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High excited states of magnetodonors in InSb: An experimental and theoretical study

W. Zawadzki, * X. N. Song, and C. L. Littler
Department ofPhysics, University ofNorth Texas, P.O Bo.x 5368, North Texas Station, Denton, Texas 76203-5368

D. G. Seiler
Semiconductor Electronics Division, National Institute ofStandards and Technology, Gai thersburg, Maryland 20899

(Received 13 April 1990)

New optical transitions between magnetodonor states in InSb assisted by optic-phonon emission

have been observed and described theoretically. Photoconductive detection and magnetic-field

modulation were used to obtain well-resolved magneto-optical data. Phonon-assisted excitations
provide a unique opportunity to investigate high excited states of the magnetodonor system (up to
principal quantum number n =13), which simulates the hydrogen atom in gigantic magnetic fields.

The magnetodonor states have been described variationally, taking into account the narrow energy

gap and the spin-orbit interaction of the band structure of InSb. It has been shown how the phonon
emission breaks the selection rules for the magneto-optical excitations, allowing for transitions with

large hn. Good agreement between theory and experiment has been obtained. The results should

also be of importance to atomic physics and astrophysics.

I. INTRODUCTION

Magnetodonor (MD) states in semiconductors, since
their discovery in the magnetic freeze-out effect by Keyes
and Sladek' and the pioneering theoretical description of
Yafet, Keyes, and Adams, have been the subject of sus-

tained experimental and theoretical interest. The effect
of a magnetic field on shallow donor states is particularly
important in narrow-band-gap materials with small
effective masses m* since, in the absence of the field, the
donors are ionized even at low temperatures and cannot
be observed. Important progress in the magneto-optical
investigations of shallow donor states was achieved by
Kaplan, ' who used the photoconductive detection tech-
nique to observe both low-energy transitions between
MD states belonging to the same Landau subband, as
well as those occurring between MD states belonging to
adjacent Landau subbands. The latter is sometimes re-
ferred to as "donor-shifted cyclotron resonance. " Similar
MD transitions related to spin resonance and combined
cyclotron-spin resonance' have also been observed in
InSb. Magnetodonor investigations have been used to
determine the static dielectric constant of a material and
its pressure dependence, to identify the chemical nature
of impurities, to study screening properties of the elec-
tron gas, to investigate the metal-nonmetal transition, '

etc. Recently, magneto-optical and magnetotransport in-
vestigations proved to be useful in determining the posi-
tions of donors in modulation-doped two-dimensional
GaAs-Ga] Al As structures, "' which is important
for device applications.

The importance of the magnetodonor system goes
beyond semiconductor physics, however, since a magne-
todonor imitates the hydrogen atom in giant magnetic
fields. The problem of an electron subjected to simultane-
ous Coulomb and magnetic field interactions is character-
ized by the parameter y=(AeB/m" )/(2Ry'), where

Ry'—:13.6(m '/mo)/vo eV, and n'0 is the static dielectric
constant. The value of y is of the order of 10 for the
hydrogen atom in vacuum. In narrow-band-gap semicon-
ductors, however, y can attain values of 100 or more for
available magnetic field strengths. In our experiments we
deal typically with @=25, which corresponds to the hy-
drogen atom in a vacuum subjected to a magnetic field of
=10 T. The above scaling allows one to transpose mag-
netodonor behavior to that of the hydrogen atom in
gigantic magnetic fields.

The problem of atoms in extremely large magnetic
fields has attracted a great deal of attention in recent
years both in atomic physics and astrophysics. ' The
reason is that white dwarf stars can produce magnetic
fields of 10 T and accreting neutron star fields of the or-
der of 10"—10 T. As a consequence, the optical spectra
of atoms in such magnetic fields have been observed in
the spectra of these stars. For example, very good agree-
ment between all observed spectral features and the com-
puted wavelengths of stationary transitions of the hydro-
gen atom in magnetic fields (1.5 —3.5)X10 T has been
found in the white dwarf GrW+70'8L47. ' By virtue of
scaling laws the energies of heavier atoms can also be es-
timated from those of the hydrogen atom at scaled values
of magnetic field. ' This allows one to study, for example,
Fe Xxvr in gigantic fields, which appears to be prevailing
in the vicinity of x-ray pulsars. ' The ionization thresh-
olds of the hydrogen atom associated with higher Landau
levels are of current interest in astrophysical investiga-
tions.

