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Electron states in a GaAs quantum dot in a magnetic field
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Self-consistent numerical solutions of the Poisson and Schrodinger equations have been obtained
for electron states in a GaAs/Al„Ga, As heterostructure with confinement in all three spatial di-

mensions. The equations are solved in the Hartree approximation, omitting exchange and correla-
tion effects. Potential profiles, energy levels, and the charge in the quantum dot are obtained as
functions of the applied gate voltage and magnetic field. First, the zero-magnetic-field case is con-
sidered, and the quantum-dot charge is allowed to vary continuously as the gate voltage is swept.
Then, in connection with the phenomenon of Coulomb blockade, the number of electrons in the
quantum dot is constrained to integer values. Finally, the calculation is extended to examine the
evolution of levels in a magnetic field applied perpendicular to the heterojunction. Our results indi-

cate that the confining potential has nearly circular symmetry despite the square geometry of the

gate, that the energy levels are quite insensitive to the charge in the quantum dot at a fixed gate volt-

age, and that the evolution of levels with increasing magnetic field is similar to that found for a par-
abolic potential.

I. INTRODUCTION

Modern fabrication techniques have made possible
confinement of a two-dimensional layer of electrons into
wires, grids, or dots where quantum-mechanical effects
are strongly manifested. Of particular current interest
are quasi-zero-dimensional systems, which have been
made by selective etching of a GaAs cap on a GaAs-
Al Ga&, As heterostructure, '

by depositing a cross-grid
gate structure on a GaAs heterostructure or on Si, by
using crossed holographically defined gratings, and by
using an array of small Latex particles as an etch mask,
to cite some recent examples. Such quantum-dot struc-
tures offer a dispersionless system with an electron-
energy spectrum that can be modulated either by varying
gate bias voltage or by applying an external magnetic
field. Smith et al. ' have reported oscillatory structure in

capacitance versus gate voltage in zero magnetic field and
have attributed it to the discrete energy states of a quan-
tum dot. Recently, Hansen et al. have reported observ-
ing Zeeman splitting of quantum-dot capacitance
features, as expected when a magnetic field is applied per-
pendicular to the heterojunction. There are many papers
that treat the energy-level structure of related systems,
including the paper by Darwin that treats a two-
dimensional harmonic-oscillator potential in the presence
of a normal magnetic field, Robnik's paper on a disk in a
magnetic field, and the recent calculations by Brum and
co-authors on a model quantum dot. ' Sivan and Irnry'
have described the evolution of states in a quantum dot
versus magnetic field in relation to magnetization and

persistent currents, which are not considered here. In
this paper we present numerical self-consistent results in
the Hartree approximation for potential profiles, energy
levels, envelope wave functions, and charge distributions
for quantum dots like those studied by Hansen et al.

Self-consistent numerical treatments of electron states
in quasi-one-dimensional systems in the absence of a
magnetic field have been carried out for a narrow channel
in silicon by Laux and Stern" and for a split-gate
GaAs/Al„Ga, As heterostructure by Laux et al. '

Numerical methods for such systems, which have quanti-
ties that vary in two spatial dimensions, have also been
used by Kojima et al. ' and by Kerkhoven et al. ' How-
ever, the analogous calculation for a totally confined sys-
tem requires a coupled solution of Poisson's equation and
Schrodinger s equation in three spatial dimensions, in-
creasing the computation requirements significantly. Ap-
plication of a magnetic field, which leads to complex
wave functions and a Hermitian rather than a real sym-
metric eigenvalue problem, also adds to the computation-
al burden. In Sec. II we discuss our formulation of this
problem. In Sec. III we discuss results of such a calcula-
tion on a GaAs/Al Ga& As quantum-dot structure in

zero applied magnetic field. In particular, we discuss the
effect of varying the charge in the quantum dot on the
energy-level structure and the quasi-Fermi-level, and its
relation to the Coulomb blockade. '

In Sec. IV we extend our self-consistent calculation to
include the effect of an applied magnetic field perpendicu-
lar to the heterojunction on the potential, charge density,
and electron states of the quantum dot. We find good
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qualitative agreement with the results of earlier calcula-
tions for model potentials.

