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Properties of the Landauer resistance of finite repeated structures
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Several properties of the Landauer resistance of finite repeated structures are derived. A theorem
relating the energies of unity transmission through a finite repeated structure to the band structure
of an infinite superlattice formed by periodic repetition of the finite structure [Vezzetti and Cahay,
J. Phys. D 19, L53 (1986)] is generalized to the case of structures with spatially varying effective
mass. We also establish a sum rule for the Landauer resistances of periodic structures formed by
periodically repeating a basic subunit. Finally, we derive an analytical expression for the "boundary
resistance" of a structure, as introduced by Azbel and Rubinstein in connection with pseudolocali-
zation, and prove several properties of this quantity.

I. INTRODUCTION

The Landauer formula' for calculating the resistance
of a dissipationless mesoscopic structure has been used
quite widely in the study of quantum transport phenome-
na. The formula relates in a simple way the resistance of
a structure (in the linear-response regime) to the probabil-
ity of transmission of an electron through the structure.
The usefulness of the formula lies in the fact that it
reduces the problem of quantum mechanically calculat-
ing resistance —a rather difficult problem —to a much
simpler problem of calculating just the transmission
probability. In this paper, we prove several interesting
properties of the Landauer resistance (i.e., the resistance
in the linear-response regime) of a finite repeated struc-
ture such as a semiconductor superlattice. These proper-
ties are all derived from the properties of the transmis-
sion coefficient of an electron through a periodic poten-
tial of finite spatial extent.

In Sec. II of this paper, we first employ a transfer-
matrix technique to derive a general expression for the
transmission probability of an electron through an arbi-
trary potential profile. We then extend this result in Sec.
III to calculate the transmission probability

~ Ttt ~
of an

electron through N subunits of a finite repeated structure.
Using this expression, we extend an earlier result relat-
ing the energies of unity transmission through a finite re-
peated structure to the energy —wave-vector relation for
an infinite structure formed by periodically repeating the
basic subunit of the finite structure. In Sec. IV, we prove
a set of theorems that establish interesting and useful re-
lationships between the transmission probabilities (and
hence the Landauer resistances) associated with the sub-
units of a finite repeated structure. These theorems are
all illustrated with numerical examples dealing with com-
positional and effective-mass superlattices. In Sec. V, we
establish a sum rule for the Landauer resistances of
periodic structures formed by successively repeating a

basic subunit, and in Sec. VI, we derive an exact analyti-
cal expression for the "boundary resistance" of a struc-
ture as introduced by Azbel and Rubinstein in connection
with pseudolocalization. Finally, in Sec. VII, we summa-
rize our conclusions.

II. TRANSMISSION OF AN ELECTRON
THROUGH AN ARBITRARY POTENTIAL

g=(b(z)e (2)

In this section, we first derive an expression for the
transmission coefficient of an electron through an arbi-
trary one-dimensiona/ potential of finite spatial extent.
For the sake of generality, we allow for spatial variation
of the electron's eff'ective mass but assume it varies only
in one direction. The time-independent Schrodinger
equation describing the steady-state (ballistic) motion of
an electron through such a potential is

fi B g fi B g A' B 1 B1b

2m *(z) Bx 2m *(z) By 2 Bz m *(z)

+E,(z) =Ef, (1)

where E, (z) is the one-di. mensional potential that varies
in the z direction and m*(z) is the spatially varying
effective mass. In a semiconductor heterostructure, E, (z)
is the conduction-band edge profile which incorporates
any band bending due to space charges, variations due to
compositional inhomogeneity, and also variations due to
any external electric field.

Because the Hamiltonian in Eq. (1) is invariant in the x
and y directions, the transverse wave vector k, is a good
quantum number. Furthermore, since the z component
of the electron's motion is decoupled from the transverse
motion in the x-y plane, the wave function P can be writ-
ten as
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where k t
= ( k, ky ) and p = ( x,y ).

