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We generate pseudopotentials using various treatments of exchange and correlation and test the
pseudopotentials both for physical predictions that they make (with quantum Monte Carlo many-
body calculations for the valence electrons) and for transferability. The calculated results for physi-
cal quantities (e.g., binding energies, ionization potentials, molecular dissociative energies, and bond
lengths) are compared with each other and experiment for monatomic sodium, potassium, calcium,
scandium, titanium, and silicon, and for diatomic sodium, potassium, and silicon. We find that
pseudopotentials generated using Hartree-Fock exchange in conjunction with local-density correla-
tion are more transferable and yield better physical ionic properties than those generated using ei-
ther local-density exchange-correlation or pure Hartree-Fock exchange. For critical atoms like
chromium and nickel we attribute the better transferability to the absence of the nonlinearity prob-
lem associated with local exchange. In particular, we find marked improvement in the 3d energies
for calcium, scandium, and titanium. Systematically obtaining better pseudopotentials may require
a many-body treatment of correlation effects in the full-atomic configurations from which the pseu-

dopotentials are generated.

INTRODUCTION

The use of norm-conserving pseudopotentials' ~* to de-
scribe valence properties of atoms (while removing core
levels) is a well-established approach in conjunction with
single-body methods.> Recently pseudopotentials have
also been utilized in conjunction with methods which
solve the full many-body problem of the interacting
valence electrons, e.g., using the GW approximation of
Hedin® for real systems,” as well as variational® and
diffusion Monte Carlo.’ Since the pseudopotentials used
in these calculations are currently generated using
single-body methods, a key question is the extent to
which the initial approximate treatment of many-body
effects (in particular dealing with exchange and correla-
tion between core and valence electrons) is sufficiently ac-
curate to warrant the use of these pseudopotentials in
subsequent many-body valence-electron calculations.”®

To address this question, we have conducted tests of
pseudopotentials generated using several different single-
body techniques, comparing with experimental values the
predictions by the pseudopotentials of different physical
quantities (ionization potentials, electron affinities, and
various interconfiguration energies, as well as dimer
properties) for various elements. For most elements we
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studied, we were able to carry out quantum Monte Carlo
many-body valence calculations to determine such quan-
tities; this provided an absolute test for comparing the re-
sults of different pseudopotentials with experiment. Re-
garding single-body approximations used in treating ex-
change effects, we shall present a twofold argument for
preferring Hartree-Fock exchange over local-density ex-
change.'® However, none of the single-body treatments
of correlation effects that we tested consistently led to re-
sults in good agreement with experiment, and we cannot
recommend which form to use for correlation. Indeed,
pseudopotentials which predict physical quantities con-
sistently in good agreement with experiment may ulti-
mately require using a more involved many-body method
to compute the full-atomic configurations from which
pseudopotentials are generated.

We have divided the body of this paper into two sec-
tions. In the first, we provide a background on pseudopo-
tentials and various single-body techniques available for
use in generating them. In the second, we describe the
methods used to test the pseudopotentials, and we
present the results of the tests. We then make some brief
conclusions based on both the background material
which we present and our own findings.
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BACKGROUND

Pseudopotentials can considerably simplify calcula-
tions of electronic structure. Here, we define pseudopo-
tentials as artificial electron-ion interactions represented
by nonlocal potentials which equal the full-atomic poten-
tials outside of the atomic core.! ™* They are usually con-
structed to self-consistently bind nodeless valence
(pseudo-) wave functions with eigenvalues equal or close
to the full-atomic valence eigenvalues, and have the full-
atomic single-body scattering properties (partial-wave
phase shifts or radial logarithmic derivative) for angular
momenta of interest over a reasonably large energy
range. By implementing a pseudopotential, one can sys-
tematically remove from a problem deep atomic core lev-
els and the potentials which bind them. This is advanta-
geous for a variety of reasons. The total number of elec-
trons dealt with in a problem is reduced, which reduces
the size of subsequent calculations. By eliminating tight-
ly bound core levels and removing the oscillations from
valence orbitals, orbitals may be represented by a variety
of simple and/or small basis sets, and the spatial resolu-
tion needed to describe potentials and orbitals and the
overall energy scale (time resolution) in a given problem
are greatly reduced. Such simplifications are of
paramount importance for many-body calculations em-
ploying both analytic and stochastic techniques.” % !!

The pseudopotential calculation of the release-node
diffusion Monte Carlo binding curve for, say, Si, (an
eight-electron problem, once one is working with pseudo-
potentials rather than full-atomic potentials) required a
few hours on a Cray Research, Inc., X-MP/48 supercom-
puter. This demonstrates the advantage of using pseudo-
potentials for simulating many-atom systems, since a
Monte Carlo calculation even of one full-core silicon
atom would clearly be a much more substantial calcula-
tion (by a factor of ~ 10* to achieve the same accuracy of
0.1 eV), because of the overall energy, time-scale, and
spatial-scale differences, in addition to having a larger
number of electrons.