II. FORMULATION OF THE PROBLEM

The structure we consider is a model of a single quan-
tum dot from the array of dots used in the experiments of
Hansen et al. , described above. It is based on a hetero-
structure with an n-type GaAs substrate layer with a net
ionized donor concentration of 10' cm, an 80-nm lay-
er of undoped GaAs (a background acceptor concentra-
tion of 10' cm is assumed throughout and diffusion of
donors from the substrate is ignored), a 20-nm layer of
undoped Ala 4Gao 6As, a 20-nm layer of the same materi-
al with a donor concentration of 1.5X10' cm, and a
30-nm GaAs cap layer. The cap is etched away, except in
the central 300 nmX300 nm portion of a 500 nmX500
nm area, and the structure repeats on a square lattice.
Finally, a metal gate is deposited over the entire top sur-

face. A negative voltage on the gate depletes the charges
in the GaAs channel, except under the remaining GaAs
cap, and this three-dirnensionally confined "puddle" of
electrons is the quantum dot being studied. The n-type
GaAs substrate allows a low-impedance capacitative con-
tact to the dot. Figure 1 shows the conduction-band edge
in the structure versus vertical distance along a line
through the center of the dot, and in the inset is sketched

the semiconductor region included in the model.
For the GaAs, we use an electron effective mass of

0.07m o and a dielectric constant of 13; for the
Al Ga, As, we use 0.11mo and 11.8, respectively, cor-
responding to an AIAs mole fraction x =0.4. The
conduction-band offset is taken to be 0.3 eV. The binding
energy of the deep donor in the Alo 4Gao 6As is taken to
be 0.15 eV, and the effective Schottky-barrier heights of
the gate electrode to the GaAs and the Alo 4Gao 6As are
taken to be 0.7 and 0.95 eV, respectively.

Although the present calculations deal with the struc-
ture of Hansen et al. , the methods to be described in
this paper can be used for a wide class of structures in
which three-dimensional confinement of electrons is
achieved by a combination of band offsets and electrostat-
ic means.

We solve the Schrodinger and Poisson equations self-
consistently. Image effects' in the Schrodinger equation
are ignored and we use the Hartree approximation, ignor-
ing exchange and correlation effects. Bryant' showed
that many-electron interactions can have significant
quantitative and qualitative inhuence on the energy spec-
trum of a quantum dot with a small number of electrons.
Similar effects are expected for the structures studied
here, but have not been included in our calculation.

The electrostatic potential P is governed by the Poisson
equation

V' [e(x,y, z)Vp(x, y, z) ]= —p(x, y, z),
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where e is the permittivity (in the present case it depends
only on the z coordinate), with boundary conditions
determined by voltages applied at the contacts. At boun-
daries where there are no contacts, the normal derivative
of the potential is taken to be zero. The total charge den-
sity p in Eq. (I) includes the charge in quantum states,
calculated as described below, as well as the contribution
from ionized impurities in the Al, Ga~ As, and of any
electrons outside the Schrodinger domain. In particular,
any electrons in the cap layer are treated classically.

In a magnetic field (B„,B,B,) the three-dimensional
Schrodinger equation for the electron envelope function
(in the effective-mass approximation) becomes

0.0
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FIG. 1. Conduction-band edge along a vertical line through
the center of the GaAs-Al„Gal As structure considered here,
for a gate voltage of —1.03 V. The layers of the structure, from
left to right, are 30 nm of n+-GaAs, 80 nm of undoped GaAs,
20 nm of undoped A104Gao 6As, 20 nm of Alo4Gao f,As with
ND=1. 5X10" cm, and a 30 nm GaAs cap. The repeating
unit is 500 nm square, and the GaAs cap layer is etched away,
except under a central 300-nm square mesa. A metallic gate is
then deposited over the structure. The Schottky barrier associ-
ated with the gate suppresses induced charge in the GaAs, ex-
cept under the central portion of the mesa. All calculated re-
sults are for 4.2 K and the zero of energy is taken at the Fermi
level in the substrate.

and cyclic perm utations.
m =m =m, and 8„=8 =0.

The electron charge density in the quantum dot is

In the present case

p;„„(x,y, z) = —2e g g„"(x,y, z)g„(x,y, z)

Xf((E,~ E„)/k~ T)), —(4)

where m is the electron effective mass in the jth direc-
tion and the electron charge is —e. We choose the sym-
metric gauge

A„=(B z B,y)/2, —



5168 ARVIND KUMAR, STEVEN E. LAUX, AND FRANK STERN

where the sum is over all states n, the factor 2 is for spin
degeneracy (spin splitting is ignored in this calculation),
E F is the quasi-Fermi-energy, and f is the Fermi-Dirac
occupation function at temperature T.

