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Morphological equilibration of a corrugated crystalline surface

M. Ozdemir and A. Zangwill
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 04-32

(Received 17 April 1990)

We study the flattening of a corrugated crystal surface for the case when mass transport is driven

by surface diffusion and the temperature is well below the roughening temperature of the equilibri-
um facet. For the considered geometry, the problem is one dimensional and the surface morpholo-

gy consists of a collection of terraces separated by straight, parallel steps. In this situation, the ki-
netics is driven by step-step interactions alone. We obtain separated variable (shape-preserving)
solutions to both the differential equation of motion for the surface profile z(x, t) and the discrete
equations of motion for individual terraces widths 1„(t). Numerical solutions of these equations
demonstrate that the analytic solution well describes the kinetics in the latter case. As morphologi-
cal equilibration proceeds, we find that z(x, t)-t ' and that 1„(t)-t' ' or 1„(t)-t' for the cases
of diffusion-limited or step-attachment-limited step propagation, respectively. These predictions are
amenable to direct experimental tests.

I. INTRODUCTION

This paper is concerned with morphological changes
which accompany diffusive mass transport on crystal sur-
faces. Examples of this phenomenon arise in a number of
different contexts. For example, highly perfect single-
crystal growth by, e.g. , molecular-beam epitaxy (MBE) or
vapor-phase epitaxy (VPE) occurs only when the sub-
strate temperature is held within a fairly narrow range. '
In both cases, the temperature must be low enough to
suppress the deleterious effects of impurity incorporation
and bulk interdiffusion yet high enough to guarantee
smooth layer completion and avoid interface roughness.
Generally speaking, the experimental trend is toward
lower substrate temperatures coupled with deposition in-
terruption techniques ' which delay the arrival of new
species in order to increase the efficacy of interface
smoothing by surface diffusion. By necessity, attempts to
optimize this procedure have been entirely empirical
since the construction of a general theory of morphologi-
cal evolution during epitaxial growth under typical ex-
perimental conditions is a difficult and incompletely
solved problem. This is so because one must couple a
realistic account of mass transport (deposition and
diffusion) with the "typical" surface morphology one en-
counters in interesting cases: a distribution of islands (of
various sizes and heights) distributed atop the terraces of
a vicinal surface.

Clearly, the basic problem of describing this complex
morphology remains even if, as in some recent experi-
ments, ' ' we focus on the extreme case where the in-
cident flux is arrested and one considers only the smooth-
ing of the surface, i.e., the approach to morphological
equilibration. However, if we instead restrict ourselves to
a much simpler surface topography, e.g. , a one-
dimensional periodic corrugation, not only does the prob-
lem become tractable, but the kinetics of thermal anneal-
ing becomes directly relevant to recent discussions of sur-
face reconstruction, ' thermal roughening, ' and the sta-

bility of semiconductor heterostructures. ' ' According-
ly, this case is the subject of the present paper.

As it happens, the smoothing of a corrugated surface
by surface diffusion was examined by Mullins' ' 30
years ago. Among other things, he showed that measure-
ments of the rate of capillary-induced flattening of a
sinusoidally rumpled surface could be used to extract sur-
face diffusion constants. This suggestion was pursued
soon thereafter' and such studies continue to the present
day using lithographically prepared surfaces. ' ' In
some cases, such corrugations retain their sinusoidal
shape as the perturbation amplitude decreases while, in
other cases, distinct facets appear. Unfortunately,
Mullins's analysis is not applicable to the latter cases be-
cause his theory presumes that all surface properties are
smooth functions of crystallographic orientation, whereas
facets arise ' precisely from the existence of nonanalyt-
ic, cusped minima at particular angular orientations n of
the anisotropic surface tension y(n). The same remark
applies to the island and step morphology noted above in
connection with typical epitaxial growth conditions.

Apart from a very early study by Geguzin and
Ovcharenko and some later work by Martin and Per-
raillon, there appear to have been no serious attempts
to generalize Mullins's theory to the case of a faceted
crystal until very recently, most particularly by Villain
and co-workers. ' ' Technically, one requires an
analysis valid below the so-called roughening tempera-
ture ' of the facets in question. The elucidation of the
appropriate anisotropic surface thermodynamics is also
of rather recent vintage. ' Up unti1 now, a satisfactory
analysis of morphological equilibration by surface
diffusion below T~ has been achieved only for the case of
a multilevel surface composed of a collection of circular
islands of various sizes on a flat surface. In this situation
(directly relevant to the simplest polynuclear birth-and-
spread models of nucleation-dominated crystal growth)
an essential simplification arises because each island
spontaneously shrinks in radius in order to reduce its
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(one-dimensional) line energy. But this driving force for
surface smoothing Uanishes for the case of one-
dirnensional surface profiles with straight, parallel terrace
edges such as the sinusoidally corrugated surfaces of in-

terest here. In this case, step-step interactions drive mor-
phological evolution ' and no complete theory is yet
available. Monte Carlo simulation techniques have been
brought to bear on the problem, ' but these studies
have been hampered by the extremely slow kinetics of
surface diffusion.

