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Exact many-body solution of the periodic-cluster t-t '-J model for cubic systems:
Ground-state properties
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The t-t'-J model (strongly interacting limit of a particular Hubbard model} is solved exactly on

small clusters of eight sites with periodic boundary conditions for the simple-, body-centered-, and

face-centered-cubic lattices and for the two-dimensional square lattice. The symmetry, k vector,
and spin of the ground state are studied as functions of crystalline environment, interaction

strength, and electron concentration. Phase diagrams are presented for stable solutions, and regions
of parameter space that exhibit ferromagnetism and heavy-fermionic behavior are identified.

I. INTRODUCTION

Strong electron correlation is responsible for long-
range order magnetic materials, ' heavy-fermion (HF) be-
havior, ' and high-temperature superconductivity. "'

The t-t'-J model is the simplest model of an interacting
electronic system that mimics the strong-correlation
e6'ects present in these materials. In ferromagnetic and
HF systems this model describes the mutual interaction
and effective electron transfer of the narrow d and f-
band electrons while in the high-temperature supercon-
ductors it approximates the hole-hole interaction and
hole hopping in the Cu02 planes.

The t-t'-J model is defined on a lattice with one spheri-
cally symmetric orbital per site by the following Hamil-
tonian:
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In these equations c; (c, ) are creation (destruction)
operators for an electron in the orbital at site i with z
component of spin 0., n; =c; c; is the corresponding
number operator, and Si is the vector spin of an electron
at site i. The terms in H include a band "hopping" in-
teraction between conduction states on nearest-neighbor
(1NN) sites [Eq. (2a)] and next-nearest-neighbor (2NN)
sites [Eq. (2b)] and an antiferromagnetic nearest-neighbor
Heisenberg superexchange interaction term [Eq. (2c)]
with exchange integral 2J. The hopping terms contain
projection operators that prevent double occupation of
any orbital ~
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This Hamiltonian has two interpretations: it is an elec-
tronic system with indirect exchange interactions and a
"super"-Pauli-principle that forbids electrons of like or
unlike spin from occupying the same spatial site; or it is
an approximation to the U~ ~ limit of the single-band
Hubbard model
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Anderson first showed the equivalence of the half-filled-
band Hubbard model at large interaction strength to the
Heisenberg model. His proof was based upon second-
order perturbation theory: At half-filling and infinite U
each lattice site is singly occupied and all spin states are
degenerate. When U is made finite, the lowest-order
correction to the energy comes from virtual processes
where an electron hops to its nearest neighbor (if the
spins are antiparallel) and then hops back. The energy
gain for such a fluctuation is =t /U since doubly occu-
pied states have energy =U. This hopping creates the
Heisenberg superexchange interaction term to lowest or-
der in t/U. Away from half-filling, the electrons can hop
from occupied to empty sites and additional fluctuations
that involve three sites (an electron hops to a neighboring
occupied site and then hops to a third unoccupied site)
are present. Schrieffer and Wold found a canonical
transformation to the single-occupied sector of a related
model that was valid for arbitrary fillings. This technique
was applied to the Hubbard model to first order, ' and re-
cently to arbitrary order. " Since the t-t'-J Hamiltonian
(1) only involves the nearest-neighbor superexchange in-
teraction, it approximates the canonically transformed
Hubbard Hamiltonian (3) in the limit of large U when
J=2t /U and when any terms of order O(t /U ) or
O(t' /tU) and any three-site hopping terms in the
transformed Hubbard Hamiltonian are neglected. This
approximation is exact at half-filling for t'=0 but be-
comes increasingly less accurate with hole concentration
away from half-filling.
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el.
A few rigorous results are known about the t-t'-J mod-

(a) At half-filling it reduces to a Heisenberg model
whose ground state' is a nondegenerate singlet on bipar-
tite lattices and possibly ferrimagnetic for other cases.
Lieb' recently extended this analysis to the Hubbard
model with finite U.

(b) The case of one hole in a half-filled band at J =0
( U = ~ ) is known to be ferromagnetic' (Nagaoka's
theorem) when t' 0 for the simple cubic (sc), body-
centered cubic (bcc), and the square (sq) lattices for all t,
and for the face centered cubic (fcc) when t & 0.