If the Fermi energy in the quantum dot is equal to the
Fermi energy in the n-type substrate, then the calculated
charge in the dot will be a continuous function of the gate
voltage. The charge per quantum dot will, in general, be
a nonintegral multiple of the electron charge, and will
represent the average for a large ensemble of dots. Physi-
cally, however, the charge in an isolated dot should be an
integral multiple of the electron charge. If we constrain
the charge in the dot to be an integral multiple of the
electron charge, then we apply Fermi-Dirac statistics to
determine the quasi-Fermi-level that gives the prescribed
charge from the calculated energy levels.

Among many simplifying assumptions in our calcula-
tion is the neglect of the interface image potential and of
many-electron contributions to the potential. Then the
potential energy is U= eP+bE—„where the second
term is the position-dependent conduction-band offset
relative to the bottom of the conduction band in the
GaAs. Level broadening has not been included explicitly,
but some broadening, small compared to typical level
spacings, is simulated because we carry out the calcula-
tions at T =4.2 K.

Both the Poisson and Schrodinger equations are cast
into discrete form on a nonuniformly graded, tensor-
product (finite-difference) mesh, with no interior mesh-
line terminations, ' and the resultant matrix equations
are solved numerically. The Schrodinger mesh includes
only the region of significant dot charge; elsewhere elec-
trons are treated semiclassically. Electrostatic potential,
envelope functions, and charge-density values are defined
at mesh nodes, whereas material properties such as
dielectric constant, effective mass, and effective band-
edge shift bE, are piecewise constant in the individual
rectangular parallelepiped elements defined by the mesh.
Equations for the potential and envelope function at each
node are obtained by integrating Eqs. (1) and (2) over the
box defined by the six planes bisecting the lines connect-
ing the node to its nearest neighbors (for nodes on the
boundary, only the volume inside the boundary is includ-
ed). For the Poisson equation, this results in a real sym-
metric matrix problem LP = —Qp, where L is the opera-
tor V eV integrated over the boxes, P and p are vectors
of the nodal potentials and charge densities, and Q is a
diagonal matrix of the nodal box volumes. For the
Schrodinger equation, one similarly obtains Hg„
=E„Qg„, where H is the Hamiltonian integrated over
the boxes and g„ is the complex vector of the envelope
function for state n at each node. This equation is
readily transformed into a standard matrix eigenvalue
problem by prem ultiplying both sides by Q
and substituting I=Q '"Q'" to give
(Q ' HQ '~ )(Q'~ g„)=E„(Q'~ g„), or simply Hy„
=E„y„, where H=Q ' HQ ' is still an Herrnitian
matrix and y„=Q' g„. In zero magnetic field, the Her-
mitian matrix reverts to a real symmetric matrix.

The Poisson equation in discrete form is nonlinear,
since the charge density depends on the potential. The

solution to this nonlinear problem constitutes the search
for self-consistency between the charge and the potential.
The solution to the Schrodinger equation enters as part of
the evaluation of the total charge density in the device,
for a given potential. We linearize the Poisson equation
via Newton's method. The vector P which is the zero of
the function F(P) =I.P+Qp(f) is sought by iterating

F'(y')y '= F(—y'),

+tp

(Sa)

(Sb)

[H —0.( y') I]x'+ ' =y', (6a)

y'+'=x' '/~~x'

n --1
y'+'=y' ' —g {y+y'+')y, (this step only if n )0);

(6b)

i=0

(6c)

until convergence is obtained. Here, I is the iteration in-
dex and the scalar damping factor t is selected according
to a modified Bank-Rose damping scheme as discussed in
Ref. 19. The evaluation of the Jacobian matrix F' is a
possible stumbling block because the dependence on P of
the charge density in the channel given in Eq. (4) is non-
local, which would destroy the seven-diagonal structure
of the Jacobian, rendering the matrix solution
significantly more difficult. Instead, as discussed in Ref.
19, a rather crude approximation to the dependence of
the channel charge on local potential is made for pur-
poses of calculating F' only, in order to circumvent this
difficulty. While this precludes a second-order conver-
gence rate of the Newton iteration, converged solutions
can still be obtained in an acceptable number of itera-
tions. The linear matrix equations in (Sa) above are
solved via a conjugate-gradient method. Such methods
require a preconditioner to accelerate convergence; we
have selected a polynomial preconditioner, as it has
proven robust and highly vectorizable.