The importance of the magneto-Coulomb system in as-
trophysics and atomic physics has motivated consider-
able theoretical work concerned with the behavior of the
hydrogen atom at arbitrary magnetic fields (cf. Rosner
et al. ' ). The corresponding theoretical work related to
magnetodonors and magnetoacceptors has been reviewed
by Zawadzki. ' Magneto-optical transitions in semicon-
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ductors with a change in the Landau quantum number
An =2 and hn =3 are possible due to the intricacies of
the band structure, such as warping and the lack of inver-
sion symmetry, ' ' and they have been observed in
InSb. ' The corresponding donor-shifted resonances
have been observed by Grisar et al. The effect of optic
phonons on free-electron transitions between Landau lev-
els (breaking of the selection rules) has been predicted by
Bass and Levinson and first observed by Enck et al.
Transitions to very high Landau states (up to n =23)
have been seen by Goodwin and Seiler. Phonon-
assisted spin-flip transitions have been observed and de-
scribed by Zawadzki et al. The effect of optic phonons
on optical transitions between MD states has been ob-
served by Kaplan and Wallis in the form of resonant
polaron behavior in donor-shifted cyclotron resonance,
and by McCombe and Wagner in donor-shifted corn-
bined resonance.

In this paper we report on a new kind of optical transi-
tion between MD states assisted by the emission of optic
phonons. Indirect evidence for such transitions was
provided by Huant et al. and Littler and Seiler. In
Sec. II we describe the experimental procedure, Sec. III
contains the magnetodonor theory, and in Sec. IV we
present our results and discuss them.

T= 14K
I I

T= 5K
X=10.83 pm

2+

LLI

IX: I

8
0
I-
O
D

1

10 12

5'+
6'+ J

2+

0
0x

I I

0 2 4

MAGNETIC FIELD (T)

I

10

FIG. 1. Photoconductive response of n-type InSb vs magnet-
ic field obtained at 5 K using a CO2 laser wavelength of 10.83

pm (second derivative with respect to magnetic field). The final

Landau states are indicated. The primes refer to phonon-
assisted transitions. The inset shows a magneto-optical spec-
trum obtained at a higher temperature.

II. EXPERIMENTAL PROCEDURE III. THEORY

The experiments were performed on high-purity sam-

ples of n-type InSb with a carrier concentration of
9 X 10' cm and an electron mobility of 7 X 10
cm /V sec at 77 K. The samples were rectangular slabs
whose surfaces were lapped using alumina grit and then
chemically etched using a 2% bromine —methanol solu-

tion. Electrical contacts were made to the samples using

pure indium. The output of a grating tunable cw CO2
laser was mechanically chopped into 20-psec-wide pulses
with a low duty cycle to prevent lattice-heating effects.
The laser radiation was focused onto a sample situated in

the solenoid of a superconducting magnet capable of pro-
ducing dc magnetic fields as high as 12 T. For a11 mea-

surements reported here the Faraday configuration was

used. The magnet contains modulation coils which are
used to impress a small (+0. I T) ac magnetic field on the
larger dc fie1d. Boxcar averaging and lock-in amplifier
techniques are then employed to obtain derivative-like
spectra. ' Photoconductive measurements were used to
provide a sensitive means of detecting small changes in

absorption. All spectra shown in this work represent the
second derivative of the photoconductive response versus

magnetic field.
In Fig. 1 we show the photoconductivity spectra ob-

tained with the use of the above technique. As explained
below, the doublet structure is related to optical transi-
tions between Landau levels accompanied by correspond-
ing transitions between magnetodonor states. By increas-
ing the temperature (cf. inset Fig. I), we increase the oc-
cupancy of the free-electron ground state, thus enhancing
the free-electron transitions 4,

'cf. inset Fig. 5).