Using pseudopotentials to mimic an element’s full-
atomic valence properties—Ilet us briefly set aside the
question of whether the single-body technique (e.g.,
Hartree-Fock) used to determine such valence properties
is sufficiently accurate—has rigorous physical grounds.*
Most important, the disparity between the energy scales
of core and valence electrons tends to decouple core
shells from valence properties. This enables the pseudo-
potentials to mimic the valence properties of their full-
atomic counterparts in various physical environments,
i.e., to be “transferable.” Moreover, since the total ener-
gy is stationary with respect to electron wave functions,
holding core orbitals fixed when changing the valence
configuration of an atom (the “frozen-core” approxima-
tion) leads only to variational (second-order) total-energy
errors.'> Numerical tests by von Barth and Gelatt!? and
ourselves (unpublished) demonstrate that even the non-
variational errors in single-particle valence eigenvalues
tend to be small. All of these factors allow core orbitals
to be approximated as producing a background potential
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experienced by the valence orbitals, which, being nearly
independent of the valence configuration, can in turn be
replaced by a pseudopotential. “Norm-conserving”"**
or ‘“shape-consistent” pseudopotentials, which are the
types of pseudopotentials generally used, obey a sum rule
(norm conservation) which insures that the pseudopoten-
tial produces the full-atomic single-body scattering prop-
erties not only at the one energy where the pseudopoten-
tial reproduces the full-core atom by construction (the
“reference valence configuration”), but over a range of
energies.*

Shirley et al.* showed that it is possible in some cases
to extend this energy range in the hope of reducing errors
in the single-body properties of a pseudopotential. How-
ever, only when electrons are excited far (say, more than
10 eV) above the energy at which the pseudopotential has
been generated will extension of norm conservation affect
single-particle energies by more than a few hundredths of
an electron volt. This is much smaller than the effects on
single-particle energies present in pseudopotentials be-
cause they are generated using various single-body
methods, and comparable to frozen-core and other pseu-
dopotential errors. We therefore believe that the dom-
inant factor determining differences between predicted
and observed values of physical quantities of atomic and
diatomic systems can be attributed to the single-body
method used when one generates the pseudopotential,
while additional errors inherent in the pseudopotential
method itself may affect results by up to a tenth of an
electron volt. The only exception to this is for
transition-metal elements, where transferability errors
can be several tenths of an electron volt.

Now, let us consider the consequences of using a
single-body approximation to determine the valence
properties of an atom which will be built into pseudopo-
tentials. In general, whatever approximation of many-
body effects is used, any errors in the pseudopotential will
persist in the calculated valence properties unless they
are artificially removed. For example, suppose one gen-
erates a pseudopotential for an atom or ion which has
only one electron in the valence shell. If the pseudopo-
tential faithfully represents the physical ion, the absolute
value of the eigenvalue of the lowest-bound one-electron
level should equal the experimental removal energy for
each angular momentum of interest.!’ If it does not,
there is a permanent error built into the pseudopotential.
Ideally, one would solve accurately the many-body
Schrodinger equation for the full atom and from the solu-
tion thereof obtain the single-body valence properties of
the atom, making a pseudopotential to imitate those
properties. An ‘“exact” pseudopotential for atoms or ions
with one valence electron could thus be produced; an ex-
act pseudopotential with more than one electron in the
valence shell would require more effort.

The full many-body Schrodinger equation for an as-
sembly of electrons is

(T+U+V)¥W(1,2,3,...,N)=EW¥(1,2,3,...,N) . (1)

T is the kinetic-energy operator, U is the background
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single-body potential in which the electrons move, and V
is the two-body Coulomb interaction. The indices
1,2,3, ..., N denote the space and spin coordinates of the
N electrons. The physical effects involved in the solution
to this Schrodinger equation can be categorized into
three groups of increasing difficulty: (a) Single-body
motion, involving 7, U and the direct Coulomb contribu-
tion from the average single-body charge density through
V, (b) effects on single-body motion due to the nonlocal
exchange Coulomb contribution from the average nonlo-
cal single-body charge density through V, and (c)
modifications to the above effects due to electron-electron
correlations.

We are not aware of anyone having yet generated pseu-
dopotential by a full, ab initio many-body calculation.
Instead, there is a variety of single-body schemes used to
solve only approximately the many-body problem. The
Hartree-Fock (HF) approximation assumes a determinan-
tal form of the many-body wave function, and addresses
(a) and (b) directly but omits (c) altogether. The
Hohenberg-Kohn-Sham local-density approximation'®
(LDA) treats (a) as in HF but avoids the difficulty of non-
local potentials arising from (b) by including exchange
effects only approximately, though the LDA also pro-
vides an equally simple but approximate form for (c).
Since (b) and (c) are dealt with using only the local
single-particle density, they are therefore treated exactly
only in uniform systems, where exchange and correlation
effects are known. The LDAX scheme, which was first
proposed by Kohn and Sham'® and has been implement-
ed by many,'* "1 treats (a) and (b) in the direct fashion of
HF, but (c) in the fashion of the LDA.