In this work we present a complete analysis of the de-
cay of periodic one-dimensional corrugations on a crystal
surface by surface diffusion for the case when the final
equilibrium corresponds to a single Rat facet. By a com-
bination of analytic and numerical techniques applied to
appropriate discrete and continuum equations of motion
we are able to study the motion of both individual steps
and the envelope of the surface profile. We confirm a
number of previous predictions' ' and make several new
predictions which should be directly testable by experi-
rnent. The plan of the paper is as follows. In Sec. II, we
review Mullins's theory of morphological equilibration
valid for T & Tz and complete Villain's extension of the
same analysis to the case when T & Tz. Section III is de-
voted to the derivation of a more exact formulation of the
problem when T ( Tz in terms of the motion of terrace
edges. The resulting equations are solved and compared
with the continuum theory in Sec. IV. Sections V and VI
contain a discussion and summary, respectively.

II. CONTINUUM THEORY

»s ap
kT Bx

(2)

In this expression, v is the areal density of diffusing
species, Ds is the surface diffusion constant, and p(x, t ) is
the spatially varying chemical potential of the adsorbed
species. Note that, in writing (1) and (2), we have impli-
citly made a small-slope approximation since the spatial
derivatives in these formulas actually should be taken
with respect to the are length of the curve z(x, t ). Final-
ly, as first shown by Herring, the surface chemical po-
tential is given by'

In this section we treat the surface profile in a macro-
scopic continuum approximation' ' so that the instan-
taneous shape of the one-dimensional surface can be de-
scribed by a height function z(x, t). If mass transport
occurs only by surface diffusion, the time variation of this
quantity satisfies a continuity equation

Bz BJ
Bt Bx

where 0 is the atomic volume of the diffusing species and
the surface current j(x, t ) is given by Fick's law as

G(, )=y(z„)(1+ „')' ' (4)

The notation is meant to indicate that, in the small-slope
approximation, it will be sufficient to expand y(n) and
hence Gin powers ofz .

To proceed, we require explicit expressions for the sur-
face energy. When T) T~, G is an analytic function of
z„(Refs. 14, 18, and 23) in the vicinity of its relative mini-
ma. Therefore, taking account of symmetry, the ap-
propriate expansion is

(5)

Combining all the foregoing, we obtain Mullins's kinetic
equation,

a'=-8 a'"
Bx

(6)

G =G, + G, ~z„~+-,'G, ~z„'+ (8)

The absence of a quadratic term in:his expansion is not
obvious and (when confronted with experiments on equi-
librium crystal shape) by no means universally accept-
ed. Moreover, if (8) is inserted naively into (3), one
obtains a 5 function for the chemical potential when
z„=0. By replacing this 5 function with an analytic, yet
sharply peaked, function and solving a generalized ver-
sion of (6) numerically, Preuss et al. ' obtained reason-
able agreement with their experimental annealing data.
But, as pointed out by Rettori and Villain, ' the chemical
potential cannot be singular and a more detailed analysis
is required. ' ' The appropriate expression turns out to
involve only the last term in (8):

p = —2G3II iz
~ z,„.

Combining this with (1) and (2) leads to Villain's equation
of motion:

' ax'
(10)

where B, =vQ G~Ds/kT is an overall (positive) kinetic
coefficient. By separation of variables, one immediately
finds a shape-preserve'ng solution

z(x, t)=zosin(kx)exp( B,k—t) .

Moreover, because the kinetic equation (6) is linear, the
strong wave-vector dependence in the exponential implies
that any periodic surface perturbation with repeat dis-
tance 2L =2m. /k rapidly approaches the above solution
because the amplitudes of all higher Fourier components
quickly decay to zero.

When T ( TR, (5) is no longer applicable since, as not-
ed earlier, y(n) exhibits cusp singularities. Current lat-
tice models ' predict that the appropriate replacement is

a aGp= —0
Bx Bz

(3)

where z —=Bz/Bx, and 6 is the surface tension per unit
projected surface area,

where 82 =2vQ G3D& /k T.
By analogy with the earlier discussion valid for

T ) Tz, let us seek a shape-preserving solution by separa-
tion of variables. Setting z( t)x=u( )xw(t ), and assum-
ing that w( t ) )0, one finds
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and

dw
A, N

dt

d2
a, , (Iu. Iu..)=»,

dx
(12)

where A. is a (positive) separation constant. Equation (11)
is immediately integrated so that

lI
E

0

X
N

z( xt)= u (x)
)+At ' (13)

which, at least for this shape-preserving solution,
confirms a speculation of Villain regarding the time
dependence. We have been unable to solve (12) exactly
analytically. Accordingly, Fig. 1 illustrates a numerical
solution of this equation (for a particular value of A, and
periodic boundary conditions on an interval L) compared
to a sinusoid of the same amplitude. Although the two
curves are similar, u(x ) is not analytic near its extrema.
This can be seen by seeking a solution to (12) in the im-
mediate vicinity of, say, a local maxima uo(xo). The re-
sult is

u(x)=u —aIx —x
I

+ Ix —x
I

+3/2 2 0 7/2
0 63 ca,

(14)