A. EfYective-mass approximation

In order to define all quantities and to stress the analo-

gy between the magnetodonor and the hydrogen atom in
a magnetic field, we first consider the one-band effective-
mass approximation (cf. Ref. 2). The initial MD Hamil-
tonian reads (neglecting spin),

1
2

(p+e A)—
2m 0 d'or

where curl A =B is the magnetic field (we take B~~z). The
effective mass mo and the static dielectric constant Ko ac-
count for the presence of the semiconducting medium.
Using the symmetric gauge A=( —By/2, Bx/2, 0), the
Hamiltonian becomes

2 2

H= P + ~A~ L + im» 2(x2+y2)
2m 0 Kof

where co, =e8 /m o is the cyclotron frequency and
AL, = (xp~ —yp„). Introducing the effective Rydberg
Ry*:—moe /2' xo as a unit of energy, and the effective
Bohr radius az =~„R /m o e as a unit of length, one ob-
tains

y' 2 2 2H= —V +yL, + (x +y ) ——Ry*,
r

(3)

f16' .

2 Ry*

* '2
ag

(4)

where x, y, z, and r are dimensionless. The characteristic
parameter
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measures the relative strength of the magnetic and the
Coulomb interactions. The magnetic length is
L = &fi/eb.

Expressed in the dimensionless quantities (3) and (4),
the Hamiltonians for the magnetodonor and the hydro-
gen atom in a magnetic field have the same form, which
depends on y as the only parameter. However, the values
of y in the two cases are usually very different. For the
hydrogen atom in a magnetic field of B = 10 T, one has

y =3 X 10, which is the regime of the Zeeman effect.
On the other hand, in semiconductors the values of
y ) 10 can be achieved due to small effective masses and
large dielectric constants. In this situation it is not possi-
ble to treat the magnetic interaction as a perturbation.
There have been three ways to treat the problem for arbi-
trary y: (1) the variational procedure, (2) the adiabatic
approximation (based on a separation of the transverse
and parallel motions at high magnetic fields), and (3) ex-
pansion techniques (in which the wave function is ex-
panded in a set of known functions). These methods have
been reviewed in Ref. 19. We use the variational pro-
cedure, which can be directly generalized for the case of
narrow-band-gap semiconductors.

B. Three-level P.p model

Since InSb is a narrow band-gap semiconductor, the in-
tricacies of its band structure, i.e., the proximity of the
valence band and the spin-orbit interaction, have to be in-
corporated into the calculation of both the conduction-
electron energies in the presence of a magnetic field and
the corresponding MD binding energies. We have calcu-
lated the Landau energies of the conduction electrons us-
ing a spherical version of the Pidgeon and Brown mod-
el. This model takes explicitly into account the I 6, I 8,
and I 7 bands, incorporating all other bands in the k ap-
proximation. In this procedure the calculation of eigen-
values amounts to a diagonalization of two 4X4 ma-
trices, for the spin-up and spin-down states. In Sec. IV
we quote the corresponding band parameters used.

In order to account for the influence of the band struc-
ture on the MD energies we use a somewhat simpler
description known as the three-level model (cf. Refs, 33
and 34). It incorporates explicitly the 16, I'8, and I 7

bands, neglecting the influence of all other bands. The in-
itial Harniltonian for our problem reads

0=—1

2mp
P + Vo(r)+ (o XVVO).P

4m oc

U(r) = —e /d'or

is the donor (slowly varying) potential. One looks for
solutions of the eigenenergy problem in the form

f(r)= g f((r)u((r),
I

(7)

where the summation runs over the energy bands, f( are
the slowly varying envelope functions, and uI are the
Luttinger-Kohn periodic amplitudes satisfying the band-
edge eigenenergy equation

1 P'+ Vo+8, . u, =c(ou
2mo

(8)

where cIo is the edge energy for the lth band. Inserting
(7) into (5) and using (8) one obtains

1 2—E+ P +c(o+ U 5I I
2mp

1+ p(( P+paB o'(( f(=0, (9)
mp

where l'=1, 2, 3, . . . and

p((= u( p+ (cr XVVo) u(
4m pc

(10)