Unlike in HF, where the direct and exchange Coulomb
interactions between an electron and itself cancel exactly,
the exchange form used in the LDA only partially can-
cels the direct Coulomb self-interactions. In addition,
LDA correlation contains spurious terms because an
electron experiences an unphysical self-correlation poten-
tial that cancels part of its direct Coulomb self-
interaction. Because of this, a number of self-interaction
corrections (SIC’s) have been developed to cancel the
various unphysical self-interactions present in the LDA
(Coulomb, exchange, and correlation) and LDAX (corre-
lation only). Perdew and Zunger present one particular
form of orbital-dependent SIC and refer to several other
SIC schemes.!” Stoll et al.'® proposed an orbital-
independent SIC for correlation only (to be used with
Hartree-Fock exchange) which does better than the
correlation only SIC of Perdew and Zunger in some situa-
tions, but not all.'® We note that SIC’s should be less im-
portant in LDAX, since then one only needs to deal with
spurious self-correlation terms.

For the generation of pseudopotentials, the single-body
methods commonly used in the full-atomic calculations
have been the LDA and HF. We are not aware of previ-
ous attempts to include the LDAX and/or LDAX-SIC
approaches in the generation of pseudopotentials.'®
Woodward and Kunz' have found that for atoms with
Z <21, there is little difference between HF’s and the
LDA’s effects on valence properties. For the elements
with Z <21 which we examined (sodium, silicon, potassi-
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um, and calcium), we found large differences between
LDA and HF pseudopotentials only for the 3d level in
calcium (Z=20), which the LDA was significantly over-
binding, and HF was significantly underbinding. We also
found large differences from transition elements of larger
atomic number, especially with regard to the d levels,
while s and p states (and hence the properties of s-p bond-
ed systems) appear not to be as strongly affected for all
the elements which we tested. For the remainder of this
section, we shall mention some differences between re-
sults obtained using the LDA and HF methods to de-
scribe exchange and/or correlation effects, focusing on
the effects that such differences have on pseudopotentials
generated.

Regarding exchange effects, the form of exchange used
in calculations affects the theoretical valence properties
of transition-metals ions strongly. From full-atomic cal-
culations (like those used in generating pseudopotentials)
Gunnarsson and Jones?® and Baroni and Tuncel'* have
noted that the angular character of d orbitals affects the
degree to which they feel exchange effects at the same
point in space compared to, say s orbitals, causing the d
levels to be overbound when one uses LDA exchange.?!
If LDA exchange is used in generating pseudopotentials,
then some information about nonlocal core-valence ex-
change will be lost, and this may be disadvantageous
when such exchange is important. [Despite this, the
LDA and particularly LDA-SIC often yield “good” num-
bers (numbers in good agreement with experiment) for to-
tal energy differences between two atomic configurations,
because errors due to LDA exchange are partially can-
celled by errors due to LDA correlation.’!] Exchange
splittings between majority spin and minority spin levels
in a partially filled valence shell also depend on whether
one uses HF or LDA exchange. Such splittings are gen-
erally underestimated by LDA exchange,”® while HF
tends to overestimate such splittings, which is attributed
to its omission of screening effects. Since most screening
of exchange is actually done by valence electrons,?! how-
ever, and because of the above-mentioned disadvantages
of LDA exchange, we believe it is appropriate to use un-
screened HF exchange in generating pseudopotentials,
provided screening of exchange among valence electrons
is incorporated in subsequent many-body calculations.

To all of this we should add that transferability of
pseudopotentials with LDA exchange requires correc-
tions due to the nonlinearity of LDA exchange in the
single-particle density and spin polarization,”?? while HF
exchange is linear in the (nonlocal) two-body density ma-
trix from which it is determined and therefore needs no
such corrections. This is because HF relates the total en-
ergy of a system to the two-particle density, taking con-
tributions from each pair of electrons and their single-
particle densities separately, while the LDA relates the
total energy to the total single-particle density, which is
generally a nonlinear relationship.!® Since the required
corrections are large in some cases, this is a distinct ad-
vantage of using HF exchange in generating pseudopo-
tentials. [We should meanwhile note that a HF exchange
pseudopotential has the shortcoming that the nonlocal
core-valence exchange potential as experienced by
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valence electrons is usually frozen into a radially local po-
tential representative only of the configuration in which
the pseudopotential is generated, while in fact it depends
on the valence configuration. This could potentially un-
dermine the transferability of HF exchange pseudopoten-
tials when core and valence orbitals overlap significantly,’
though we have found that this error is quantitatively
much smaller than the one induced by the nonlinear den-
sity dependence of local-density exchange potentials. The
reason is probably that the main effect of nonlocality in
the core-valence exchange potential is its different action
on valence states of different angular momentum, which
is preserved by the angular momentum dependence of the
pseudopotential.>* The radial nonlocality, which is actu-
ally lost by the HF pseudopotential, can cause serious
transferability problems only when the radial valence or-
bitals are altered by more than a constant factor inside
the core; such a shape distortion is usually of little effect
and much smaller than the corresponding change in the
density (which spoils the LDA pseudopotentials in case
of significant core-valence overlap) for typical valence ex-
citations.] Complications due to the nonlinearity of LDA
exchange can be handled in the framework of pseudopo-
tentials by adding terms to the Hamiltonian.>** A novel,
efficient scheme for implementing such corrections is to
be presented in a future work.?*