1.0

where a is a positive constant which depends only on uo
and L The fir.st term (previously obtained by Landon
and Villain ) is the result one obtains near an equilibrium
facet edge if (8) is valid. ' The second term reminds us
that A, actually parametrizes an entire family of solutions
to (12). As it happens, our numerical studies show that
the dependence of u(x ) on A. is extraordinarily small (on
the scale of Fig. 1), so that the curve depicted there is,
effectively, the shape-preserving solution. Unfortunately,
because (10) is nonlinear (so that superposition is not val-
id) this solution has no obvious relevance to the decay of
an arbitrary initial corrugation.

To study this more general question, we have integrat-
ed (10) numerically for a wide class of periodic starting
surfaces. The sequence of curves in Fig. 2 illustrates the

-1
-0.5 0.0

x/L

0.5

FIG. 2. Flattening of an initial sinusoidal profile (dashed
curve) as determined by numerical solution of the continuum
equation of motion (10).

III. THE KINETICS OF STEPS AND TERRACES

The treatment of the preceding section implicitly as-
sumes that the crystal profile z(x, t) is an analytic func-
tion almost everywhere. In fact, well below the roughen-
ing temperature, this is not true. Instead, a small-

35

time evolution for the case of a sinusoidal initial profile.
Apparently, the profile continuously deforms as Aattening
proceeds with no special status afforded to the shape-
preserving solution. On the other hand, the time depen-
dence of the profile amplitude does appear to follow (13)
rather well (Fig. 3). Such a result would lend support to
the suggestion that this temporal behavior has a more
general origin than as part of a shape-preserving solution.
Be that as it may, a least-squares fit clearly reveals small
but systematic deviations from z '-t which persist even
as numerical accuracy increases. Instead, our best data
indicate that z '-t'+ where a= —0.05. At present we
have no explanation for this result.
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FIG. 1. Numerical solution of Eq. (12) (dashed curve) com-
pared to a sinusoid (solid curve) of the same amplitude.

FIG. 3. Inverse profile amplitude vs time (both in arbitrary
units) for the Aattening sequence of Fig. 2.



5016 M. OZDEMIR AND A. ZANGWILL 42

amplitude shape perturbation about a single facet is best
described as a collection of macroscopically flat terraces
bounded by vertical steps. Thus, a detailed account of
morphological evolution most correctly deals directly
with the motion of individual steps. This approach has
long been popular in connection with the theory of layer
growth and has, more recently, been applied to prob-
lems of equilibrium crystal shape, step kinetics, and
morphological equilibration. ' ' In this section we
treat the decay of a one-dimensional periodic surface cor-
rugation (Fig. 4) from this point of view.

As shown in Fig. 5, the net motion of any particular
step involves a competition between two processes: (i)
adatom diffusion toward the step from one of the two
bounding terraces followed by attachment to a high-
binding-energy site at the base of the step, and (ii) adatom
detachment from the step edge followed by diffusion
across one of the two bounding terraces. Our one-
dimensional treatment (for which one should more prop-
erly speak of the motion of entire rows of atoms) will be
correct at the macroscopic level so long as the terrace
edges are above their (one-dimensional) roughening tem-
perature. Moreover, in order to more closely describe the
typical experimental situation, we shall require neither
that the diffusing species be in equilibrium with the ter-
race edges, nor that the nonequilibrium kinetic
coefficients be equal on opposite sides of a step. Our gen-
eral approach is similar in spirit to that adopted by

Given the foregoing, the time evolution of the nth ter-
race edge (located at position x„) can be described by a
Ginzburg-Landau equation of the form

)
dxn

k
5F+

k
5F

dt + 5x„5x„ (15)

where k+ and k are the aforementioned kinetic
coefficients and 5F+ and 5F are the changes in the total
free energy (per unit length of step) when nearby atoms
adsorbed on the lower or upper bounding terrace, respec-
tively, are transferred to a new atomic row at the base of

n-1

/y~
//

k

n+1

&n
&n+1

FIG. 5. Enlargement of Fig. 4 illustrating the labeling of
steps and terraces and the definitions of k +, the kinetic
coefficients for adatom attachment or detachment to or from a
step from or to the two bounding terraces.

the nth step. It is easy to see that

5F+=0 ' f dx 5x„[P,—IM„(x)]++f dx 5G

and

5F =A ' f dx 5x„[p,—p„,(x)] + f dx 5G,

(16)

(17)

where p, is the chemical potential of an atom bound to
the crystal at the step edge, p„(x ) is the position-
dependent chemical potential of an atom adsorbed on the
nth terrace, and 66 is the change in the projected surface
tension (4). The subscripts on the square brackets indi-
cate that the enclosed quantities are to be evaluated on
the terrace in question at a point immediately adjacent to
an up (+ ) or down (

—
) step.