(c) The one-dimensional t t' Jm-od-el with free bound-
ary conditions and an even number of electrons has a
spin-singlet ground state. '

(d) The one-dimensional Hubbard model has been
solved exactly with the Bethe ansatz for arbitrary fillings
by Lieb and Wu' which yields solutions' ' to the t-t'-J
model at t' =0 and J =0 ( U = ~ ).

(e) The Bethe ansatz has also been applied' to the
one-dimensional t-t'-J model with t =J and t'=0.

Aside from these theorems little else is known
rigorously about the solutions of this many-body prob-
lem. The standard approach is to apply variational, per-
turbative, or mean-field approximations to such interact-
ing models. We choose an alternate method which is ex-
act, but subject to finite-size effects. It is called the
small-cluster approach.

The small-cluster approach begins with the periodic
crystal approximation: ' A bulk crystal of M atoms is
modeled by a lattice of M sites with periodic boundary
conditions (PBC's). Bloch's theorem then labels the elec-
tron many-body wave functions by one of M k vectors of
the first Brillouin zone. The standard approach takes the
thermodynamic limit (M~ ~ ), which replaces the finite
grid in reciprocal space by a continuum that spans the
Brillouin zone. Electron-correlation effects are then
treated in an approximate fashion. The small-cluster ap-
proach takes the opposite limit: The number of sites is
chosen to be a small number (M =8), restricting the sam-
pling in momentum space to a few high-symmetry points.
However, the interacting electronic system is solved ex-
actly taking into account all electron-correlation effects.
The one-electron band structure of these two methods is
identical when sampled at the common points in recipro-
cal space. The relationship of the many-body solutions
(at equal electron concentration) for the macroscopic
crystal and the small cluster is much more complicated
due to uncontrolled finite-size effects in the latter. Never-
theless, the small-cluster approach does provide an alter-
nate means of rigorously studying the many-body prob-
lem and (possibly) extrapolating these results to macro-
scopic crystals.

The small-cluster approach was proposed independent-
ly for the Hubbard model by Harris and Lange' and Fal-
icov and Harris with the exact solution of a two-site
cluster. Subsequent work concentrated on the ground-
state and thermodynamic properties of the one-
dimensional half-filled band Hubbard model on four- and
six-site clusters.

The first truly three-dimensional case to be investigated

was the eight-site sc cluster. Ground-state properties at
infinite and finite 6 U and thermodynamic proper-
ties have all been studied. The solution of the four-site
square (sq) and tetrahedral (fcc) clusters marked the
first time that group theory was used to factorize the
Hamiltonian into block-diagonal form by using basis
functions of definite spin that transform according to ir-
reducible representations of the full space group.

Takahashi studied the ground-state spin as a function
of electron filling in the infinite-U limit of the Hubbard
model on a variety of clusters (up to 12 sites). Unfor-
tunately, the use of free boundary conditions (instead of
PBC's) introduces strong surface effects that complicate
extrapolation to the thermodynamic limit. The effect of
geometry on the ground state has also been examined
for finite U.

The t-t'-J model was solved for seven electrons in
eight-site fcc bulk ' and surface clusters. The bulk cal-
culation illustrates clearly the power of group-theoretical
techniques, where a 1024X 1024 matrix is diagonalized in
closed form after being block-diagonalized. Recent work
has concentrated on the square lattice at half-filling and
with one or two holes. The cluster sizes are large (up to
18 sites), so only the low-lying eigenvalues and eigenvec-
tors were determined.

The small-cluster approach has also been applied to the
study of real materials. It is quite successful in describing
properties that depend on short-range many-body corre-
lations. These include photoemission in transition met-
als, alloy formation, surface photoemission in Ni
and Co, and surface magnetization in Fe. This tech-
nique has also been applied to multiband versions of the
Hubbard model that describes high-temperature super-
conductivity in the Cu02 planes.

In this contribution we examine the ground-state sym-
metry, k vector, and spin as a function of electron con-
centration and interaction strength for the t-t'-J model
on eight-site clusters for sc, bcc, fcc, and sq lattices with
PBC's. In Sec. II we describe the method of calculation
used; in Sec. III we present our results for the ground-
state properties, phase diagrams for regions of stability in
parameter space, and we identify ferromagnetic ground-
state solutions; in Sec. IV we examine low-lying excita-
tions in the many-body spectra to determine regions in
parameter space where HF behavior is expected; in Sec.
V we present our conclusions and some conjectures.

