen to satisfy zero bound-
ary conditions, we transformed the Schrodinger equation
into a 2A X2N matrix eigenvalue problem that could
be solved accurately. Our numerical results indicated
that, compared with results for diamond structure, (1) the
spin splittings are significant and anisotropic for certain
magnitudes and orientations of the free-propagation wave
vector and (2) the eigenvectors are distorted because of
the mixture of the spin states and the oscillator strengths
are nonzero for the forbidden transitions. From the com-
puted eigenenergies and eigenvectors, we investigated the
index of refraction and the absorption coefficient within
the electric-dipole approximation. When a z-polarized
incident light with energy Rcu is absorbed by the thin
wire, resonance phenomena were predicted at fico(m—1)L, /L +(n —1).
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