To compute 6G, note that the local profile slope is re-
lated to the step height h and the mean terrace width l by
~z„~ =h /l, so that the linear term in (8) may be interpret-
ed as a sum of individual step free energies, while the cu-
bic term may be taken to represent the total interaction
energy between pairs of steps. Therefore, more precisely,

1G=Go+G, z, ~+ —', G, g —+
n n

1 1 6x Pn

which serves to define a chemical potential for steps. '

Specifically, taking special account of those steps with
"unlike" neighbors,

6G =-'.
, G3h

where I„denotes the actual width of the nth terrace and
I.=Q„l„. This equation makes explicit the existence of
an effective inverse-cube repulsive force between neigh-
boring "like" steps, i.e., those which do not bound the
terraces at the maxima and minima of the profile. This
force arises in part from step-induced surface stress and
strain ' and in part from configurational entropy con-
siderations. For simplicity, we shall assume that there
is no force acting between neighboring "unlike" steps.
Carrying out the virtual transfer of particles envisaged
above, it is straightforward to compute that

E
P] (20a)

FIG. 4. Sinusoidally corrugated surface for T & T&.

1
Pn

1

I3
1(n +X; (20b)
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K
PN+]

N

where K= —2Q, G3h /L.
The equation of motion (15) then takes the form

(20c)
d=vDz(k+'+k ')(Bp/Bc) '. An expression similar

to (28) can be derived for the a„, but since [from (2), (23),
and (27)] each b„ is directly proportional to the diffusive

current across the nth terrace, only they are required to
compute the step velocities

dxn = k ~ [bp„(x )
—p„]~+k [hp„,(x ) —p„]

dt

=u„++u„ (21)

v„=vDs(b„b„—, )

and the equation of motion for the terrace widths,

(29)

dx„dc„ dc„

dx x„
=u„++u„ (22)

where Ap stands for the negatiue of the chemical poten-
tial difference in (16) or (17). On the other hand, one
knows from textbook discussions ' of diffusion prob-
lems with moving boundaries that mass conservation re-
quires that

l„(t)=vDs(b„~, 2b„—+b„,) .

Equation (30) is the central result of this section.

(30)

b0=0; (31a)

IV. SOLUTION OF THE EQUATIONS OF MOTION

In this section we seek solutions to (30) with [combin-
ing (20) and (28)]

where c„(x) is the concentration of diffusing species on
the nth terrace and v =v '. To make the connection be-
tween (21) and (22), we expand the chemical potential on

any terrace about the equilibrium adsorbate concentra-
tion,

B3

d+l,
1 2

l l

b„= B3 1

d+l, l3~]
2 1+

(31b)

1(n (N; (31c)

bp[c(x )]=p(c,q)+ [c(x )
—c,q]

—p,

c(x)+~,Bp
Bc

(23)

B3
bN d+lN

bN+ ]

2 1

lv IN
(31d)

(31e)

so that, for example,

Bpv„+ =k+ c„(x)+a.—}u.„Bc

dc„=»s „dx x
(24)

where B,=K/(c}p/Bc ). These are difference equations;
but, to gain some insight, it is useful first to treat the step
label n as a continuous variable and study the corre-
sponding differential equation:

and

1 8 1

d+ l„c)n ~ l„3
(32)

Bp
u„+, =k c„(x)+K pn ~]

BC

dcq
Ds

dX x„~ l

(25)

chic„8~C„
=D =0 .

0X

Equation (26) is solved by

c„(x)=a„+b„x, x„&x&x„~,

(26)

(27)

The right-hand sides of these two equations are precisely
the boundary conditions required to compute c„(x ) as a
steady-state solution to the surface diffusion equation

Here, B„=vDsB,. Regretably, even this equation ap-
pears to be intractable. To make progress, note that the
quantity d [defined below Eq. (28)] is a length which
measures the relative importance of step-attachment ki-
netics (k+) to surface diffusion (Ds) for our problem:
"step-attachment-limited" motion corresponds to d &)I,
while "diffusion-limited" step propagation occurs when
d &&l. In what follows we will treat these two limiting
cases separately and revisit the general case only at the
end of this section. For the case of fast kinetics, our
diff'erence equations reduce to those written down (but
not solved) previously by Rettori and Villain. '

Once again, we proceed by separation of variables. It
is easy to verify that (32) is solved by

with bo=b~+, =0 (by symmetry) and [upon application
fo (24) and (25)]

Pn+i Pn

vDs(1/k++1/k )+(Bp/Bc)(x„+,—x„)

l„(t)=A„(5kt+D)

where D = [l„(0)/ A„]' and

d 1 d 1

4d 2 g d 2 g3

(33)

(34)