The discrete Schrodinger equation is solved by one of
two methods. Far away from self-consistency between
charge and potential, a Lanczos method is employed. '

This method forms an approximate tridiagonalization T
of the matrix H. No reorthogonalization is used in this
process. Then, the eigenvalues of T are found in a
specified energy interval (from the minimum of the quan-
tum dot potential to 5 —10 meV above the Fermi energy)
by a bisection search together with Sturm sequencing. '

Care must be taken in discarding potentially "spurious"
eigenvalues of T, that is, eigenvalues of T which are not
good approximations to true eigenvalues of H. ' Finally,
inverse iteration is used to find the associated eigenvec-
tors. Gaussian elimination is used to solve the tridiago-
nal matrix equations involved in inverse iteration.

Near self-consistency between the charge and the po-
tential, a simple Rayleigh quotient-iteration algorithm
is used to solve the eigensystem. This algorithm requires
an initial guess for the eigenfunctions, and can be summa-
rized as follows. Let 0(y)=(y Hy)/(y y) be the usual
Rayleigh quotient (superscript H denotes Hermitian con-
jugate) and let y" be an initial guess for the nth eigenfunc-
tion. Then solve
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if ~~Hy'+' —g(y'+')y'+'~ (e, then done . (6d) III. ZERO MAGNETIC FIELD

The solution becomes y„=y'+ ' and E„=v ( y
+ ).

Note that the step (6c) above is not a part of the stan-
dard Rayleigh quotient iteration. This step serves to re-
move components related to previously determined eigen-
functions y„ i =0, 1,2, . . . , n —1, from the vector y'
which is evolving into the eigenfunction y„. In practice,
this orthogonalization step has an important benefit: In
solving the equations for a series of gate voltages or mag-
netic fields, the time-consuming Lanczos method can be
omitted from the iteration for self-consistency between
charge and potential, provided the new solution is not too
distant from the previous solution. The orthogonaliza-
tion ensures that energy levels which are "close" at some
initial solution do not converge to the same level at a
later step. This procedure gives correct eigenstates using
significantly less computation time, but may eventually
miss some intermediate eigenvalues if extended over too
wide a range of gate voltage or magnetic field without an
intervening Lanczos solution.

The Hermitian matrix system in (6a) above is solved
with the polynomial-preconditioned conjugate-gradient
method. Although the matrix H —o I in (6a) is not pos-
itive definite, this method of solution has always been
robust for the class of problems we have encountered.

The boundary condition used in our numerical method
is that the normal derivative of g„vanish on the
Schrodinger mesh boundary. In the lateral (x and y)
directions this condition occurs sufficiently far from the
region of induced charge that it has no appreciable effect
on the results. In the direction normal to the inversion
layer, we truncate the Schrodinger mesh 36 nm below the
GaAs/Al, Ga~ As interface to avoid the quasicontinu-
um of eigenstates arising from the heavily n-type doped
substrate. This may lead to significant errors in the
values of energy levels and thresholds. In particular,
some of the qualitative results for the present structure
may not apply to a dot with stronger vertical
confinement, as could be obtained if a p-type substrate
were used.

The convergence criterion for self-consistency is that
the nodal potential energies of successive iterations differ
by no more than 0.01 meV anywhere on the Poisson
mesh. The necessarily limited mesh size (51X51X35 for
the Poisson mesh and 43X43X18 for the Schrodinger
mesh, in the x, y, and z directions, respectively) and other
approximations made in the calculation will lead to er-
rors that are larger than this convergence criterion. An
IBM 3090 computer with vector processor was used for
these calculations. A single Newton's loop, in which the
Poisson and Schrodinger equations are each solved once,
required approximately 15 min of computation time for
B =0 and 45 min for BWO if the Lanczos recursion was
used. If the Rayleigh quotient algorithm was used in
place of the Lanczos method, the solution of the
Schrodinger equation (nearly all the computation time)
ranged from 5 to 50 times faster, depending on the quali-
ty of the initial guess. A typical bias point required 4—20
Newton's loops to converge.