Specifying the periodic Luttinger-Kohn functions for
the three levels in question and neglecting all other
bands, the infinite set (9) reduces to eight coupled
differential equations. We neglect in addition the orbital
and spin free-electron terms since they give very small
contributions for narrow-band-gap-materials. The result-
ing set can be solved by substitution, expressing the
f, ,f4, . . . , f, functions in terms of f, and f2. The re-
sult is

+(u((B o+ U(r),

where P=p+e A, the spin-orbit and Pauli terms are
written in the standard notation, Vo is the periodic poten-
tial of the lattice, and

0
[ (E —U)(E —U+—E )(E —U+E +6)+(r (E —U+e +—', A)P + ,'(r AeBA]X '—

1

where x= —(i m/)o(S~p, ~X) is the interband matrix ele-
ment of momentum and 6 is the spin-orbit energy. The
plus and minus signs correspond to spin-down and spin-
up state, respectively. Equation (11) presents a generali-
zation of the equations of Kanes and Bowers and
Yafet for conduction electrons in the simultaneous pres-
ence of a magnetic field and an electric potential. To ar-

rive at the form (11) we have neglected the commutators
[p, U]. They give rise to small corrections to the energies
(cf. Ref. 33), but are negligible for our purpose.

One can now use the variational procedure on the
effective equations given in (11) which, apart from the
above simplifications, accounts for the intricacies of the
InSb band structure. If E —( U) ((c. +26, /3, which is
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the case for InSb, one can neglect the corresponding
terms in Eq. (11) and solve the resulting quadratic equa-
tion for the energies. %e obtain for the conduction band
(in Ry* units)

1/2'2
g

2
+E K +y

2 " 2b+3E,

+(U), (12)

where

a
K = —V' —iy +

ay 4
(13)

and

where N, M, and P are the quantum numbers,
7)=yp a /2, the normalization factor for the (p, P) part
is AlvM=[y Nla /(N+M)! 2vr]', a is the first varia-
tional parameter, L& are the associated Laguerre polyno-
mials, and m = ~M~. The variables p and z are dimen-
sionless (in units of all). The quantum numbers can
take the following values: N =0, 1,2, . . . ;
M=. . . ,

—2, —1,0, 1,2, . . . ; @=0,1,2, . . . . The z
parts of the trial functions for P=O and P= 1 are

I /4
b2

p V —]bz /4 (16)2'

and the last term under the square root gives the eft'ective

spin splitting. The quantities (E) and (U) are varia-
tional averages of the kinetic energy (13) and potential
energy U= —2/(p +z )' (in cylindrical coordinates),
respectively. The energy gap c. and the spin-orbit energy
b in (12) should be expressed in Ry' units. The eff'ective

mass at the band edge resulting from the above theory is

26+3= )K
mo

-'
E (b+E„)

(14)

In practice one takes the experimental values for m 0 and
the spin-splitting factor go. Thus the evaluation of the
MD energy amounts to the calculation of the trial aver-
ages (K ) and ( U ) for a given state and a minimization
of the energy given in (12).

C. Magnetodonor energies

Following Ref. 34, we choose the two-parameter trial
functions in the form (cylindrical coordinates),

e IM brim l2e —ell2L I(~ )P

' 1/4

p
3b6 —I!b z /4

2~
(17)

where b is the second variational parameter. The func-
tion P (z) for P= 2 can be found in Refs. 34 and 37.

The above functions are generalizations of the Yafet-
Keyes-Adams ground state oooo. For large y values a
MD state described by NMP "belongs" to the Landau
subband described by the quantum number
n =N +( M+m) /2, i.e., its energy is somewhat lower
than the nth Landau level. Thus, at high fields one deals
with "ladders" of MD states "attached" to each Landau
subband. The ladders arise due to different P values and
from the fact that the Coulomb potential lifts the degen-
eracy of the Landau levels related to the N and M values.
Using the above variational functions one can now calcu-
late trial integrals for the kinetic and potential energies.
The kinetic-energy integrals are best done in cylindrical
coordinates, while the potential-energy integrals are best
done in spherical coordinates. For arbitrary N, M, and
P=0, 1 one arrives at the following expressions:

(E ) = +(2N+m +1) —+ —+yM+yA, 2P+ 1

2 E 4
' ]/2

(N+
(2N+m)! 1(2N+ —,') 2m

dp v I (2N —2j+ —,') d'" + d' D (e)
)( (1 t) g . (1 6)m+2J 62.v™

de~ o j![(N —j)!] (m +j)! de de'" de (1—e)'!