Bp
Bc

Pn+] Pn

d+I„ (28)
for the case of fast attachment kinetics (d ~0) and

In this equation, the terrace width l„=x,+]—x„and l„(t i= A„(4kt+D)' (35)
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where now D = [l„(0)/A„) and

&4 d'
d dn4

(36)

for the case of slow attachment kinetics (d~ ~ ). Evi-
dently, in both cases, the initial profile must satisfy

I, (0) 1~(0) l„(0)
A) A2 AN

(37)

A, 3„=B~(IC„+,—2K„+K„,),
where

(38)

I( 0=0;

Ej= 1 1

A)

2

A
1

(39a)

(39b)

This guarantees that the ratios I„(t)/A„remain equal as
evolution proceeds, i.e., that the solutions (33) and (35)
are shape preseruing Th.e separation constant A, (which
must be positive in both cases) plays a different role here
than in the analysis of Villain's equation. To see this,
note that (33) and (34} are invariant under the replace-
ment A„~A, '~ A„and (35) and (36) are invariant under
the replacement A„~k ' A„. Thus, a change in k is
equivalent to a uniform rescaling of the terrace widths
and its value may be chosen for convenience. To simplify
matters in what follows, we generally will choose k= —'

1

7 5

and —, for the cases of fast and slow kinetics, respectively.
It remains only to compute the A„ from (34) and (36).

The (four) boundary conditions required to do so can be
found from (30) and (31). However, there appears to be
little reason to pursue this computation. Instead, we re-
turn to the full set of difference equations and (in each
case) use the separated solution obtained from the corre-
sponding differential equation as a trial ansatz. We find
that these solutions exactly satisfy the discrete equations
as well. More precisely, if (33) and (35) are substituted
into (30), taking the appropriate limit in (31), respective-
ly, a solution is obtained if the A„satisfy

constant for all values of n and N. This is illustrated in
Fig. 6, where the computed values have been normalized
to a common value (for each N at n = l.

It is interesting to compare the shape-preserving solu-
tions found here with those obtained in Sec. II. We have
noted already that the separation constant A, does not
parametrize a family of such curves as in the continuum
limit. However, the "universal" ~x —xo ~

behavior
near local extrema is reproduced. In the step language,
this translates to 3„—In n—oI ', where no labels a
step bounding one of the extrema (Fig. 7). As shown by
Rettori and Villain, ' this arises when the diffusive
current across a terrace (our b„) is very weak.

We can now address the question of morphological
equilibration. Flat tening occurs because all terraces
widths expand according to (33) or (35) except those at lo-
cal maxima and minima. No true "facets" ever form. '

Instead, the terraces at the top and bottom of the corru-
gation wave shrink and eventually vanish as their bound-
ing steps approach, collide, and annihilate. Upon annihi-
lation, the number of steps decreases by two and the am-
plitude decreases accordingly. The process repeats until
no steps remain. This scenario makes clear how the sys-
tem rids itself of the excess free energy of individual steps
[G, in (18)] despite the fact that the kinetic equations of
motion (10}and (32) explicitly depend only on the step-
step interaction strength 63. As noted in the Sec. I, this
behavior is peculiar to the one-dimensional geometry of
an array of straight steps. Line-tension effects dominate
whenever step-edge curvature is present. ' '

Observe that, if d » l„(0), a crossover from kinetic to
difFusion-limited step motion may be expected as evolu-
tion proceeds. Although this transition will be reflected
in a change in the time dependence of the terrace widths,
there will be very little perceptible change in the profile
shape due to the similarity of the two curves in Fig. 6.

The foregoing is correct, but incomplete. In particular,
since the total number of steps, N, is a function of time,
the A„(N) must be functions of time as well. To see the
consequences of this, suppose a terrace system is shape

1.0
2 1

A„
1&n&N;

0.9

KN+& 0

2 13+ 3
AN —

1

(39c)

(39d)

(39e)

0.8

A„0.7

0.6— 40

when d (&l„and identical formulas when d ))I„, except
that the prefactors to the expressions in large parentheses
in (39) become d ' everywhere.

We have solved these nonlinear difference equations
numerically for various values of N, the total number of
terraces in one half-period of the surface corrugation
(Fig. 4). Surprisingly, the computed values of A„ for the
case of fast kinetics (d ((I„)differ from those computed
for the case of slow kinetics (d » I„) by very nearly a

0.5—

0.4 I I

10 15
I

20
n

I I

25 30
I

35 40

FIG. 6. Solutions to Eqs. {34) and {36) for various values of
Although plotted as continuous curves, the A„are, in fact,

only defined at integer values of n.
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FIG. 7. Demonstration that the A„of Fig. 6 reproduce the
extremal behavior of the shape-preserving solution (14) to the
continuum equation of motion (10). The straight-line segments
have a slope of —1/3.

preserving for some value of ¹ Immediately after an-
nihilation of the top and bottom terraces occurs, the sur-
face profile does not, indeed cannot, possess the correct
separated solution shape for a system of N —2 steps.
There then appears to be no reason to expect further evo-
lution to proceed according to (33) or (35). But, remark-
ably, these analytic results largely remain valid because
the system very quick1y recovers to the shape-preserving
solution appropriate to the current value of N. This is
most easily seen in Fig. 8, which illustrates the time evo-
lution of the (normalized) terrace widths for an arbitrary
initial profile by numerical solution of (30) and (31) for
the case of diffusion-limited step propagation.