Potential contours in a plane 8 nm below the GaAs-
Al„Ga&, As interface, near the maximum of the electron
charge distribution, are shown in Fig. 2. Note that the
potential contours are nearly circular, especially at the
lower energies, although the defining gate geometry is a
square. That follows from the attenuation of higher
Fourier components of the potential in regions some dis-
tance from the gate, as found previously for fluctuations
in the width of a gate opening. Also, the effective size
of the quantum dot, given by the contour at the Fermi
level, is considerably smaller than the size of the defining
structure in the gate. In Fig. 2 and throughout this paper
we make cuts in representative planes or along represen-
tative lines to display functions of three spatial coordi-
nates. The figures are intended to indicate the main
features of the calculated results, but should not be con-
sidered to be complete. The raggedness of some of the
later curves is a consequence of the necessarily coarse
mesh used in the discretization.

Figure 3 shows the number of electrons in the quantum
dot, the lowest-energy levels, and the quasi-Fermi-level as
functions of the voltage on the gate at 4.2 K for zero
magnetic field. The notion of "quasi-Fermi-level" does
not arise in calculations for quasi-one-dimensional wires,
for which the charge can be considered to vary continu-
ously, provided a suitable means of equilibrating with an
adjacent gate or contact exists. For the very small struc-
tures considered here, where a dot may contain only a
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FIG. 2. Lateral potential contours in the plane 8 nm below
the GaAs/Al, Ga& „As interface, near the peak of the vertical
charge density, for a gate voltage of —1.03 V. The innermost
contour is 15 meV below the Fermi level, which is indicated by
the heavy line, and the remaining contours are at 10-meV inter-
vals from —10 to + 50 meV. Note the nearly circular symmetry
despite the square geometry of the cap. The effective quantum
dot size, with a diameter of about 100 nm, is considerably small-
er than the 300-nm square mesa in the GaAs cap layer.
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FIG. 3. Energy levels (solid lines) and Fermi level (dotted-
dashed line) relative to the bottom of the potential we11, and
number of electrons in the quantum dot (dashed line), vs gate
voltage. The second level is doubly degenerate, and the next
three levels lie very close to each other. In addition, each leve1

has a twofold spin degeneracy. These energies reAect the com-
bined effect of vertical and lateral confinement. The energy of
the lowest state with a node in the z direction is indicated by the
plus signs. Only integer electron occupations, indicated by the
vertical dotted lines, correspond to physically realizable states
of an isolated quantum dot.

few electrons, discontinuities can arise because transfer of
just one electron can have a significant effect on the ener-
gies in the problem. This gives rise to the Coulomb
blockade, as found in many experiments. ' Because of
this effect, the curves in Fig. 3 have no physical
signficance for an isolated quantum dot at points where
the number of electrons in the dot is different from an in-

teger.
Some of the energy levels we calculate are degenerate

(apart from the spin degeneracy, which applies to all lev-
els in our calculation) and others are nearly so. For ex-
ample, the second and third levels are exactly degenerate
at zero magnetic field because of the square symmetry of
the structure we consider. The fourth and fifth levels
would be degenerate at B =0 if our system had circular
symmetry. The small splitting results from the weak
remnant of the square symmetry of the cap. Finally, the
sixth level, which is close to the fourth and fifth, would
be exactly degenerate with them if the system had circu-
lar symmetry and had the perfectly parabolic potential
treated by Darwin. Similar considerations apply for
higher-lying levels, except that they are increasingly
influenced by the deviations from a circularly symmetric
potential.

Figure 4 shows the quasi-Fermi-energy and the bottom
of the potential relative to the Fermi energy in the GaAs
substrate when the number of electrons in the quantum
dot is six, seven, or eight. At a given gate voltage, several
different charge states of the dot are possible, although
the state with the quasi-Fermi-level closest to the Fermi

—50
—1.05 —1.04 —1.03 —1.02 —1.01

GATE VOLTAGE ( V j

FIG. 4. Quasi-Fermi-level and energy of the bottom of the
well, vs gate voltage for six, seven, and eight electrons in the
quantum dot. The energy difference between the quasi-Fermi-
level and the Fermi level gives a driving force for electrons to
move between the dot and the substrate. The circles correspond
to gate voltages for which the dot is in equilibrium with the sub-

strate for an integer electron occupation.