Regarding correlation effects, HF omits them altogeth-
er, and tends to underbind atoms and valence levels, i.e.,
both the total energy and the valence level eigenvalues
are not sufficiently negative. On the other hand, LDA
correlation tends to overestimate correlation contribu-
tions to the total energy of atoms.?® This is in part due to
the inclusion of self-correlation effects (particularly for
the highly localized deep core levels) though LDA-SIC
correlation used in conjunction with HF exchange gives
very good total energies for atoms.'*”!'® Proponents of
the LDA (Ref. 10) have been careful to distinguish be-
tween its ability to estimate the exchange and/or correla-
tion effects on the total energy of a system of electrons
(which the LDA was formulated to compute) versus ex-
change and/or correlation effects on the single-particle
eigenvalues. Thus, the effect of LDA or LDA-SIC corre-
lation on pseudopotentials (which are fitted to match ei-
genvalues) is of crucial importance and should be exam-
ined. This is especially true in the present work since
LDA correlation has usually been used in conjunction
with LDA exchange by others, so that it was difficult to
separately identify errors in the treatment of exchange
and correlations which are built into pseudopotentials.
Meanwhile, we should mention that there has also been
work using limited configuration interaction techniques
to estimate the correlation effects on valence properties of
atoms due to the outermost core shell,?® and in addition
some workers have empirically adjusted HF pseudopo-
tentials so that physical predictions by such pseudopoten-
tials match experimental observation.?” Basically, how-
ever, no single method has been presented which leads to
pseudopotentials with the correct correlation effects built
in for every element, and even the empirical corrections
have been done only for systems with one electron out-
side of the core.
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GENERATING AND TESTING PSEUDOPOTENTIALS

Methods

Self-consistent full-atomic calculations, including those
used in generating pseudopotentials, were carried out for
electrons obeying the Koelling-Harmon®® scalar-
relativistic Schrodinger equation on a radial mesh. This
equation contains all features of the Dirac equation but
averages over spin-orbit effects. Either HF or local-
density exchange was implemented, depending on the
form to be tested. When included, correlation effects
were implemented via the spin-density generalization of
the LDA as prescribed by Gunnarsson and Lundgqvist,'°
using the parametrization of Perdew and Zunger'” of the
Ceperley-Alder correlation function.” We used the
method of Perdew and Zunger for interpolating between
the paramagnetic and spin-polarized formulas for corre-
lation effects. When we examined the effects of including
a SIC, we used that of Perdew and Zunger in conjunction
with Krieger and Li’s orbital-independent weighted aver-
age potential’® (WAP) or the SIC by Stoll et al.

Norm-conserving pseudopotentials were obtained us-
ing Vanderbilt’s method,’! with one modification for the
/=1 pseudopotentials in sodium and potassium. For
those we changed the parameter a in his cutoff function
used in generating the pseudopotentials (x is the ratio of r
to the cutoff radius),

hix)= 100*81|1h:(.x/a)/sinhz(l) . (2)

This was done to have the pseudopotentials converged to
full-atomic potentials well inside the bond midpoint of
the alkali dimers we wished to study, yet not cause the
pseudopotentials to become too hard. For these pseudo-
potentials, we decreased a in the potassium /=1 channel
from 1.5 to 1.3 and chose a core radius smaller than
would usually be done because of the proximity of the
last node in the valence atomic p wave functions to the
dimer bond midpoint. [While the above cutoff function
only deals with the product of a and the cutoff radius,
Vanderbilt’s method to generate pseudopotentials also in-
cludes a step which depends only on the cutoff radius.
Thus, changing a and changing the cutoff radius does not
produce the same results in the Vanderbilt approach. We
refer the reader to his paper for details on the role of the
cutoff radius and a (1.5 in his paper).] To push the node
even closer to the nucleus we generated pseudopotentials
for the /=1 channels at +0.3 hartree in sodium and
+0.5 hartree in potassium using Hamann’s method.*
The result was that the pseudopotentials all became equal
to the full-atomic potential well within the dimer bond
midpoint, while norm conservation was quite easily
achieved using the small cutoff radius. This scheme
lowered the bound p levels by some hundredths of an
electron volt, but appears to have had no other physical
effects, since results for our HF pseudopotentials agreed
closely with those for HF pseudopotentials generated by
other workers.?’