The z component of the wave function P(z) now
satisfies the Schrodinger equation

2pl

dz y(z) dz
+ [E +E,[1—y(z) ']

" (.„-)
y(z„) dz

(t (z„)

~(n) pr(n) '

11 12

pr( n) ~(n)
21 22

1 d(tt +
)

y(z„+, ) dz

P(z„+, )

(4)

where 8' "' are the elements of the transfer matrix, and
z„+, and z„stand for z„,+e and z„—e, respectively,
with e being a vanishingly small positive quantity. Expli-
cit expressions for the elements of the transfer matrix are
given in the Appendix.

Assuming continuity of P(z) and [I/y(z)]/(dtttldz)
everywhere in the structure, the overall transfer matrix
W"' describing the entire region [O,L] (see Fig. 1) can be
found by simply cascading (multiplying) the individual
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FIG. 1. An arbitrary potential profile approximated by a
series of potential steps. Within each interval, the potential and
e6'ective mass are assumed to be spatially invariant.

E,—(z) I tI)(z) =0, (3)

where m,* is the effective mass of the electrons in the
"contacts" sandwiching the region of interest (m,' is spa-
tially invariant within the contacts and isotropic),
y(z)=m'(z)/m, *, E, =iri k, /2m, *, and E is the kinetic
energy associated with the z component of the motion in
the contacts (E =Pi k, /2m, *).

The above equation cannot be solved exactly for an ar-
bitrary potential E, (z) How. ever, an approximate solu-
tion can be found by approximating the potential profile
by a series of potential steps (see Fig. 1) or by using a
piecewise linear approximation for the potential. In the
former scheme, the region over which the potential varies
is broken down into a finite number of intervals. Within
each interval the potential and the effective mass are as-
sumed to be constant. In that case, the wave function and
its first derivative at the left and right edges of an interval
are related through a so-called "transfer matrix, " charac-
teristic of that interval, whose elements do not depend on
the z coordinate and can be determined analytically.

The transfer matrix for the nth interval [z„„z„]is
defined according to

transfer matrices for the individual intervals:

gytot ~(X) ~( 1 ) (5)

where 8""' is the transfer matrix for the nth interval as
defined in Eq. (4).

The overall transfer matrix 8""relates the wave func-
tions and their first derivatives at the left and right con-
tacts:

dtt (L+) 1 d((t

y(L+) dz y(0
—

) dz

ttt(L+) $(0 )

In Eq. (6), ttt(0 ) and P(L+) are the electronic states
inside the left and right contacts. They are given by'

Ekoz —ikoz
e ' +Re ", z(0

iko(z —L) (7)
Te ', z)L

ttt(z)= '

where ko [=(2m,"E /trt)' ] is the z component of the
electron's wave vector in the contact and R and T are the
overall reflection and transmission coeScients through
the region [O,L]. Using these scattering states for the
wave functions at z =0 and z =L+ and noting that, by
definition, y(L+)=y(0 )=1, we obtain from Eq. (6)

iko
T ~tot

1

iko(1 —R)

1+R

Equation (8) finally gives us the two equations for the
two unknowns T and R. From these two equations T and
R can be found by straightforward algebra. Eliminating
R gives

0 11 22 12 212 'I ( Wtot Wtot Wtot Wtot }

ik ( W'"+ W"')+( W'"king —W'" )
(9)

where 8',"' are the elements of the matrix W'" that are
found from Eq. (5).

Since 8"" is a unimodular matrix, the term within
parentheses in the numerator of Eq. (9) is unity. In addi-
tion (see the Appendix), W~" is always purely real.
Therefore Eq. (9) gives

[
T/'= 4ko

k 2( Wtot + Wtot )2+ ( Wtotk 2 Wtot )20 ll 22 21 0 12

(10)

III. TRANSMISSION OF AN ELECTRON
THROUGH A FINITE REPEATED STRUCTURE

Having found a general expression for
~
T~, we now

proceed to evaluate the transmission probability (and
hence the Landauer resistance) associated with a finite re-
peated structure formed by the periodic repetition of a
structure with arbitrarily varying potential.