level in the substrate contact is the one most likely to be
observed. The buildup of potential difference before a
charge transfer occurs is a signal of the Coulomb
blockade. '

One measure of capacitance of our structure is ob-
tained by using the lower curve in Fig. 3 to calculate a
gate-to-dot capacitance Cg =dg&D/d Vg. That capaci-
tance varies from about 1X 10 ' F at small values of dot
charge to about 3 X 10 ' F when there are about 12 elec-
trons per dot. More directly relevant to the experiment
of Hansen et al. is an effective substrate-to-dot capaci-
tance C„which we obtain by dividing the electron charge
by the vertical separation between successive quasi-
Fermi-level curves in Fig. 4, to obtain a value of about
6 X 10 ' F for a dot occupation between seven and eight
electrons. Both of these effective capacitances will in-
crease with increasing dot charge.

The dynamical behavior of this system depends on
charge-transfer rates between the quantum dot and adja-
cent electrodes, a problem which is outside the scope of
the present static calculation. ' Note that the barrier be-
tween the dot and the substrate is very small, as indicated
in Fig. 1 for a line through the center of the dot. This
barrier would have been larger had we used a larger value
than 10' cm for the net acceptor doping in the nomi-
nally undoped GaAs.

Figure 5 shows a few of the lowest-energy levels versus
gate voltage when the number of electrons in the quan-
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FIG. 5. The six lowest-energy levels (note that the second
and third levels are degenerate), and the quasi-Fermi-energies,
for six, seven, and eight electrons per quantum dot, vs gate volt-
age. Each level has a twofold spin degeneracy. For the upper
three levels only the values for seven electrons per dot are
shown; the results for six and eight electrons per dot almost
coincide. These results are for 4.2 K and 8 =0.

turn dot is fixed at six, seven, or eight with zero magnetic
field. The energy levels depend remarkably little on the
charge state, but are quite sensitive to gate voltage.

Some details of potential and charge density are given
in Figs. 6—8, both as functions of charge in the quantum
dot at 8 =0 and as functions of magnetic field (as dis-
cussed in the next section) for fixed charge in the dot.
Figure 6 shows the charge density along a vertical line
through the center of the dot. The charge density peaks
about 8 nm below the GaAs/Al„Ga, As interface, but
is truncated —as described above —before the rise of
charge density in the substrate begins. A lateral cut
through the charge density near the peak in Fig. 6 is
shown in Fig. 7. Finally, Fig. 8 shows the variation of
the conduction-band edge in the x direction, in the same
plane as in Fig. 7. The effective size of the dot is about
100 nm, considerably smaller than the 300-nm square
mesa in the GaAs cap layer. The potential somewhat
resembles the truncated parabola found previously for n-
i p ido-p-ing superlattices and for wires in Si (Ref. 11)
and GaAs, ' but with more structure, which can be attri-
buted to the small number of discrete states that contrib-
ute to the charge in the cases shown.

IV. NONZERO MAGNETIC FIELDS

When a magnetic field is applied normal to the surface,
the Schrodinger equation, Eq. (2), becomes complex, and
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FIG. 6. Total charge density in the vertical direction along a
line through the quantum dot center for (a) six, seven, and eight
electrons per dot, with 8 =0, and (b) B =0, 1, 2, 3, 4, and 5 T,
with seven electrons per dot. The z coordinate and the gate
voltage are the same as in Fig. l.

FIG. 7. Lateral cut of total charge density in a plane 8 nm
below the GaAs/Al Ga l As interface. The cut is taken
through the center of the quantum dot. Other quantities as in
Fig. 6.
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TABLE I. Calculated quantities for states of the quantum dot at 4.2 K for B =5 T and a gate voltage
of —1.03 V, with seven electrons in the dot. The energy is relative to the bottom of the potential well

in the dot, (I, ) is the expectation value of the z component of the "canonical" angular momentum
r X p, (R ) is the expectation value of the two-dimensional radial distance from a vertical axis through
the center of the dot, M is its standard deviation, and (L, ) is the expectation value of the z component
of the total angular momentum r X m v. The 0' state is the lowest state with a node in the z direction.