II. CALCULATIONAL DETAILS

The dimension of the Hamiltonian matrix grows ex-
ponentially with the size of the cluster (e.g. , an M-site
cluster with one orbital per site has dimension 4 X4 ).
This rapid growth restricts the maximum size of the clus-
ter to be on the order of ten sites. In the strong-
interaction regime (i.e., the t t' Jmodel), double -o-ccu-
pancy of an orbital is forbidden, reducing the Hilbert
space from 4 to 3' (for eight-site clusters this corre-
sponds to an order-of-magnitude simplification from
65 536 to 6561). The systematic use of conserved quanti-
ties and symmetries of the Hamiltonian provides further

simplification

.
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The total-number operator X=g, n, commutes
with the Hamiltonian in Eq. (1) and is a conserved quan-
tity. The Hilbert space with definite electron number X
reduces to dimension 2 Mt/¹~(M —W)I as summarized
in Table I for the eight-site cluster. The largest remain-
ing block size is now 1792X1792 for the five- and six-
electron cases.

The electronic states can be further characterized by
their spin and spatial symmetries. Since the total spin,
the total z component of spin, and the total spin raising
and lowering operators all commute with the Hamiltoni-
an, the many-body states may be labeled by the total spin
S and the total z component of spin mz, with every state
in a given spin multiplet degenerate in energy. The spa-
tial symmetry is labeled by the irreducible representation
of the space group that transforms according to the
many-body state. In our case, the space groups are sym-
morphic, moderately sized finite groups, that are con-
structed from the point-group operations and the eight
translation vectors of the lattice (see the Appendix). The
grand orthogonality theorem and the matrix-element
theorem ' (generalized Unsold theorem) guarantee
that the Hamiltonian matrix will be in block-diagonal
form, with no mixing between states of different spin or
spatial symmetry, when it is expanded in a symmetrized
basis that has definite spin and transforms according to
the (1,1) matrix elements of an irreducible representation
of the space group. We have written a symmetry-adapted
computer algorithm that, given the lattice structure of a
small cluster with PBC's (see the Appendix), the genera-
tors of the space group, and the character table of the
space group, calculates the (1,1) matrix elements of the ir-
reducible representations (in a fashion similar to
Luehrmann '). These matrix elements are used to con-
struct projection operators that operate on maximum z
component of spin states (ms =S) to generate sym-
metrized basis functions of definite spin and spatial sym-
metry. The Hamiltonian blocks are determined in this
symmetrized basis and are checked for completeness
within each subspace of definite spin and spatial symme-
try. The resultant blocks are diagonalized by the so-
called QL algorithm which determines all of the eigen-
values and eigenvectors in the many-body problem.
Table II summarizes the reduced block sizes for the four
different lattices considered. The application of full spin

TABLE I. Harniltonian block sizes for N electrons in an
eight-site cluster in the strongly interacting limit (no double oc-
cupation of a lattice site).

Dimension of
Hilbert space

1

16
112
448

1120
1792
1792
1024
256

TABLE II. Largest Hamiltonian block sizes for N electrons
in the four different eight-site clusters when expanded in a sym-

metrized basis of definite spin and spatial symmetry.

sc

1

1

3
8

16
18
18

8

3

bcc fcc

1

1

2
5

9
12
11

5

2

sq

1

1

3

8

14
18
18

8

3

TABLE III. Renormalized parameters for the t-t'-J Hamil-
tonians when restricted to isolated eight-site lattices.

1NN
2NN
Interaction

sc

2t
4t
2J

bcc

2t
2t
2J

fcc

zt
6t'
2J

sq

2t
J

and space-group symmetry reduces the block sizes by
another 2 orders of magnitude which, in turn, reduces the
diagonalization time by 6 orders of magnitude. This
symmetry-adapted algorithm was tested for seven elec-
trons in an eight-site fcc cluster and verified the known
analytic results ' for that case.