Consider the potential profile in Fig. 2 formed by the

The above equation gives us a general expression for
the transmission probability of an electron through an ar-
bitrary potential. The transmission probability

~
T~ is, of

course, related to the reflection probability ~R~ accord-
ing to the relation ~T~ + ~R~ =1 as required by current
conservation.
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FIG. 2. The potential profile for a finite repeated structure
formed by periodic repetition of a region with arbitrarily vary-

ing potential.
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where kp is the wave vector of the incident electron.

periodic repetition of an arbitrary potential. Every
"period" in this structure has the same transfer matrix
(say W) characterizing that period and the grand overall
transfer matrix 8""describing the entire structure is, as
before, obtained by cascading the transfer matrices for
the individual periods. It is easy to see that for a struc-
ture with N periods with each period identical,

Wtot —
( W)N

As shown in Ref. 10, the elements of the matrix 8""
can be expressed in terms of the elements of the matrix
W

IV. TRANSMISSION THEOREMS FOR A FINITE
REPEATED STRUCTURE

We now prove a set of theorems related to transmission
through finite repeated structures. First, we prove a
theorem that relates the energies of unit transmission
(i.e., the values of the incident energy for which the
transmission coefficient is exactly unity) through a finite
repeated one-dimensional structure, to the band structure
of the associated infinite lattice formed by periodic repeti-
tion of the one-dimensional structure. This theorem was
stated for the first time in Ref. 5. A more detailed proof
is given here with generalization to the case of a structure
with a variable effective mass.

W«, W
sin(NO) sin[(N —1)O]

(12)

where I is a 2 X 2 identity matrix and 8 depends on the ei-
genvalues of the matrix W and is given by

exp(iO)=A, =A& '=
,

—+Tr( W) Tr( W)
2

'2 1/2

(13)

~Tz~ = [sin (NO)]
2

'2
k p W2] W]2

2kpsinO
—1 +1

(14)

which is our main result.
The two- and four-probe (2-p and 4-p) Landauer resis-

tances for a strictly one-dimensional repeated structure
can now be found easily by substituting Eq. (14) for the
transmission probability

~ Tz~ in the single-channel Lan-
dauer formula:

where A, ] 2 are the eigenvalues of the 2 X 2 matrix W and
the second equality follows from the fact that the matrix
W is unimodular.

We can now find the overall transmission probability
~TN~ through a periodic structure with N periods. For
this, we use Eq. (10) with the elements of W"' now given
by Eq. (12). This gives

Theorem I. The transmission coefficient of a particle
through a periodic structure, formed by N repetitions of a
basic subunit, reaches unity at the following energies: (a)
energies at which the transmission through the basic sub-
unit is unity, and (b) N —1 energies in each energy band
of the lattice formed by infinite periodic repetition of the
basic subunit, where these N —1 energies are given by
E =E, (k =+nrrlNL)(n =1,2, 3, . . . , N —1, and L is the
length of a period). Here E, (k) is the energy —wave-
vector relation (or the dispersion relation) for the ith
band of the infinite lattice.

l=~T,
~

= . [sin (O)]
2 2

k P W2] W]2

2kpsin0
—1 +1-

(17)

Part (a) of the theorem is actually fairly obvious. All it
states is that by connecting identical structures of
transmission unity, one always obtains unit transmission
through the composite structure. Although this is intui-
tive, we prove it nevertheless for the sake of cornplete-
ness. For this, we first note from Eq. (14) that the
transmission

~ T~ ~
through N periods reaches unity when

the term within the large square brackets vanishes. The
term within the large square brackets vanishes when

2 2
k o W2] —W]2

(16)
2kpsinO

We now show that this corresponds to the condition that
~ T, ~

(i.e. , the transmission through one period, or the
basic subunit) is unity. Substituting N =1 in Eq. (14), we
get that the condition for unit transmission through one
subunit is given by



42 PROPERTIES OF THE LANDAUER RESISTANCE OF FINITE. . . 5103

1.C. ,

+ 2m + 3m (N —1)m

W'e now have to prove that the above values of 8 also cor-
respond to the wave vectors k =+n~/NL where L is the
period. For this, we first apply the Bloch theorem to the
infinite structure. The Bloch theorem gives

P(z +L)=P(z}exp(ikL),

where k satisfies the relation"