(18)

(19)

D(e) =ln 1++1—g

1 —&1—e
(20)

The expressions for P= 2 can be found in Refs. 34 and 37.
In our experiments on InSb we deal typically with the

where A, =b and e=b /a are new variational parame-2 2 2

ters, and
values of y) 30. In this case the transverse motion is
controlled by the magnetic field and the transverse MD
radius becomes equal to the radius L (cf. Ref. 2). In our
notation this means a =1 and e=k. This is equivalent
to using the one-parameter trial wave functions first pro-
posed by &allis and Bowlden. The above expressions
for the sum (It ) + ( U) should then be equivalent to the
corresponding expressions of Ref. 37, since the same trial
functions are used. This is indeed the case, although the
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(K)o o:y(2m +1)+—yA, Ry* (21)

and

verification of this equivalence requires some manipula-

tions.
Equation (19) becomes particularly simple for the

(OmO) states, which belong to the corresponding n =m
Landau subbands. We have

( V)
2 yA

pmo

1/2
d ~ D(A)

(22)

where D(A. ) is defined in (20). Moreover, the energies of
the (OmO) states are very close to the energies of the
respective MD ground states, as discussed below.

In order to illustrate the last point, we consider the
lowest MD states attached to the n =2 Landau subband
in the parabolic-band approximation, i.e., taking the total
energy (E)=(K)+( V). For the (020) state

yA(E)ozo=5y+ 4y~

1/2
(3A. —8A, +8)D(A, ) 3(A.—2)

4(1 —
A, ) (1—

A, )
(23)

For the (110) state

(E)„,=sy+ —,'yX+ yk
' 1/2

(7A, —30K. —24K, —16)D(A, ) 7A, —4A, +12+ Ry* .
8(1 —X)'" (24)

For the (200) state

(E )qoo=5y+ —,'yA yA
1/2

(41k, —112k, +240k, —128K+64)D(A. ) 23K, +42k. —8A, +48
32(1—

A, ) 16(1—
A. )

(25)

Minimizing the above energies one can calculate the cor-
responding binding energies ENM&

= ( —', y Ry') E~M& (i—n

Ry' units). For y =56.9 (corresponding to B = 8 T in

InSb) we calculate Ezoo=4. 094, Ry* E»o=3.994 Ry",
and EO2p

=3.905 Ry*. Thus, the energies of the above
MD states are nearly the same. This is true also for MD
states attached to higher Landau subbands, where the
differences are expected to be even less. Consequently,
we calculate the energies of the (OmO) states [which are
much simpler to compute, cf. Eqs. (23)—(25)j, identifying
them with those of the ground MD states belonging to
the n =m Landau subbands.

In Fig. 2 we show the binding energies (in Ry* units)

Eomo = [y(2m + 1) Ry*1 Eo 'o (26)

calculated with the use of the variational procedure
[based on Eqs. (21) and (22)] for the standard energy band
(i.e. , taking (E)=(K)+( U)). It can be seen that the
binding energies decrease with increasing Landau num-
ber n =m. This can be understood qualitatively by ob-
serving that higher MD states have progressively larger
radii, so that the corresponding Coulomb energies (which
are responsible for the electron binding) are progressively
smaller. The double logarithmic plot of Ep p versus y
are almost straight lines, which means that Ep p is to a
good approximation a power function of magnetic field.

In the actual comparison of the theory with experi-
ment on InSb we calculate the MD energies using Eq.
(12), which results from the three-level model with the
approximation that E —( U ) « Eg +2h/3. This is a
simpler procedure than the one used for calculating the
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FIG. 2. Calculated binding energies of magnetodonor states
attached to the consecutive Landau subbands n =0, 1,2, . . . , 13
vs the parameter y {for the parabolic energy band).