Additional interesting behavior during Battening is evi-
dent from the Uelocity of a "typical" terrace width depict-
ed in Fig. 9. The nonanalytic spikes occurs each time N
decreases and correspond to an impulsive "kick" felt by
the terrace's bounding steps each time a contribution to

FIG. 9. Velocity of a "typical" terrace width for a time inter-
val of morphological evolution during which several steps an-
nihilate. Both scales are in arbitrary units.

the total step-step repulsion (18) is removed. After each
spike, the velocity exhibits a short transient, whereupon
l(t)-t ~, as expected from (33) for this case. We con-
clude that the shape-preserving solutions (33) and (35)
behave, for each value of N, as attractors of the terrace
equations of motion.

The actual appearance of the surface during the flat-
tening described above is shown in Fig. 10. Each profile
[again obtained by numerical solution of (30) and (31)]
corresponds to a time immediately after a terrace annihi-
lation has occured. Smooth curves have been drawn
through points at the top of each step. Consistent with
the foregoing, the initial (sinusoidal) surface rearranges
considerably at the outset. Depending upon the precise
starting shape, the system may or may not lose a few
steps before it locks into the shape-preserving solution.
Once this occurs, the currents across the terraces are
indeed quite small near the extrema, increasing to a max-
imum at the inAection point of the profile. On the other
hand, the step velocities —the difference between adja-
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FIG. 8. Illustration that every terrace width (shown here for
a case when 15 terraces are present) rapidly approaches the ana-
lytic solution (33) for the case of fast step-attachment kinetics.
The depicted time interval begins immediately after a step has
vanished and ends immediately before another step vanishes.
Both scales are in arbitrary units.
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FIG. 10. Flattening of an initial sinusoidal profile (dashed
curve) as determined by numerical solution of the discrete equa-
tions of motion (30).



5020 M. OZDEMIR AND A. ZANG%'ILL

cent currents (29)—are maximal near the extrema and
minimal (zero) at the infiection point.

Unfortunately, we have been unable to derive an ana-
lytic expression for the time dependence of the profile
amplitude directly from (33) or (35). Numerically, we
find that z ' —t very nearly (Fig. 11). Although, again
z '-t'+ provides a rather better fit to the data —this
time with a=+0.025. On the other hand, we can show
easily that the amplitude function exhibits scaling behav-
ior, i.e., z(t)=F(t/L'), where 2L is the period of the
corrugation. To do so, it is necessary to suppose that the
profile always exhibits a shape-preserving form, i.e., we

ignore transients associated the initial conditions and
presume that the profile instantaneously adopts the ap-
propriate separated variable shape as N changes. As we
have seen, the latter is not a bad approximation. Then, if
tN denotes the time required for the first set of extremal
terraces to vanish for an ¹tepprofile,

t„(t)=A„[r+D+f„(r)]'" (42)

We make two assumptions: (i) f„(t) « t+D at all times,
and (ii) f„(t )~0 smoothly as t ~ ~. Upon substitution,
assumption (i) sanctions linearizing the resulting equa-
tions to

~ 1f= -- M f+R,
t+D

(43)

where f is a column vector of the f„, R is a column vec-
tor with components

evolve to this solution and thus provide some insight into
the rapid decay of transients seen in Fig. 8. In what fol-
lows, we restrict ourselves to the case of fast kinetics; the
corresponding analysis for slow kinetics proceeds similar-
ly. Our strategy is to relax the requirement (37) and seek
solutions to (30) of the form

N N 1„(0)L= g l„(t~)= g A„(N) tjv+
n=1 n=1 n

R„= (K„+,—2K„+K„,) —1,5

n

(44)

(40)

al„(0)
A„(N) t~+

n=1 A„N
(41)

which implies that tN =a tN. The same argument applies
for each time interval T(N —2), T(N 4), etc [w—ith the
appropriate quantities A„(N —2), A„(N 4), etc.]. T—his

proves the assertion. One can show that the shape-
preserving solution (13) to the continuum equation of
motion exhibits the same scaling.

To truly complete our analysis, we ought to explicitly
demonstrate how arbitrary initial conditions are drawn to
the shape-preserving attractor. This appears to be a
difficult task. However, we can show that nearby shapes

0.6

0.5

Now rescale all the initial terrace widths so that
1„(0)~al„(0).In that case,

N
L'=aL = g l„(tN)

n=1

and M is an N XN banded matrix whose elements (simple
functions of the A„) are displayed explicitly in the Ap-
pendix. Assumption (ii) implies that R~O at large times.
Comparing (44) with (38), this is seen to be equivalent to
requiring that the A„ in (42) asymptotically approach
those of the shape-preserving solution. But, since the A„
in our ansatz (42) are presumed to carry no time depen-
dence, we must choose R=0 at all times.