State

0
1

2
3
4
5

6
7
8

9
0t

Energy
(meV)

35.4
35.5
35.7
36.2
37.0
38.1

39.5
41.1

42.9
43.6
43.7

0.07
—1.05
—1.98
—2.91
—3.83
—4.75
—5.62
—6.46
—7.32

0.98
0.00

(z)
(nm)

14.3
21.2
25.9
29.4
32.3
34.8
37.1

39.1

41.0
21.0
15.9

5R
(nm)

7.5
7.5
7.3
7.1

6.9
6.8
6.6
6.6
6.5
7.4
9.4

(L, ) IR

1.06
0.87
0.76
0.57
0.32
0.03

—0.24
—0.49
—0.78

2.87
1.30

10

0

I

E (8) ',

(,qF

-5 — E, (6)

300 nm DOT

4.2 K B=O

(a)

its discretized form leads to an Hermitian matrix. In our
case, this matrix has about 30000 rows and columns, and
a corresponding number of eigenstates, but we typically
look for only the -20 eigenstates with the lowest energy.
Nevertheless the calculation, as described above, is very
time consuming. We show in Fig. 9 the energy levels for
the case of seven electrons per quantum dot, with a gate
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4 =
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FIG. 8. Potentials along the same line as in Fig. 7. The Fer-
mi energy is at zero. The quasi-Fermi-energies for six and eight
electrons per quantum dot are indicated in (a). The quasi-
Fermi-energy is within 1 meV of the Fermi energy for seven
electrons per dot for the range of magnetic fields shown, and has
been omitted. Also omitted in (b) are the curves for B = 1 and 2
T, which lie very close to the curve for B =0.

FIG. 9. Energy levels vs magnetic field for a quantum dot
with seven electrons and a gate voltage of —1.03 V. The labels
give approximate values of the z component of the canonical an-

gular momentum r X p in units of A.
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FIG. 10. Probability densities (absolute squares of the nor-
malized envelope wave functions) for the four lowest eigen-
states, in a plane 8 nm below the GaAs/Al„GaI As interface.
The gate voltage is —1.03 V and there are seven electrons in a
quantum dot. Results are shown for (a) 8 =0.05 T and (b)
8 =5 T. The labels give the approximate value of the z com-
ponent of the canonical angular momentum in units of A. The
states labeled 1,—1 for 8 =0.05 T have probability densities
which are almost the same (they correspond to opposite
angular-momentum combinations of the x- and y-like degen-
erate solutions for 8 =0). The probability densities for the
states shown in both (a) and (b) are approximately circularly
symmetric, except for the state labeled —2 in (a), for which cuts
along the x direction (dashed line) and along the diagonal x =y
(dotted line) are shown.

voltage of —1.03 V. As shown in Fig. 2, the potential
has nearly circular symmetry, and therefore angular
momentum is approximately a good quantum number.
The curves are labeled with an integer to represent the
approximate z component of angular momentum (in units
of fi), but the calculated expectation values for the points
shown differ from an integer by up to 10%, and by less
than 0.1 for the zero-angular-momentum states. These
labels should therefore be considered to have only quali-
tative significance. At B =0, where the envelope eigen-
functions are real, the angular momentum is zero for all

the states. The calculated curves are in good qualitative
agreement with the results found by Darwin for states in
a two-dimensional harmonic-oscillator potential in a
magnetic field. The curves are shown to cross, as would
apply for states with different angular momentum in a
circularly symmetric potential, although we expect that
small anticrossing gaps would appear if the calculation
were carried out with greater resolution. The difference
between the crossing behavior in a circularly symmetric
case and the anticrossing for positive-parity states in a
rectangular box is nicely illustrated in Figs. 1 and 2 of the
paper by Robnik.

The angular momentum referred to in the preceding
paragraph is what Van Vleck has called the canonical
angular momentum. It is the expectation value of
1=rXp, where p is the operator —iAV. The "true" an-
gular momentum, L=r X m v, has an additional term
(e/2)rX(BXr), analogous to the additional term in the
Hamiltonian in the presence of a magnetic field. The
angular-momentum quantum number associated with the
z component of the canonical angular momentum is the
integer 1 that appears in the angular factor exp(ilg) in the
wave function in a circularly symmetric potential.

Table I gives some additional information for the
lowest states for B =5 T. %e show the expectation value
of the energy relative to the bottom of the well, of the z
component of the canonical angular momentum, of
R =(x +y )'~, with lateral position measured relative
to a vertical axis through the center of the quantum dot,
of 5R =((R ) —(R )')' ', and of the z component of the
"true" angular momentum, (L, ) =(I, )+(eB/2)(R ).
The last state in the table is the lowest state with a node
in the z direction.