Landau-level energies, ' since the latter includes higher
band contributions to k terms. For this reason we cal-
culate first the MD binding energies using Eq. (12) and
the same model for the Landau-level energies. This
amounts to putting ( U ) =0 and ( K )o o

=y(2m + 1)
Ry' is Eq. (12). Once the MD binding energies are calcu-
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lated, they are subtracted from the Landau-level energies
computed using the Pidgeon-Brown scheme. This gives

the theoretical energies of the optical transitions between
MD states.

D. Selection rules

given by

~ f IM fl-' 5(Ef —E, )

where the matrix element is

(27)

TABLE I. Selection rules for the main magneto-optical tran-
sitions between donor states at high magnetic fields for various

light polarizations. The symbols s, M, and X refer to the spin,
angular momentum, and Landau quantum numbers, respective-
ly. The symbol /3 is the number related to the quantized motion
parallel to the magnetic field.

Polarization

0
+1

+1
0

+1
0

0
+1

Having chosen the trial functions of appropriate sym-

metry, one can calculate the selection rules for optical
transitions between MD states (cf. Ref. 34). The main
selection rules for a spherical energy band are quoted in
Table I. They can be understood by keeping in mind that
the MD problem with a scalar e6'ective mass possesses a
cylindrical symmetry. This symmetry is preserved in the
Dingle gauge for the vector potential and it is rejected in
the trial wave functions given in Eq. (15). When the spin
is included, the projection of the total electron momen-
tum on the magnetic field direction j,=M+ —,

' is a good
quantum number. One can deduce the selection rules of
Table I remembering that the photons of O.I, O. R, and m

polarizations carry the values of j,= + 1, —1, 0, respec-
tively. Complications of the band structure, such as non-
sphericity and the lack of inversion symmetry, result in

additional selection rules. ' ' These are discussed in the
next section.

As already mentioned in the Introduction, an emission
or absorption of optic phonons breaks the selection rules
for the free-electron magneto-optical transitions. This al-
lows one to observe higher harmonics of cyclotron reso-
nance, i.e., transitions with An ) 1. Below we theoretical-
ly describe phonon-assisted magneto-optical transitions
between MD states using wave functions given in Eq.
(15).

A phonon-assisted magneto-optical transition is a two-
quantum process, in which photon absorption is simul-
taneously accompanied by an emission of an optic pho-
non. We deal with electron-photon and electron-phonon
interactions simultaneously perturbing the system. The
transition probability of such a second-order process is

(28)

The summation is over intermediate states and HR and

HI denote the electron-photon and electron-phonon in-
teractions, respectively. In the simplest scheme for
the interband transitions we have Htt = ( e /m o ) A' P,
where A' is the vector potential of the radiation. The
Frohlich Hamiltonian is HL =(C/q)[b exp(iq r)L q

bq exp—( —iq r)], where C =(2m.e trttoL/
V) (1/tr„—1/~o). The quantities ~„and tro are the
high-frequency and static dielectric constants, q is the
phonon wave vector, AcoL is the phonon energy, and b

and b are the phonon annihilation and creation opera-
tors, respectively.

Equations (27) and (28) describe both the free-electron
and MD phonon-assisted transitions. For MD transi-
tions the matrix elements of HR give the selection rules
quoted in Table I. To focus the reader's attention, let us
consider the matrix elements of Ht (for phonon emission)
in the first term of Eq. (28), beginning with the ground
MD state (000) and ending with the state (XM/3). We
use the one-parameter trial functions, i.e., put in Eq. (15)
a =1. The calculation of the matrix elements can be
separated into an integral over z involving the term
exp( iq, z),—and the corresponding integral over (p, P).
The integral over z couples the ground state to a state of
arbitrary /3. For /3=0 and 1 this is seen directly from
Eqs. (16) and (17), the integral over (r) and p,

F= f t/~Me
" ' t/oopdpdP, (29)

where t/~M is the (p, t))) part of the trial functions (15),
can be done explicitly, as shown below.