The general solution to (43) (with R=0) is

N

f„(t)= g g„,(r+D) ', (45)

where AJ are the eigenvalues of M (not be be confused
with the separation constant A, used earlier). The con-
stants („J are determined by the initial conditions, while
D is uniquely determined by assumption (ii). Numerical-
ly, we find that all A, 0 and are distinct. In particular,
A. , =0 always (for all N), while the other eigenvalues ap-
parently converge to specific limiting values as the rank
of M increases. Thus, A,z= —5 (converged at N=9),
A 3

—25 (converged at N = 12), etc. These large values
for

~ AJ ~
make clear why I„(t )

—A„r ' ' very rapidly even
if the initial terrace widths do not satisfy (37). One can
verify that the constant D emerges as a weighted average
of these widths,

0.4

—0.31
I

lq (0)

AI,
(46)

0.2

0.1

I

10 12

FIG. 11. Inverse profile amplitude vs time (both in arbitrary
units) for the flattening sequence of Fig. 10.

where the constants gk depend upon X.
The utility of this analysis can be judged from Fig. 12,

which compares l&(t) and l&(t) as obtained by an exact
numerical solution of (30) (in the fast-kinetics limit) with
the predictions of (42) for several diff'erent surface
profiles. In each case, l, (0) deviates from (37) by the in-

dicated percentages. Although the analytic results are
surprisingly good, even better agreement would be ob-
tained if one admitted time-dependent amplitudes A„(t)
into the perturbation theory.



42 MORPHOLOGICAL EQUILIBRATION OF A CORRUGATED. . . 5021

12.0

11.0

10.5

I

12 16

flattening sequences shown in Figs. 2 and 10, which both
correspond to sinusoidal initial conditions. Moreover,
both approaches yield z =t and predict identical non-
analytic behavior of the shape-preserving solution near
local extrema. These results imply that one ought to be
able to derive (10) from (32) in a suitable continuum limit
[despite the fact that our numerical solution of (10) did
not produce shape-preserving evolution]. Unfortunately,
in the step picture, the profile amplitude decreases
discontinuously whenever approaching steps collide and
annihilate. Since the times when these collisions occur
are unknown at the outset, it appears diScult to make a
general correspondence between the l„(t ) and ~(t ).

On the other hand, consider a comparison of the two
approaches for a case where the starting profile differs
substantially from a sinusoid (Fig. 13). Now, although
both dynamics inexorably lead to flattening as time goes
on, an interesting difference appears in the initial tran-
sient period. In the continuum case, an energetically
costly region of high curvature is quickly removed by
transfer of mass to the top of the profile. Hence, the am-
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Finally, as promised, let us return to the situation
where l„and d are of comparable magnitude, so that nei-

ther of the limiting forms (33) or (36) is appropriate. The
discrete equations of motion (30) then are quite
formidable —except when %=1. In that case, the prob-
lem is integrable and (denoting the single nonextremal
terrace width by 1) one finds

4 5
1 1(r) 1 /(t)
4 d 5 d

484 t+D,d'

where D= —,'[1(0)ld] + —,'[1(0)ld] . We speculate that
the crossover from diffusion-limited to step-attachment-
limited step motion is not very different from this even
when N&1.

V. DISCUSSION

FIG. 12. (a) time evolution of ll(t) and (b) ll(t) as deter-
mined from (30) numerically (solid curves) and from the approx-
irnate analytic solution (42) (dashed curves) for cases when 1,(0)
deviates from (37) by the indicated percentages.
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0
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0.25
x/L
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Generally speaking, good correspondence is found be-
tween the results obtained from the continuum theory of
the surface profile alone (Sec. II) and those obtained from
the more complete account of the motion of individual
steps (Sec. IV). This is clear from a comparison of the

FIG. 13. Morphological equilibration of an initial profile

(dashed curve) which differs substantially from a sinusoid as
determined numerically from the (a) continuum theory and (b)
the discrete step theory. For the latter, some of the transient
behavior of the top terrace (before even the first pair of steps
vanish) is shown for comparison.
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plitude of the corrugation wave increases at first before
flattening proceeds. In the discrete case, no such increase
occurs and, in fact, is explicitly forbidden because we per-
mit no increase in the number of steps or (equivalently)
the number of coupled equations of motion (30). Al-
though formally one could allow for this effect, it would
be incorrect to do so since no account is thereby taken of
the (considerable) nucleation barrier to the formation of a
new layer. By contrast, the continuum equation blithely
pushes mass onto the top of the profile. In this sense, the
discrete equations probably provide a better account of
the initial transient period.