The expectation value of the true angular momentum
for a one-electron problem is related to the magnetic mo-
ment p by p, = dE/dB =—(e/2m—)(L, ), where we
assume the magnetic field to be in the z direction, as in
the example treated in this paper. Our numerical results
deviate somewhat from this relation, a difference which
we attribute to the inclusion of the Hartree terms for the
electron-electron interaction in the potential energy.

The energy levels in Fig. 9 are all associated with states
that have no nodes in the z direction. States with such
nodes, which would correspond to the first excited sub-
band in a two-dimensional electron gas in an unpatterned
GaAs heterojunction, appear at energies above 42 meV.

As already shown in Figs. 6—8, the character of the
solution changes with increasing magnetic field. The ra-
dial wings of the charge density contract, with a corre-
sponding increase in charge density near the center of the
quantum dot and a change in the shape of the bottom of
the potential well. The shape of the charge density of the
four lowest states in a dot with seven electrons is shown
in Fig. 10 for magnetic fields of 0.05 and 5 T. Even at 5

T, for which the magnetic length, (A/eB}' = ll nm, is
considerably smaller than the effective dot radius, about
50 nm, a distinction between bulklike and edgelike states
is not obvious from the charge densities or angular mo-
menta of the occupied states. Note that spin splittings,
which we have ignored, will become significant at the
upper end of the magnetic field range that we use.
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V. DISCUSSION

As noted earlier, many approximations have been
made in these calculations. In particular, the substrate
structure of the sample we have modeled required trunca-
tion of the Schrodinger mesh on a plane where the wave
functions had not yet decayed to zero. There must be
another, for the present not well understood, approxima-
tion in our description of the sample, because the calcu-
lated voltage threshold is about —1 V, while the mea-
sured threshold is about —0.2 V. The measurements
are made in the dark, and the calculations use a deep-
donor binding energy consistent with that condition. The
large discrepancy between calculated and measured
threshold voltages may be due to changes in the proper-
ties of the top layers and of the interfaces caused by the
processing steps used in defining the lateral sample
geometry. The neglect of many-body interactions is also
significant. We expect, however, that many of the quali-
tative results for the internal structure of the quantum
dot remain valid.

We found that the energy-level structure can be con-
sidered to be a perturbation of the states of a parabolic
potential in a magnetic field, with angular momentum a
rough guide to the properties of the states. We also
found, in contrast to our original expectations, that the
energy levels measured from the bottom of the potential
well are quite insensitive to the number of electrons in the
quantum dot, for a fixed gate voltage. A weak depen-
dence of level separations on electron population was ob-
tained theoretically by Chaplik. A number of authors
have found theoretically that optical transitions for a par-
abolic potential in superlattices, quantum wells,
wires, ' and dots ' reflect the underlying structure of the
bare harmonic-oscillator potential and are unaffected by
electron-electron interactions. Experiments on quantum
wires and quantum dots ' are consistent with this re-
sult.

We have shown how the quasi-Fermi-level in the quan-
tum dot depends on gate voltage for different charge
states of the dot. As the gate voltage changes from a

value corresponding to an integer electron occupation,
the difference between the quasi-Fermi-level in the dot
and in the adjacent substrate electrode increases, related
to the Coulomb blockade. The gate voltage at which the
charge changes discretely is not considered here. Finally,
we gave some pictures of energy levels and wave func-
tions, with approximate values of angular momentum, for
a range of values of gate voltage, charge in the dot, and
magnetic field.

At least one of the authors began this work expecting
to find a clear qualitative distinction between bulklike
and edgelike states. Our computed envelope wave func-
tions do not show any abrupt qualitative differences,
which can be considered to be a consequence of the rath-
er soft potential at the walls of the quantum dot.

Note added in proof. Since completion of this work we
have become aware of two related publications. The
eigenfunctions and eigenvalues of the two-dimensional
harmonic oscillator in a magnetic field were obtained by
Fock three years before the paper by Darwin. Mak-
sym and Chakraborty have treated the energy levels of
quantum dots with three and four electrons moving in a
two-dimensional harmonic oscillator potential with an
applied magnetic field, including effects of electron-
electron interaction.
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