The effect of geometry on the many-body solutions to
the t-t'-J model is studied by solving the model exactly
for four different crystalline environments: the sc, bcc,
fcc, and sq lattices. The eight-site clusters with PBC's for
these different structures are illustrated in real space and
reciprocal space in Figs. 1 —4. The PBC's will renormal-
ize the parameters in the Hamiltonian (1) when the sum-
mations in Eq. (2) are restricted to run over the finite
cluster (1 «i, j ~ 8). For example, the six nearest neigh-
bors of an even (odd) site i in the sc lattice (see Fig. I) are
two each of the odd (even) sites (excluding the site 9—i),
the 12 next-nearest neighbors are four each of the remain-
ing even (odd) sites, and the eight third-nearest neighbors
are eight each of the site 9—i. This renormalizes the pa-
rameters in the t-t'-J model by t ~2t, t'~4t', and
J~2J. Similar analysis for the other crystalline struc-
tures is given in Table III.

The small-cluster approach samples the first Brillouin
zone at eight k vectors, which correspond to only three
(bcc, fcc) or four (sc, sq) different symmetry stars. As
summarized in Table IV, the one-electron energies of the
small-cluster Hamiltonian agree precisely with the one-
electron band structure of the infinite crystal, when sam-
pled at the common k vectors. Some of the properties of
the many-body states can be understood by the naive pic-
ture of occupying these one-electron levels as if the elec-
trons were noninteracting (see below).

The space groups that are relevant for totally sym-
metric orbitals on each site of the cluster have 48 (sc), 192
(bcc, fcc), or 64 (sq) distinct elements. They are divided
into 10 (sc), 14 (bcc), 13 (fcc), and 16 (sq) classes, respec-
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TABLE IV. One-electron energy levels for the four di6'erent eight-site clusters.

sc

Eq = —6t —12t'

E~ =—2t +4t'
EM =2t +4t'
ER =6t —12t'

bcc

El- = —8t —6t'
E~ =2t'
E„=St —6t'

fcc

Eq = —12t —6t'
EL =6t'
EJ =4t —6t'

sq

Eq =—4t —4t'
E~ =0
E~ =4t'
EM =4t —4t'

tively. The character tables for these space groups are
given in the Appendix.

The nearest-neighbor hopping matrix element ~t~ is
chosen to be the unit of energy. Three different cases are
examined for the next-nearest-neighbor hopping matrix
element: t'&0, t'=0, and t'(0. The magnitude of t' is
chosen to be 0.5 for the bcc lattice. This sets ~t'~ =0. 15
for the other three lattices, when exponential dependence
of the hopping matrix elements on the distance between
lattice sites is assumed.

Finally, we note that whenever the lattice is bipartite
(sc, bcc, sq) —i.e., it can be separated into two sublattices
A and B such that the nearest-neighbor hopping is
A ~B and B~ A and the next-nearest-neighbor hopping
is A ~A and B~Bonly —then the t-t'-J model has an

eigenvalue spectrum that is symmetric' in t. This allows
us to limit our discussion to t =1 for the sc, bcc, and sq
lattices, while we consider both t =1 and —1 for the fcc
lattice.

III. RESULTS: GROUND-STATE SYMMETRY

The k vector, spatial (small group of k) symmetry, and
spin of the many-body ground state are calculated exactly
for all electron fillings (O~N~8) and for 0.0~J(1.0.
The symmetry of the ground state is recorded by attach-
ing the spin multiplicity (2S+ 1) as a superscript to the
symbol for the irreducible representation that transforms
according to the many-body state (as given in the Appen-
dix). The t t' Jmod-el -on small clusters has many ac-
cidental degeneracies; that is, degeneracies that are not

I
I
I
I
I
I
I
I
I
I
I
I
I

FIG. 1. Eight-site cluster with PBC's for the sc lattice in (a)
real and (b) reciprocal space. The nearest neighbors of site 1 are
two each of sites 2, 4, and 6 as indicated in (a). The four symme-
try stars in (b) are I =(0,0,0), R =(1,1, 1)m/a, M=(1, 1,0)m. /a,
and X= (1,0,0)vr/a.