In agreement with previous work, ' we find that no
facets form during flattening. On the other hand, facets
definitely are observed under some experimental condi-
tions. ' ' Villain and Landon have suggested that this
can occur only if the original "flat" crystal is, in fact,
slightly miscut in the direction perpendicular to the
direction of corrugation. Taking this into account, they
derive continuum equations of motion formally
equivalent to those employed (phenomenologically) in
Ref. 41. As stated, this result appears to depend crucially
on the presence of curved terrace edges at the extrema of
the profile (see Fig. 2 of Ref. 30) so that there exists a
line-tension contribution to the driving force for morpho-
logical evolution. If, however, there is appreciable in-

plane anisotropy (as should be expected even above the
step-roughening temperature), all terrace edges will be
nearly straight (apart from thermal wandering) and only
step-step repulsion (18) will be operative as in the case
considered here. In particular, step velocities parallel
and perpendicular to the direction of corrugation will be
comparable in magnitude. No facets should form. Inves-
tigation of this issue clearly warrants further systematic
experimental investigation.

Two important caveats remain. The first involves our
assumption that there is no interaction between pairs of
"unlike" steps which bound terraces at the extrema of the
surface profile. Although an attractive force would mere-

ly accelerate flattening, a repulsive force (depending upon
its nature) certainly would retard this process. Evidently,
the existence of such a force would determine in detail
the nature of the annihilation of extremal terraces. Even
in the absence of interaction, our treatment of this
feature is qualitative at best. Entropy driven formation
of closed loops at these moments has been predicted'

and apparently observed by simulation. 3~

Second, we remind the reader that the foregoing impli-
citly assumes that the initial corrugation wave is of rather
small amplitude. This restriction enters our calculations
at a number of places, but most particularly in the expan-
sion of the surface free energy in Eqs. (8) and (18). No al-
lowance is taken of the possible metastability of facets
with orientation at finite angles from the horizontal. This
surely must be relevant for discussion of the annealing
properties of corrugated semiconductor surfaces fabricat-
ed with pitch and amplitude of similar magnitude or of
those explicitly designed to expose inequivalent crystallo-
graphic facets. ' ' Work along these lines is in progress
and will be reported elsewhere.

VI. SUMMARY

In this paper, we have studied morphological equilibra-
tion via surface difFusion of a (small amplitude) corrugat-
ed surface below its roughening temperature. For the
considered geometry, the problem is one-dimensional and
step motion is driven by step-step interactions only. The
dynamics turn out to be highly nonlinear. As evolution
proceeds, all terraces' widths 1„(t) ultimately expand ex-

cept those that correspond to local maxima and minima
of the surface profile z(x, t). A central result is that an
arbitrary profile flattens via step motion as one would
predict on the basis of the separated variable solution
to the discrete equations of motion. In particular,
l„(t)-t' ' or l„(t)-t'~ (depending upon the relative
importance of surface diffusion and step-attachment ki-
netics) and z(x, t )

—t ' apart from transients. No facets
form if equilibrium corresponds to a perfectly flat sur-
face. Thus, for those experimental systems where flatten-
ing occurs without faceting, yet T & Tz, our predictions
should be valid and testable by, e.g. , in situ reflection
high-energy electron microscopy.
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APPENDIX

The banded matrix M which appears in Sec. IV has the form

M11
M21
M31

0

M, 2

M22
M32
M42

M23
M33
M43

0
M24
M34
M44

0
0

M3~

M4~

0
0
0

M46

MN -3,N —5

0
0
0

MN —3, N —4

MN —2, V —4

MN —3, N —3

MN —2, N —3

MN —1,N —3

0

MN —3, N —2

MN —2, N —2

MN —1,N —2

My~

N —3, N —1

N —2, N —1

MN —1,N —1

N, N —1

0
MN —2, N

MN —1,N

MN, N
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The matrix elements depend only on the quantities A„[defined in (38)] and hence reflect the symmetry seen in Fig. 6.
In particular, one has

M; —MIN &+1I, I& i +1

so that all nonzero elements can be found from

1 2 1
M11

2

A 1

3 1 4 4

A, A A,

1 6 1 1
12

3 1 1

A2 A1

1 6 1 1
M2, , +

1 1

A,

1

A1

2 1

A2

2

A1

1 2 1
22 A A 3

2

2 1 3 1 4 1

A3 A2 A1
+ —', A2

M 24

1 6 1 1
M23 = +

3 1 1

A43 A3 A2

1 1

A4'

2 1

and, for 3 ( n (X—2,

Mn, n —2
3 1 1

A„ 1 A„

1 6 1 1 1 1 2 1

A„3
+

3

1 2 1

An An An+1

2 1 3 1 4 1

+1 An An —
1

+—', An

1 6
A A' An n+1

1 1

n+1 An

1 1

n+1 An+2
3

2 1

An+1 A„

M„n+
3 1 1

An+2 n+1 n
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