(20)

det[ WJ 5„exp—(ikL)] =0 . (21)

In the above equation, 8', - is the ijth element of the
transfer matrix W describing one period and 5, is a
Kronecker delta. From Eq. (21) we immediately see that
exp(ikL) is the eigenvalue of the 2X2 unimodular matrix
8'and hence

exp(ikL ) = I, ,
=A,2

' = +Tr( W)
2

Tr( W)
2

1/2

(22)

The right-hand sides of Eqs. (13) and (22) are identical
so that their left-hand sides must also be identical.
Therefore

exp(ikL) =exp(i8), (23)

or

which, after simplification, reduces exactly to Eq. (16).
This proves the first part of the theorem, viz. , that the en-
ergies of unit transmission through one period are also
the energies of unit transmission through all the
pcl iods.

To prove the second part of the theorem, we note from
Eq. (14) that the transmission

~ T~ ~
also reaches unity for

those values of 0 that satisfy the conditions

sin(N8) =0, sin(8}WO;

The locations of the band edges can be found directly
from the following property, which we prove: The states
characterized by wave vectors k for which ~Tr( W}~ ) 2
are the evanescent states corresponding to the "stop
band" of a finite repeated structure. The states charac-
terized by wave vectors k for which ~Tr( W)~ &2 are the
propagating states corresponding to the "pass band" of
the finite repeated structure.

To prove the property, we invoke Eq. (22). If
~Tr( W)

~
& 2, then the right-hand side of Eq. (22} is purely

real and greater than unity. In that case, the wave vector
k must be purely imaginary which means that the state is
an evanescent state corresponding to the "stop band" of
the finite repeated structure. On the other hand, if
~Tr(W)~ &2, the right-hand side of Eq. (22) becomes
complex which permits k to be real. In the latter case,
the state is a propagating state corresponding to the
"pass band" of the structure. The values of wave vector
k for which ~Tr[W]~=2 evidently correspond to the
edges between the pass bands and the stop bands.

Theorem II. At the energies of unity transmission
through a finite repeated structure with N periods, the
following equality holds:

~ Ttv ~

=
~ Ttt ~

whenever
1 2

N, +Nz=N. Here ~Ttv ~
and ~Ttt ( are the transmis-

sion probabilities through two subsections with N& and
N2 periods respectively.

As stated in the proof of theorem I, the transmission
through N periods reaches unity under two condi-

tions: (a) when the transmission through each of the N
periods is unity, and (b) when

8=+ (n =1,2, 3, . . . , N —1) .
n~

(25)

In case (a), the proof of theorem II is trivial. If the
transmission through each period is unity, then, of
course, the transmission through any arbitrary number of
periods is also unity. In that case, obviously,

(26)
kL =8(mod2vr) . (24}

Consequently whenever k =+n m/NL, the quantity
8=+n m /N. Thus the energies corresponding to
k =+trlNL, +2m INL, +3m INL, . . . , +[(N —1)7r)/NL
are the energies corresponding to 8=+m /N,
+2m/N, +3ttlN, . . . , +[(N —1)m.]IN, which, in turn,
are the energies corresponding to unity transmission
through the finite repeated structure with N periods as
previously noted. Stated in other words, this means that
the energies associated with unity transmission through
an N-period structure are the band energies E(k„) corre-
sponding to the wave vectors k, =+n ~/NL in an infinite
repeated structure. This gives us the E(k„)-versus-k„re-
lation and proves the theorem.

The usefulness of theorem I lies in the fact that by
evaluating the energies of unit transmission through a
finite structure [which we can do from Eq. (14)], we can
calculate the band structure of an infinite superlattice
formed by the periodic repetition of the finite structure.

regardless of what N, and N2 might be. This proves the
theorem for case (a).

The proof for case (b) proceeds as follows. We first
note that

sinN, 8=sin(N Nz )8=sin(+ n n—N28)—
=( —1) "+'sinN28, (27)

where we used Eq. (25) to obtain the second equality. Us-
ing the above equality in Eq. (14), we immediately see
that

which proves case (b).