FIG. 2. Eight-site cluster with PBC's for the bcc lattice in (a)
real and (b) reciprocal space. The dotted line in (a) is the body
diagonal. The nearest neighbors of site 5 are two each of sites 1,
2, 3, and 4. The three symmetry stars in (b) are I =(0,0,0),
H = ( 2, 0,0)m. /a, and X= ( 1, 1,0)~/a.
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required by the spin and space-group symmetries of the
underlying lattice (see below). Some of these degenera-
cies are inherent in the model itself, ' ' while other degen-
eracies occur due to finite-size effects (permutation sym-
metries of the small cluster that are not representable as
space-group symmetries).

The cases of low electron filling (N & 3} are well de-
scribed by occupying the lowest one-electron energy lev-
els (Table IV). These one-electron energy levels have a
rich structure. The lowest level is nondegenerate and has
I, symmetry for the sc, bcc, fcc (t )0), and sq lattices,
while the lowest level for the fcc (t &0} lattice is three-
fold degenerate with X, symmetry. The first-excited level
is threefold (X, ), sixfold (N, ), or fourfold (L, ) degen-
erate for the sc, bcc, and fcc lattices, respectively. The sq
lattice does not have a unique first excited level: when
the 2NN hopping integral vanishes (t'=0) there is an ac-
cidental degeneracy of X, and X„creating a sixfold-
degenerate level; for t' & 0 the ordering is X, (fourfold de-
generate) &X& (twofold degenerate), and vice versa for
t' &O.

Since the case of one electron (N=l) contains no
many-body effects, the ground state is formed by occupy-
ing the lowest one-electron level. The ground state,
therefore, has symmetry I, (d =2) for the sc, bcc, fcc
(r )0), and sq lattices and X, (d =6) for the fcc (t &0)
lattice. A second electron (N =2) is added by placing' it

in a spin-singlet state in the same level as the first elec-
tron. This results in a 'I', (d =1) symmetry for the
ground state of the sc, bcc, fcc (r )0), and sq lattices.
The fcc (t &0) lattice has 'I, 2 (d =2) symmetry for finite

J, but has a spin-degenerate Xze'l, z (d =11) ground
state when J =0 (because of the degeneracy of the one-
electron levels).

In general, the addition of a third electron (N =3) is
made by placing it in the first-excited one-electron energy
level. This yields a X, (d =6), N, (d =12), and L,
(d =8) ground state for the sc, bcc, and fcc (t &0) lat-
tices. The sq lattice has a X, (d =8), X,e X, (d =12),
or X~ (d =4) ground state for t') 0, t'=0, and t' &0, re-

spectively. However, many-body effects begin to play a
more important role in the three-electron case. There is a
level crossing in the sc ground state from X~ (d =6) to
I,z (d =4) at J /t =0.851 00 when t ' & 0. The fcc ( t & 0)

case is even more interesting. It is the first example of a
ferromagnetic ground state I, (d =4) (resulting from
the application of Hund's empirical rule ) which under-

goes a level crossing to a spin-doublet X2 (d =6) at
J/t =0.299 72 (t') 0), J/t =0.236 17 (t'=0), or
J/r =0.15045 (r' &0).

Many-body eft'ects become increasingly more impor-
tant for N ~4. The ground-state symmetries are record-
ed in Tables V —VIII for the cases 4~N ~7.

g3j
(g /"gX

~M
I

l

t

I
X

I oeaaeamaaaaeawmmag )ameaa+

FIG. 3. Eight-site cluster with PBC's for the fcc lattice in (a)
real and (b) reciprocal space. The double-tetrahedral structure
is highlighted with dotted lines in (a) ~ The three symmetry stars
in (b) are I =(0,0,0), X=(0,0,2)~/a, and L =(1,1, 1)~/a.

FIG. 4. Eight-site cluster with PBC's for the sq lattice in (a)
real and (b) reciprocal space. The 2&2a X2&2a "primitive"
cell is highlighted with dotted hnes in (a). The four symmetry
stars are I =(0,0), M=(1, 1)m/a, X=(1,0)w/a, and
X=(1,1)~/2a.
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TABLE V. Ground-state symmetry for the N =4 case. The symmetry labels refer to the irreducible representations of the space
group (see the Appendix) with the superscript corresponding to the spin degeneracy (2S+1). The critical values of J/t record the
parameter values where a level crossing occurs within the interval 0.0(J/t & 1.0.

sc

Sym.

t'&0
Degen. (J/t), „„

1 r12

Sym.