Writing q„x+q y =qt pcos(t, where qt =q„+q~, and
counting the angle P from the vector qt = (q„,q~ ), the in-

tegral over P is

lM Q lq ~ p cosf

2' (30)

where J is the Bessel function and m = IMI, as before.
The remaining integral over p, containing the Bessel
function, the Laguerre polynomial, the exponential, and
the power function, can also be done analytically. The
final result is

1/2

—1

0

—1

0
0

+1
F =( —1)' ( i)—Pf l

(X+m)!
tml —LN+ (t) (31)

0
—1

+1

0
+1
—1

0
+1
—1

+1
0
0

where t =L qt/2. The result shown in Eq. (31) is similar
to that obtained for the phonon-assisted free-electron
transitions with the use of the Landau (asymmetric)
gauge for A (cf. Refs. 23 and 24). This is not surprising
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since, by putting a =1 in the wave functions (15), we
have tacitly assumed that the transverse MD motion is
identical to the free-electron motion, and the final result
for the transition probability should be gauge invariant.

The above results show that the Frohlich electron-
phonon interaction can couple the ground MD state (000)
to an arbitrary MD state (NM13). In other words, an
optic-phonon emission breaks the magneto-optical selec-
tion rules for the MD transitions, as it does for the free-
electron transitions. The physical interpretation is that a
momentum transfer due to the phonon emission breaks
the cylinderical MD symmetry, and the angular-
momentum selection rules of Table I cease to be valid.

The matrix element given in (29) can also be calculated
analytically for the two-parameter MD functions given in
(15), allowing for the variational adjustment of the trans-
verse motion (the corresponding integrals can be found in
Ref. 38). The final result is qualitatively similar to (31),
but it now differs quantitatively from that for the
phonon-assisted transitions.

The 5 function in (27) involves the total energies of the
initial and final states (including photons and phonons).
We have E; =E; +A~ and EI=EI +RcoL. Energy
conservation requires that EI —E; =0, which yields the
resonance condition

g~ =EMD EMD+g~f i (32)

In the limit of 8~0 the difference E~ —E, is practi-
cally zero, so that the phonon-assisted MD transition en-
ergies should converge to Rco=A'coL, in a similar fashion
to the phonon-assisted free-electron transitions between
Landau levels. This is indeed observed experimentally, as
will be shown in the following section.

It should be finally mentioned that in InSb-type semi-

conductors the probability of spin-fiip transitions directly
induced by optic phonons is low (although nonvanishing,
cf. Ref. 39). For this reason, in phonon-assisted spin-fiip
transitions (cf. the transition 2' in Figs. 1, 5, and 7} the

spin reversal is likely to occur due to the spin-photon in-

teraction rather than the spin-phonon part of the matrix
element (28) (cf. Ref. 26).
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FIG. 3. Energies of the observed magnetodonor and
Landau-level transitions vs magnetic field (solid dots). The solid
lines indicate the calculated energies of Landau-level transitions
for simple excitations (converging to Aco=O), and phonon-
assisted excitations (converging to Ace =AcoL ).

encountered by Favrot et al. , who observed the transi-
tion 2', for 8~~[001], which is not allowed. The current
(not confirmed) interpretation is that such forbidden tran-
sitions become allowed by the assistance of shallow im-
purities in the same way as the phonon-assisted ones.
Judging by the doublet structure shown in Fig. 1, the cor-
responding donor-shifted transitions are allowed for the
same reasons.