Theorem III. At the energies of unity transmission
(~T&~ =1) through a finite repeated structure with N
periods, the following equality holds:

~ Tz+M ~2

for all M such that 1 &M & N.
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The proof of this theorem is very similar to that of
theorem II and is therefore not presented.

A. Numerical examples

To illustrate theorem I, we show in Fig. 3 the construc-
tion of the energy-band diagram of an infinitely repeated
structure whose basic subunit is shown in the inset. The
points Q, Q' are the two lowest energies at which the
transmission through two subunits is unity, whereas the
points P, P' and R, R ' are the two lowest energies for
which the transmission through three subunits is unity.
These points are on the two lowest-energy bands. Other
points on the energy-band diagram can be found similarly

by steadily increasing the number of periods and search-
ing for the energies of unit transmission. Finally, the
points PI, P~ and Q„Q2 correspond to the band edges
and are found from the condition ~Tr( W) =2.

To illustrate theorems II and III, we provide the fol-
lowing numerical examples.

Example 1. We have calculated the transmission
~ T~ ~

[using Eq. (14)] through a compositional superlattice con-
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FIG. 3. Ener gy-band diagram of an infinitely repeated struc-
ture whose basic subunit is shown in the inset. The conduction
band is constructed by numerically evaluating the energies at
w ich the transmission through increasing number of periods
go to unity. The points Q, Q' correspond to the two lowest ener-
gies at which transmission through two bwo su units is unity,
whereas the points P, P' and R,R' correspond to the lowest en-
ergies for which transmission through three subunits is unity.
The pomts P, , P2 and Q, , Q2 correspond to the band edges and
are found from the condition Tr[ W] =2.

Theorem IV. If the Fermi energy of a finite repeated
one-dimensional structure lies at the boundary between a
"pass band" and a "stop band, " then the four-probe Lan-
dauer resistance of N periods of the structure is equal to
N times the four-probe Landauer resistance of one
period. This means that the four-probe Landauer resis-
tance increases with the structure's length as L instead
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FIG. 4. Transmission coefficients through a periodic struc-
ture formed by repeating the subunit shown in the inset. The
subunit consists of a GaAs well and an Al, Ga As barrier
both 50 A thick. The barrier height is 0.3 eV and the effective
mass is assumed to be 0.067mo everywhere. Note that when

IT31'=1, T, '=IT, /'. Also whenever [T /'=1, /T f'=/IT2/I'

These illustrate theorems II and III, respectively.

s&sting of rectangular wells and barriers in which the bar-
rier and well thicknesses are 50 A. The effective mass
was assumed to be 0.067mo everywhere and the barrier
height was taken to be 0.3 eV. Figure 4 shows the
transmission coefficient through one, two, and three bar-
riers in the vicinity of the lowest resonant energy through
two barriers. (Resonant transmission through two bar-
riers has been studied extensively in connection with the
double-barrier resonant tunneling diode. '

) Figure 4 is
a clear illustration of theorem III. It shows that when
the transmission through two barriers is unity, the
transmission through three barriers is equal to the
transmission through one barrier, i.e. T,

I2 ~

with N =2 and M = 1. Figure 4 also shows
that whenever ~T3~ =1, ~TI ~

=~T2 illustrating
theorem II for the case N = 1, N =2.

1 ~ 2

Exam le 2.p . In Fig. 5 we show the transmission
through an effective-mass superlattice' in which the
conduction-band edges in the different layers are assumed
to be aligned but the effective masses are different. We
assume effective masses of 0.039mo and 0.073mo, respec-
tively, in two alternating layers. (These correspond to the

transmissions through one, two, and three layers were
calculated from Eq. (14) at the resonant energy through
three layers. Clearly, when

~ T3 ~

= 1, ~ TI ~

=
~ T2 This

illustrates theorem II. Also when ~T ~

=1, T ' =(T3(2 ~ 1 3

as stated in theorem III.
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FIG. 5. Transmission coefficient through an effective-mass
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theorem III.

0.30

of as L in violation of Ohm's law.

+i I—
2 1/2

Tr( W)
2

(29)

Recalling that at the boundaries (band edges) ITr( W)I
=2, we see from the above equation that at the band
edges, sin8=0 so that 0=+n m.