We tested all of our pseudopotentials for transferability
by evaluating interconfigurational changes in total energy
given by full-atom and pseudopotential calculations, ex-
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amining the nonsphericalized total energy given the radi-
al wave functions derived from our spherical atomic pro-
gram. This included spin-orbit splittings via first-order
perturbation theory, where such a spin-orbit Hamiltonian
written in hartree atomic units is

N
7-[s.o.: 2 ! 1 ﬂl 'S, - (3)

- i
i=1 2"’l2C2 ¥; ari

This is a proper accounting for spin-orbit splittings when
exchange and multipole terms overrule smaller spin-orbit
effects, except that scalar-relativistic pseudopotentials
will not necessarily give the correct splittings.
Interconfigurational energy differences will differ slightly
when the radial wave functions are self-consistently
determined in a nonsphericalized atomic program,
though transferability should not change.

To examine the differences which the forms of ex-
change and correlation can make on theoretical valence
properties predicted by pseudopotentials, we conducted
tests on pseudopotentials for various elements: sodium,
potassium, calcium, scandium, titanium, silicon, chromi-
um, and nickel. This selection of atoms gave opportunity
to test over a wide range of valence properties. Not every
element was tested in the same fashion, since exchange
and correlation affect valence properties of different ele-
ments differently. Among the tests we could perform on
the pseudopotentials, once their transferability had been
established, were tests of atomic properties such as elec-
tron affinities and removal energies, interconfigurational
total-energy differences, and molecular binding proper-
ties.

Pseudopotential results could be most easily compared
to experiment directly when only one electron was in the
valence shell. In this case, the exact solution of the sys-
tem was found by solving the radial wave equation.
When more than one valence electron was present, a re-
cent scheme developed by Bachelet, Ceperley, and Chioc-
chetti’ could sometimes be used to transform pseudopo-
tentials into a fully local pseudo-Hamiltonian compatible
for use in diffusion Monte Carlo (DMC) calculations.
The pseudo-Hamiltonian after the transformation is ex-
actly equivalent to the original pseudopotential for a sin-
gle electron in an s or p state, and a good approximation
when more than one valence electron is present.>> DMC
is an exact many-body technique allowing the direct com-
parison of total energies with experiment, within statisti-
cal errors. The computational time to obtain the molecu-
lar binding curve (on a Cray Research, Inc., X-MP/48
supercomputer) varied from a few minutes for two-
electron systems to a few hours for Si,. Since the present
formulation of the pseudo-Hamiltonian method is not
easily applicable to calcium and transition metals because
it cannot represent systems where valence level energies
are not monotonically increasing with increasing angular
momentum, we did not do many-body tests for those ele-
ments. One could also perform configuration-interaction
or other many-body calculations for all elements without
invoking the pseudo-Hamiltonian procedure, and we are
currently carrying out such calculations. However, we
are particularly interested in the diffusion Monte Carlo as

it can be used also for calculations on larger systems
where comparable configuration-interaction calculations
are presently not feasible. In addition, the Monte Carlo
method is a simpler and more robust method, and the er-
rors of Monte Carlo calculations can be simply deter-
mined. For nickel and chromium, we mainly desired to
test the transferability of LDAX or LDAX-SIC pseudo-
potentials because transferability is particularly difficult
for transition metals.? 343

Results

Sodium, potassium, calcium, scandium, and titanium

For sodium, potassium, calcium, scandium, and titani-
um, pseudopotentials generated using a variety of com-
binations of exchange, correlation, and SIC types were

| HF

e LDA

v LDAX

O LDAX-SIC
O STOLL

s error (eV)

p error (eV)

d error (eV)
o
]

|
Sc2t Tid*

Atomic System

FIG. 1. Errors in removal energy of s, p, and d electrons for
various atomic systems, as predicted by pseudopotentials gen-
erated with HF, LDA, LDAX, LDAX-SIC, and Stoll’s SIC.
Experimental data were taken from Ref. 38.