Figure 4 shows our data for transitions to higher final
states for which the distinction between free-electron and
MD excitations was presently possible. The phonon as-
sistance provides a unique opportunity to investigate high
excited states of the magneto-Coulomb system. We have
been able to observe and describe transitions to final MD
states attached to the Landau subbands n up to n =13.
In Fig. 5 and 6 we show the observed and calculated en-
ergies of Landau-level and MD transitions. The transi-

IV. RESULTS AND DISCUSSION

In Fig. 3 we show the energies of the observed free-
electron and MD transitions as a function of the magnet-
ic field strength, together with the energies calculated us-

ing the Pidgeon and Brown model. It can be seen that
some energies correspond to simple and others to
phonon-assisted excitations. This correlation of the
theory with experiment served as a basis of our transition
assignments. The free-electron transition 0+ ~2+,
0+ ~2, and 0+ ~3+ (where n

+ and n denote the
Landau levels n with spin-up and spin-down, respective-
ly) and the associated MD transitions for these levels
have been observed previously by Grisar et al. For our
field orientation B~~[111]and the light polarization EIB
the 2', (0+~2+) and the 2', +co, (0+~2 } transi-
tions are allowed due to the inversion asymmetry of
InSb. ' The observed transition 3'„however, is not al-
lowed for this field orientation. The same difficulty was
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FIG. 4. Photoconductive response vs magnetic field showing
the Landau-level —magnetodonor doublet structure for higher
quantum numbers.
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gy, cf. discussion in Sec. III C] is possible due to inversion
asymmetry. The weaker transitions are possible due to
band warping. The best theoretical fit to the middle tran-
sition has been obtained for the final MD state (230) (the
calculated binding energy is Et, =1.80 meV at 8 =8 T),
but we cannot exclude the states (220} (EI, =2.07 meV)
and (210) (E&=2.31 meV) as possible final states. For
the lowest Aeld transition in Fig. 7 the best fit is obtained
for the final MD state (221) (EI, =0.626 meV), but again
we cannot exclude the nearby states (111}(E1,=0.657
meV) and (021) (Ez =0.675 meV). All of the above bind-
ing energies have been calculated for 8 =8 T. The weak-
er resonances require further investigation concerning
their dependence on light polarization orientation of the
magnetic field, and precise assignment of the Anal MD
states.

The theoretical description presented above has aimed
to treat consistently the high excited MD states in a
workable fashion, which required the four simplifications
discussed below. (1) In order to arrive at the simple non-
parabolic formula given in Eq. (12) for the variational
MD energies from the P p theory (9) within the three-
level model, we have neglected the commutators [p, U]
and assumed that E —(U) (e +26, /3. This approxi-
mation is known to affect the ground state (000) and can
lead to a few percent error in the energy estimations (it
lowers the ground state, increasing the binding energy at
high fields, cf. Ref. 44). (2) We have neglected central-
cell corrections due to the short-range component of the
donor potential. This, again, affects mostly the MD
ground-state energy. The exact chemical nature of the
donors in our InSb samples is not known. (3) We have
identified energies of the ground MD states (NOO) with
the slightly higher energies of the (Om 0) states (for
m =N =2, 3,4, . . . ), since the latter are much easier to
calculate. This also introduces a few percent error in the
energy estimations. On the other hand, we do not really

know whether the phonon-assisted transitions occur to
the final (NOO) or (0m 0) MD states. (4) In the energy es-
timations we have used the one-parameter variational
functions of the Wallis and Bowlden type, which are
valid for the y ) 10 range of the magnetic field intensities.
This criterion is not well satisfied for the transitions to
the highest MD levels, which occur at lower magnetic
fields (cf. Fig. 6). This leads to slight underestimations of
the binding MD energies at low fields.

All of the above approximations amount to a few per-
cent of the binding energies. The latter are small com-
pared to the transitions energies we observe, so that a
high theoretical precision is not necessary. The accepted
values of the effective rydberg for donors in InSb range
from 0.6 to 0.7 meV and our overall good fit to the data
with the value 1 Ry'=0. 65 meV should be considered a
success.

In summary, we have observed and described optical
transitions between magnetodonor states in InSb, assisted
by the emission of longitudinal optic phonons. The ob-
servation of the doublet structure due to magnetodonor
and Landau-level transitions for high excited states of the
system have been made possible by combining photocon-
ductive detection with magnetic field modulation. The
phonon assistance breaks the selection rules and allows
for the opportunity of studying high excited states of an
electron subjected to simultaneous Coulomb and magnet-
ic field interactions. This is of direct interest to semicon-
ductor physics, atomic physics, and astrophysics.
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