%e now obtain a general expression for the four-probe
Landauer resistance of one period. Using Eq. (10) for the
transmission

I
TI through one period, we obtain

R 4 p( I )
)'z 1 —

I TI
'

h

2e

( W, , + Wzz) +(k Wz, —W, z) —1
4k

2e

4k cos 8+(k Wz,
—W, z)z

4k

2e

(k Wz, —W, z ) —4k sin 8
4k' (30)

where we used Eq. (29) to substitute for ( W~&+ Wzz) in
terms of cosO.

From Eq. (15) we also find that the Landauer resistance
of X periods is

To prove the theorem, we first show that the energies at
the boundaries between the pass bands and stop bands of
a structure correspond to 0=+nun, where 8 is defined
from Eq. (13).

To show this, we first recast Eq. (13) as

Tr( W)exp(i8) =cos8+i sin8=
2

R ~(N) = h
L

s;„(N8) (k Wz, —W, z) —4k sin 8

sin0 4k
2

sin(N8)
R 4 p(

sin0
(31)

At the band edges when 0=+n ~, the above expression
becomes

Rr r(N) = lim
H~~nm

'2

RL t'(1) =N RL ~(1), (32)
sinO

k 8'2, —W)~=0 (33)

The above condition is in general not satisfied for any
arbitrary potential. Specific cases when this condition is
satisfied are discussed in Ref. 17.

V. SUM RULE FOR FOUR-PROBE
LANDAUER RESISTANCES

In this section, we prove the following "sum rule" for
the four-probe Landauer resistances associated with the
subunits of a repeated one-dimensional structure.

The four-probe Landauer resistances of the various
subunits of a repeated one-dimensional structure obey the
following equality when eva1uated at the energies of unit
transmission through the structure corresponding to case
(b) of theorem I:

n =X —
1

n=1

R nl(l1 )

m =.Y —
1

=1
R '"I(m)

m =1

where RL"'(m) is the four-probe Landauer resistance of a
subunit with m periods evaluated at the nth resonant en-
ergy (energy of unit transmission). The summation is car-
ried out over all the X —1 resonant energies correspond-
ing to case (b) of theorem I.

which proves theorem IV. It also shows that since the
resistance of N periods is N times (instead of N times)
the resistance of one period, the four-probe Landauer
resistance increases with the square of the structure's
length instead of with its length. This deviation from
Ohmic behavior was pointed out in Ref. 15 where it was
demonstrated for a periodic array of "5 potentials. " In
the present treatment, we have generalized it to any arbi-
trary potential profile.

The L dependence of the resistance is an interesting
feature. It is well known that in the pass band, where the
states are extended, the resistance should be Ohmic and
increase linearly with L, while in the stop band, where
the states are localized, it should increase exponentially
with L. The fact, that at the boundaries between the pass
bands and stop bands the resistance increases as the
square of L, can be used to identify the onset of metal-
insulator transition' which occurs when the Fermi ener-
gy of a system crosses the boundary between a pass band
and stop band.

It is also interesting to note from Eq. (31) that the Lan-
dauer resistance at the band edges goes to zero when
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To prove the sum rule, we make use of Eq. (31}. This
equation is valid for all N. Replacing N by a running in-

dex m and then summing over m, we obtain

TABLE I. The sum of the three A's is unity, which satisfies

Eq. (34) and, hence, the "sum rule. " Note that the energies in

the first column correspond to points R', Q', and P' in Fig. 3.
a—= {1—lr, l

'}/13—IT, I

' —IT, I-' —IT, I
'}.

m=)v m=)v R (m)L
sin (m8}= g sin 8 .

RL(1)
(35) Energy (eV)

for which ~T, ~'=(

Note that in the above equation we dropped the super-
script "4-p" from RL for the sake of brevity. We will

follow this convention in all following equations with the
tacit understanding that the resistance being referred to is
the four-probe rather than the two-probe resistance.