t'=0
Degen. (J/t)„„

0.137 15 'R
1

Sym.

t' &0
Degen. (J/t)„„

0.211 62

bcc

fcc
(t &0)

fcc
(t &0)

sq

1 1

'r2se'N2

'Xs
'r,',e 'X,

3X
1 r12

'r, e'X,
'I,e 'M,
'Mse 'X4

18
6

12
2
4

0.078 07

0.002 73

0.06404

0.002 74
0.088 61

r12e a12
'r2se'N2

'Xs
'r2se'X3
3X

r12
'L

' I
1 e 'I 4e 'M

1 e 'M4
'r3e 'M, e 'X4e'r2

18
6

0.11379

0.005 21

0.085 59
0.690 25

0.11379

a2s
'r„e'a„
'r,',e'N,

'X,
r25'e X3

3X2
1

'L2

'M3
'r,

27
4
9

18
6

0.037 43
0.092 89

0.007 88

0.078 70
0.334 35

0.085 20

TABLE VI. Ground-state symmetry for the N =5 case.

sc

Sym.

4R2

X

t'&0
Degen. (J/t), „„

4 022719
6

4Z2

X2

Sym.

t'=0
Degen. (J/t), „„

0.280 14 4R,
X

Sym.

t'&0
Degen. (J/t)„„

0.305 07

bcc Nle N 24 0.13027

36

'N, e'N,
2r e2a e2N e2N

24
36

0.212 14 'N, e'N,
lse a e N2e

24
36
18

0.200 73
0.827 05

fcc
(t &0)

fcc
(t &0)

4L
2L

Xl
2L

Xs

16
16

6
16
12

0.002 16

0.657 44
0.856 51

L
L

Xl
Xs

16
16

6
12

0.004 32

0.521 50

4L

2L

'X
1

'Xs

16
16

6
12

0.006 90

0.302 60

sq 2g
2g

0.169 58 2X e2X e2y e2y
2r2e 2r,e 2M, e 2M,
e2X3e 2X4e22X2

24 0.212 14

36

'Xl
X2

0.279 40

TABLE VII. Ground-state symmetry for the N =6 case.

sc

Sym.

t'&0
Degen. (J/t), „„ Sym.

t'=0
Degen. (J/t ),.„,

0.044 89 'r,
'r12

Sym.

t'&0
Degen. (J/t)„;,

0.217 65

bcc

fcc
(t &0)

fcc
(t &0)

'r, e'r„e'a,
'r2se'N2

lr
'r2se'X3

0.13007

0.630 22

0.17094

'r, e'r„e'a,
'r,',e'N,

lr
'r,',e'X,
'L2

2'r, e'r, e'M,
'I,e 'M, e 'X4e 'X2

0.213 55

0.490 13
0.804 84

0.213 55

'r, e'r„e'a,
lr
1 r12

'r,
'r2se'X3
lL

'r, e'r„
'r,
'M, e 'X,

0.202 87
0.546 56

0.309 41
0.426 41
0.788 26

0.283 49
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TABLE VIII. Ground-state symmetry for the N =7 case.

sc

Sym.

t'&0
Degen. (J/t), „„

'R,
Xl

Sym.

t'=0
Degen. {J/t), „„

0.058 78 'R,
6I

Rl
XI

2p

Sym.

t'&0
Degen. (J/t), „„

0.11763
0.141 58
0.271 34
0.343 10

bcc

fcc
(t &0)

'N
'I i2'Hie
Nl

'I,e'X e-'X

36
16
12

14

0.024 88
0.091 74

'H,

'N)

'r, +'X, e'X,

8

36
16
12

0.103 83
0.11856
0.165 73

'H,
6I

4H,
2p

-'I,e'X 'X, 14

0.142 86
0.200 00
0.333 33

fcc 0.087 85 I, 0.126 33 I 0.142 86

(t (0)

sq

6L

4I,',e4X,
2L

X5
L2'L3

'X e'-X,

M)
X,

'

'r, e'M,
X)

24
24

8

12
24
12

8

12
8

4

0.115 55
0.229 32
0.269 69
0.346 58
0.69048

0.033 36
0.059 91
0.124 36

6L

'r,',s'X,
4L
'I 1'I i2'Xi
Xi X

M
'x, +'x,
'I, 'I, 'M, 'M,
X) X)