5062

tested for their ability to predict experimental “‘eigenval-
ues’’ of the last valence electrons in the s, p, and d chan-
nels. In Fig. 1, we present errors (comparing with experi-
ment) in the pseudopotential eigenvalues for each ele-
ment. All pseudopotentials (except LDA) were generated
with no valence electrons present; the LDA pseudopoten-
tials were taken from a standard table.! This was done
because having no valence electrons present corresponds
to the frozen single-particle potential which one valence
electron in the presence of a bare ion core should ‘“‘see”.
In the LDA, however, such a configuration leads to enor-
mous overbinding of valence states. For example, we
found that the 3d state in titanium would have been over-
bound by about 10 eV. On the other hand, the table of
LDA pseudopotentials reduced these errors dramatically,
since the table was generated in other configurations. We
therefore suggest that one generate LDA pseudopoten-
tials in configurations similar to those used in Ref. 1 if
one wishes to use LDA pseudopotentials in subsequent
many-body calculations. It can be seen that LDAX was
the closest to experiment overall, doing significantly
better than both LDA and HF, and also LDAX-SIC.
Fig. 1 demonstrates how LDA exchange overbound the
3d levels significantly, for reasons previously discussed.
(The LDA results may change when corrections are made
for the nonlinearity of local-density exchange.)
LDAX-SIC was actually better than LDAX for sodium
and potassium, where LDAX was slightly overbinding,
though the largest errors for LDAX-SIC taken from the
whole set of atoms are much larger than the largest er-
rors for LDAX.

We then proceeded to study electron affinities and
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molecular binding properties predicted by the HF,
LDAX, and LDAX-SIC pseudopotentials for sodium and
potassium. The calculation of the exact two-electron
pseudo-Hamiltonian energies was done using DMC. We
present our results along with those for HF pseudopoten-
tials by Miiller, Flesch, and Meyer?’ as well as for the
latter potentials after empirically adding on a core-
polarization potential (CPP) fitted both to match experi-
mental ionization potentials and achieve the correct
long-range effects of such a term as obtained from the ex-
perimental polarizability of the alkali ions. Miiller and
Meyer accounted for many-body effects in their subse-
quent pseudopotential calculations by including a
configuration interaction treatment for the valence elec-
trons. This should give results like those of DMC for the
HF pseudopotential since both methods are in principle
exhaustive many-body techniques.

We present these many-body results in Table I, giving
the electron affinities, as well as the dissociative energy,
bond length, and vibrational frequency for the sodium
and potassium homonuclear dimers and dimer cations.
These quantities were derived from cubic polynomials
fitted to DMC total energies as a function of bond length.
Analogous results for LDA pseudopotentials and a
method of correcting certain errors in such potentials are
to be presented elsewhere.”* We observe that our HF re-
sults and the HF results of Miiller and Meyer are very
similar, demonstrating that our method of achieving soft
but short-range p pseudopotentials in sodium and potassi-
um did not affect the results. We note that the HF pseu-
dopotentials produced slightly underbound molecules

TABLE I. Electron affinity and molecular properties of sodium and potassium. Electron affinity
(EA) in eV, and bondlength R, (A), dissociative energy D, (eV), and vibrational frequency w, (cm ') for
the dimer and dimer cation, according to experiment (Ref. 39 for affinities, Ref. 40 for Na,, Ref. 39 for
K,, Ref. 42 for N,* and Ref. 41 for K, "), Miiller, Flesch, and Meyer (Ref. 27) using their HF and
CPP-corrected HF pseudopotentials, and our HF potential, LDAX, and LDAX-SIC pseudopotentials.
DMC uncertainties of affinities and dissociative energies are less than 0.01 eV; bond distances less than
0.01 A, and vibrational frequencies less than a few inverse centimeters. Zero-point-motion effects on D,

were included.

Sodium
EA Na, R, Na, D, Na, o, Na,” R, Na,™ D, Na,” o,
Experimental 0.55 3.08 0.75 159 0.99 121
M +M HF 0.54 3.18 0.72 151 37 0.97 115
M +M HF-CPP 0.55 3.09 0.74 159 3.60 0.99 121
Present HF 0.51 3.16 0.73 155 3.72 0.98 118
LDAX 0.62 2.92 0.96 184 343 1.12 134
LDAX-SIC 0.58 3.11 0.82 156 3.63 1.04 123
Potassium
EA K, R, K, D, K, o, K," R, K," D, K, o,
Experimental 0.50 3.90 0.52 92 4.4 0.80 73
M +M HF 0.50 4.15 0.53 84 4.80 0.80 67
M +M HF-CPP 0.49 394 0.54 92 4.51 0.82 74
Present HF 0.51 4.12 0.52 84 4.82 0.78 70
LDAX 0.60 3.74 0.67 92 4.42 0.92 82
LDAX-SIC 0.53 3.96 0.56 96 4.69 0.83 73
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and long bond lengths, and that this must have arisen in
part from HF omitting core-valence correlation effects,
since all valence-valence correlation effects were included
in the molecular pseudopotential calculations. The re-
sults presented in Table I show that LDAX pseudopoten-
tials consistently overbound the dimers and gave bond
lengths which were too short. LDAX-SIC was the best
of HF, LDAX, and LDAX-SIC pseudopotentials for
these molecules in terms of determining bond lengths, but
still led to an overbound molecule, albeit not as over-
bound as in the LDAX case. This is consistent with
LDAX-SIC having given better results than LDAX for
atomic sodium and potassium. The best results by far
were obtained by the HF-CPP pseudopotentials, which is
understandable since they were semiempirical while all
others were strictly ab initio, and the HF-CPP were the
only pseudopotentials which achieved the correct long-
range behavior of the CPP. We also see that overbinding
of molecules in all of the schemes usually corresponded
to electron affinities being too large, and vice versa.