Making use of the trigonometric identity'

N 1 sin(N8)cos[(N+1)81
sin mO =———

2 2 sinO
(36)

and recalling from Eq. (18) that at the energies of unity
transmission through N periods (i.e., at the resonant ener-

gies), sin(N8) =0, we get from the above identity that at
any resonant energy

m =N
sin (m8, )=—,

m=1 2
(37)

where 8„ is a resonant value of 8, i.e., 8„=nnlN whe. re
n =1,2, 3, . . . , X —1.

Using the above result to substitute for the left-hand
side in Eq. (35) we obtain

m=N
R (n)(m )

N m=1

2 RL")(1)

m =N —1

sin (8„)

RL"'(m )

sin (8, )
RL")(1)

m=N —1

RL"'(m )

m =1

R (n)( 1 )
sin (38)

where, in deriving the second equality above, we used the
fact that at the energy of unity transmission through N
periods, the Landauer resistance of X periods is zero, i.e.,
R,'"'(N) =0.

From Eq. (38}, we obtain (by summing over the index
n}

N n=N —1

n =1

Rl")(1)
m=N —1

R,'"'(m)
m =1

n =N —1

n =1

n =N
sin

n =1

sin

siil( vr )

= g sin (n 8„,), (39)

where 0„, is the value of O„at the first resonance, i.e.,
O„1=~/X.

Comparing Eqs. (37) and (39), we finally obtain Eq. (34)

0.2798
0.3009
0.3304

0.1751 0.095 95 0.1751 0.2499
0.023 57 1.0 0.023 57 0.5
0.3477 0.2105 0.3477 0.2499

which is the sum rule.
In Table I we provide a numerical example of the sum

rule for the case N =4 and for the potential profile shown
in the inset of Fig. 3. The right-hand side of Eq. (34) does
become equal to unity within the numerical accuracy
available.

VI. BOUNDARY RESISTANCE OF A FINITE
REPEATED ONE-DIMENSIONAL STRUCTURE

While studying pseudolocalization, Azbel and Rubin-
stein' introduced the concept of the "boundary resis-
tance" of a finite repeated one-dimensional structure.
The "boundary resistance" of a structure with I periods
is the limiting value of the "average resistance" of the
structure defined as

1
m=M

R,„= g Rq4~( m ),
m =-1

(40)

where RL "(m) is the four-probe Landauer resistance of a
section composed of m subunits.

Reference 19 showed that in the case of uniformly
spaced 5 scatterers, the average resistance evaluated at
the resonant energies of the structure converges to a
nonzero constant value independent of the number of
periods M (or the length of the structure), provided M is
sufficiently large. This constant value was termed the
"boundary resistance" since it arises from the e8'ects of
the boundaries that break the translational invariance of
the structure. In this section we derive, for the first time,
an analytical expression for the boundary resistance. We
then prove two properties —one associated with the
boundary resistance, and the other associated with the
average resistance evaluated at the energies correspond-
ing to the edges between the pass bands and stop bands of
an infinitely periodic structure.

Property 1. The boundary resistance of a periodic
structure is indeed independent of the number of periods
M (or the length of the structure) and depends only on
the potential profile within any one period.

The above result was demonstrated from numerical simu-
lations (but not proved analytically) in Ref. 19 for the
specific case of a periodic array of "5-potentials. " In this
paper, we provide an analytical proof of this property
which is valid for any arbitrary shape of the periodic po-
tential.

Property 2. The average resistance of a periodic struc-



42 PROPERTIES OF THE LANDAUER RESISTANCE OF FINITE. . . 5107

(M/2)RL ( I )
sin (9„)=

y R, (m)
m =1

(41)

Therefore using Eq. (41) in Eq. (40) we obtain

ture, evaluated at the edges between the "pass bands"
and "stop bands" increases with the square of the length
of the structure if the number of periods is large.

We first derive an analytical expression for the bound-
ary resistance.

At the resonant energies [for case (b) of theorem I] we
have from Eq. (38),

1

L M+1
1 1

M ML
(44)

gM+1 gM 1

M+1
1

M M
(45)

Hence the differences go to zero as 1/M which proves
property 1.