Overall, we see from the five elements discussed here
that HF and LDA have problems describing correlation
and exchange effects, respectively, and that even LDAX
with or without a SIC is not sufficient for reliably predict-
ing valence properties of atoms. This is important, since
small errors (a small fraction of an electron volt) in the
valence properties of atomic sodium and potassium cor-
responded to large errors in their observable molecular
properties.

Silicon

We generated LDAX and LDAX-SIC pseudopoten-
tials for silicon in the spin-polarized sp* configuration,
and compared the properties of atomic silicon and the sil-
icon dimer as described by our pseudopotentials and a
standard LDA pseudopotential, again via the pseudo-
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Hamiltonian-DMC approach.” For configurations with
more than one electron of either spin we used release-
node DMC?® (Ref. 36) to exactly account for antisym-
metry. This procedure converged rapidly. In Table II,
we tabluate various excitation energies of atomic silicon
and properties of its dimer according to the three pseudo-
potentials and experiment. It appears that the LDA,
LDAX and LDAX-SIC pseudopotentials predicted
atomic energies with roughly equal reliability. The re-
sults for the dimer using the pseudopotentials were also
not very different. Thus for silicon there was consider-
able similarity between the pseudopotentials generated
using different single-body techniques, a conclusion that
has already been reached by others.>%°

Chromium and nickel

Unlike for other elements, transferability is of greater
concern for the iron series. Differences between pseudo-
potential and full-atomic interconfiguration energies can
be several tenths of an electron volt, while in other sys-
tems such errors are considerably smaller (at most a tenth
of an electron volt). Because of the enormous spatial
overlap between the 3d valence shell and the 3s and 3p
core shells, the frozen-core approximation is more
significant than in other systems for the latter shells. Re-
garding HF transition-metal pseudopotentials, some
workers** have found that transferability can be im-
proved by including 3s and 3p shells in the valence shell,
thereby generating a “‘neon-core” rather than an “argon-
core” pseudopotential for such elements. The inclusion
of the eight tightly bound (X 100 eV deep) 3s and 3p is
disadvantageous for subsequent valence shell calcula-
tions, especially of the many-body type. Others* have
pointed out that frozen-core errors for the 3s and 3p lev-
els are in fact often cancelled by other errors which arise
when generating pseudopotentials. They found that

TABLE II. Atom and dimer properties of silicon. Electron affinity (EA) and various s-p transfer en-
ergies and ionization potentials (IP) for atomic silicon, and bond length R, (A), dissociative energy D,
(eV) and vibrational frequency w, (cm™") of the silicon dimer according to experiment, (Ref. 39 for
affinity, Ref. 38 for other atomic properties, Ref. 41 for molecules) and LDAX, LDAX-SIC, and LDA
(Ref. 31) pseudo-Hamiltonian-DMC calculations. DMC uncertainties in energies were <0.1 eV, bond
length 0.02 A, frequency about 30 cm ~'. Zero-point motion effects on D, were included.

Atomic properties

EA E,—F,, Ist IP EL,—E, 2nd IP E,—E, 3rd IP
s°p s p s
Experimental 1.39 4.13 8.15 5.47 16.34 6.53 33.46
LDAX 1.28 3.86 7.97 5.41 16.37 6.49 33.33
LDAX-SIC 1.42 3.92 8.12 5.10 16.29 6.45 33.33
LDA 1.39 3.80 8.18 5.08 16.48 6.34 33.62
Dimer properties

R, D, @,

Experimental 4.244 3.25 511

LDAX 4.27 3.49 596

LDAX-SIC 4.35 3.09 550

LDA 4.33 3.19 480
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changing the shape of the pseudo-valence-orbitals’,
charge densities to resemble closely those of the full-
atomic orbitals’ densities restored the transferability
of argon-core pseudopotentials. Regarding LDA
transition-metal  pseudopotentials, = Greenside and
Schliiter? obtained highly transferable argon-core pseudo-
potentials, but only after including the necessary correc-
tions for the nonlinearity of local-density exchange.

We have found that transferability in chromium and
nickel argon-core LDAX pseudopotentials equal to that
in neon-core pseudopotentials could be achieved by gen-
erating the pseudopotentials in a configuration appropri-
ate for each element. We chose chromium and nickel as
representative elements from the first and second half of
the iron series, respectively. We generated our chromium
pseudopotential in the spin-polarized d* configuration
and our nickel pseudopotential in the paramagnetic d®
configuration. In this fashion we were able to produce
pseudopotentials with only one 3d, 4s, and 4p ionic pseu-
dopotential (rather than needing one pseudopotential for

Chromium
2_.
LDA
‘_,..»'LDA—SIC
% .....
- (0]
S
>
-2r HF
55
sdX°s) & 4
| | I N

s2d4 d5 g4
Configuration

2._
>
L
~ 0
g
)
-2+

L | 1 | 1
sd® d'0 d9 sd8 da

Configuration

FIG. 2. Errors in excitation energies from the ground state to
various configurations compared to experiment in atomic
chromium and nickel, which have ground states sd*(’S) and
s’d®, respectively. Full-atomic results are given for LDA,
LDA-SIC, and HF. For LDAX and LDAX-SIC, we include
both full-atomic results (dotted line) and pseudopotential results
(dashed line) to demonstrate the transferability of the such pseu-
dopotential. Experimental data were taken from Ref. 44.
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each spin type of, say, 3d electron), but which were
fashioned in configurations magnetically similar to the
ground states of the respective atoms. While scalar-
relativistic calculations will generally not yield the
correct spin-orbit splittings, our 3d potentials yielded
such terms within a factor of 1.5. Obtaining the correct
spin-orbit splittings merely requires generating pseudopo-
tentials using the Dirac equation and following
prescribed procedures.®’

In Fig. 2, we present errors in various excitation ener-
gies (comparing to experiment) for full-atomic HF, LDA,
LDA-SIC, LDAX and LDAX-SIC and pseudopotential
LDAX and LDAX-SIC calculations for chromium and
nickel. The transferability of the LDAX scheme (without
any nonlinearity terms) is demonstrated by the pseudopo-
tential and full-atomic results tracking each other closely,
while the transferability of pseudopotentials generated
using other schemes, mentioned above, was established
by other workers, with the provision of nonlinearity
corrections being applied in the LDA exchange case.
Baroni*' has carried out extensive, restricted, nonrela-
tivistic work on the whole iron series, demonstrating that
full-atomic LDA-SIC, LDAX, and LDAX-SIC give re-
sults in roughly equal agreement with experiment.

Accuracy of the LDA and LDA-SIC schemes arise
from the partial cancellation of errors caused by LDA ex-
change and LDA correlation;*® errors for the HF and
LDAX-SIC methods arise, as stated before, partly be-
cause exchange effects are not screened in the case of HF
exchange, though such screening is done mostly by
valence electrons and can be added later. In the case of
LDA exchange pseudopotentials for transition-metal ele-
ments, core-valence many-body effects (especially ex-
change) are not accurately built into the pseudopotential,
though such potentials may possibly be used for subse-
quent many-body calculations if certain corrections are
included.’* In the case of LDAX or LDAX-SIC pseudo-
potentials, all core-valence many-body effects on valence
properties may be reasonably accurately built into the po-
tentials, giving them prospect for use in subsequent
many-body calculations without any particular correc-
tions. We have already seen that HF exchange plus a
local-density correlation is better than LDA when gen-
erating pseudopotentials for elements in the same row to-
wards the very left end of the periodic table, such as cal-
cium, scandium, and titanium. This trend may occur
throughout the transition-metal series, though many-
body tests for both types of pseudopotentials remain to be
carried out to confirm this.

SUMMARY AND CONCLUSIONS

We have compared various combinations of forms of
exchange, correlation, and self-interaction corrections
used in full-atomic calculations to generate pseudopoten-
tials. Using local-density correlation (sometimes with a
self-interaction correction) in conjunction with Hartree-
Fock exchange has led to the best overall pseudopoten-
tials in this work, over both Hartree-Fock and local-
density exchange-correlation pseudopotentials. The gen-
eration of such pseudopotentials can be understood as the
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carrying over of Baroni’s improvements'* from full-
atomic to pseudopotential calculations. It appears that
where Hartree-Fock exchange plus local-density correla-
tion and local-density exchange-correlation lead to sub-
stantially different results, the former is to be preferred,
such as in calcium and the iron transition series, where
local-density exchange overbinds 3d electrons, and where
local-density exchange pseudopotential transferability is
hampered by the nonlinearity of such exchange. Never-
theless we note that all pseudopotentials tested led to
some errors in both atomic and molecular binding prop-
erties; this can be partly attributed to the inadequacy of
finding an accurate and reliable correlation functional
and partly to the assumed forms of the pseudopotentials
and pseudo-Hamiltonians. Demand for more accurate
pseudopotentials may ultimately require a many-body
treatment to calculate the full-atomic configurations from
which pseudopotentials are generated.

Note added in proof. The d-electron eigenvalue errors
plotted in Fig. 1 include errors due to the frozen-core ap-
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proximation as well as exchange-correlation errors. The
frozen-core errors are strongest in scandium and titani-
um, where they are ~+0.7 and +0.9 eV, respectively.
This will make all but the LDA curves (for which the
pseudopotential was taken from Ref. 1) for d electrons in
Fig. 1 shift down accordingly.
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