We now proceed to prove property 2. When the Lan-
dauer resistances are evaluated at the edges between a
pass band and a stop band,

m=M
R,„(band edges) = g Rr (m)

M

1R„(resonance)= RL(1) .
2 sin (9„)

(42)

m=M
m Rl ( I )

m =1

(M +1)(2M + 1)
R

6 L

Finally, using Eq. (30) to replace RL (1) in the above
equation, we obtain

M
RL(1) if M»1,

3
(46)

h k W2)
—W)2

R,„(resonance) =
4e2 2k sin 9

2

resonance

(43)

where the quantity in the right-hand side is evaluated at
any one of the resonant energies for a structure with M
periods.

We now have to prove that the right-hand side is in-
dependent of M if M is sufficiently large, i.e., if M &&1.
This will prove property I.

Referring back to Eq. (14), we see that resonance con-
ditions (Tsr = 1) are reached when either the term within
the square brackets in the equation above reaches zero
or when sin(N9) =0.

Case 1. For the former case, i.e., when the term within
the square brackets is zero in Eq. (14), R,„(resonance) is
identically zero as seen from Eq. (43) and hence obviously
independent of M. Thus, we have proved property 1 for
this special case.

Case 2. When sin(N9)=0 but the term within the
large curly braces is nonzero, the value of R,„(resonance)
is not zero. The dependence of this nonzero value on the
number of periods M enters through only four
quantities —the matrix elements 8'2, and 8', 2, and also
k„(=nn/ML) and 9„(=nm/M), where the last two
quantities are the resonant values of the wave vector and
the corresponding resonant values of 6 for a structure
with M periods. To prove property 1, we have to merely
show that (1) the matrix elements 8 2, and W, 2 are con-
tinuous functions of energy, and (2) the diff'erence be-
tween k„and k„+', and also O„and 0„+', and hence
R „(resonance) and R „+'(resonance), decreases continu-
ously with increasing value of M. The former fact, name-
ly that the matrix elements are continuous functions of
energy, is obvious from the derivation of these elements
given in the Appendix. The latter fact follows from the
inequality

where we used theorem IV to arrive at the second equali-
ty.

Hence the average resistance, evaluated at the band
edges, increases as the square of the length of the struc-
ture when the number of periods in the structure is large.
This proves property 2.

VII. CONCLUSION

In this paper we have proved several theorems related
to the Landauer resistances of finite repeated structures.
Of particular importance is the theorem that relates the
energies of unity transmission through a finite, repeated
one-dimensional structure to the energy —wave-vector
dispersion relation for the associated infinite lattice
formed by periodic repetition of the structure. This
theorem is valid even for a structure with spatially vary-
ing effective mass and is therefore very useful in calculat-
ing the energy —wave-vector dispersion relation for any
infinitely repeated structure.
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APPENDIX

In a region where both E, and y are constant (spatially
invariant), the Schrodinger equation becomes [see Eq. (3)]

2m E(+ E — E, P(z) =0 . (A—l)
dz y dz $2 y

To define the transfer matrix through a section of
length L where both E, and y are constant, we look at
solutions u(z) of Eq. (Al) which satisfy the boundary
conditions
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and

u, (0)=0, u', (0)=1,

u2(0)=1, u2(0)=0,

(A2)

(A3)

The explicit forms for u, 2(z} are the following.
Case a. If E & E, /y +E„

u, (z)= (A7)

P(z)=A, u, (z)+A2u2(z) .

The transfer matrix W is defined as follows:

(A4)

where the prime denotes first derivative with respect to
space. The solutions u, 2(z} are linearly independent
solutions (their Wronskian is unity) and a general solu-
tion of Eq. (Al) can be written as

u2(z) =cosPz,

where

2m
A2

E —E,
y

Case b. If E & E, /y +E„

(A8)

(A9)

&(L) &(0+)
y =W@
P(L ) tb(0+ )

Using Equations (A2) —(A5), we obtain

u', (L) (L)
y

yu, (L) uz(L)

(A5}

(A6)

sinh(tcz)
u, z=

K

u 2(z) =cosh(tcz),

where

2m*
K +E,—E

$2 y

(A 10)

(A 1 1)

(A12)
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