24
24
32
24
12

8

36
16
12

0.177 94
0.202 09
0.250 00
0.333 33

0.103 83
0.11856
0.165 73

'X,
'r, s'r„y'X,
X 1 g 'X

M)
'I,e'M,
2g
2p

18
24
12

0.200 00
0.333 33

0.131 65
0.195 93
0.531 25

The half-filled band (N= 8) reduces to the case' of a
Heisenberg antiferromagnet. The solutions are all spin
singlets, have symmetry 'I',

z (d =1) for the sc, bcc, and
sq lattices, and have 'I,e'1,2 (d =3) symmetry for the
fcc lattices.

Our results agree with previous work for the sc lat-
tice, the fcc lattice, ' and the sq lattice. There are a
few salient features of these results that deserve com-
ment.

(a) The case of the sq lattice with t'=0 is identical to
the bcc lattice with t'=0 due to a hidden symmetry of
the eight-site sq lattice.

(b) There is a large number of ferromagnetic solutions
for J« t. These solutions occur in the sc lattice (t' &0,
N=4; t' 0, N=7), in the bcc lattice (t'&0, N=7), in
the fcc (t &0) lattice (all t', N=3; all t', N =7), and in
the sq lattice (all t', N =7). The ferromagnetic solutions
for N=7 are all examples of Nagaoka's theorem' for
one hole in a half-filled band at J =0.

(c) There is also a large number of ferrimagnetic' solu-
tions for J &(t. When N=4, ferrimagnetic solutions
occur for all geometries except the sc lattice; when N =5,
ferrimagnetism occurs in the sc and fcc (t )0) lattices;
and when N=7, it occurs for all lattices except fcc
(t )0).

(d) Whenever the Heisenberg interaction J is large
enough, the ground state is stabilized in the lowest spin
configuration (S =0 for N even, S= —,

' for N odd). In par-
ticular, the case of two holes (N =6) is always a spin
singlet.

(e) Non-minimal-spin solutions undergo "spin-cascade"
transitions, passing through each intermediate spin en

route to minimal spin solutions, as J is increased. The
only exceptions are in the sc lattice (t'&0, N =4 and
t'=0, N =7) which have one level crossing from maxi-
mal spin to minimal spin and the sq lattice (t' &0, N =7)
which does not have a spin- —', ground state in the cascade
from spin- —',' to spin- —,'.

(fl Ground states that are accidentally degenerate for
a11 values of J always have the same total spin, but usual-
ly have space symmetries corresponding to different k
vectors. The sc lattice is the only cluster that has no "ac-
cidental" degeneracies in the ground state.

(g) At J =0 there are some solutions with additional
accidental degeneracies. The degenerate states contain
mixtures of different total spin. These special solutions
are summarized in Table IX.

There are many magnetic solutions to the t-t'-J model.
Hund's empirical rules" may be employed to explain the
occurrence of ferrimagnetism for N =4 and 5, but, as the
filling increases, many-body effects overwhelm the system
and the one-electron picture loses its predictive power.
The N =7 cases verify Nagaoka's theorem, ' but the fer-
romagnetic state is quite unstable with respect to the in-
teraction parameter J, with a rapid level crossing to a
lower spin state. Geometry also plays a role, as the sc
and fcc lattices exhibit far stronger magnetic properties
than the bcc or sq lattices.

The case with two holes (N =6) has a spin-quenched
ground state for all four different geometries. This fact
has been observed for many geometries by previous inves-
tigators in small-cluster calculations. ' There
are also variational and heuristic arguments why the
two-hole state cannot be ferromagnetic.

' ' ' Our solu-
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TABLE IX. Accidental degeneracies in the t-t'-J model atJ=0.

Lattice

fcc
(t &0)

bcc
t'=0

sq
t'=0

fcc
(t &0)

fcc
(t)0)

all

Ground state

'X2 'ri2

'H25 '&3 'r )2 '0
)2

'r, e'M, e'X, e'X,
e'r, e'r4e'M, e'M,
'r, e'X, e 'r„

'X,e'L, e'I „e'X,e'X,
@L3 r2@X@X2
all

Degeneracy

31

31

16

96

256

tions (Table VII) show one interesting additional feature:
The ground-state manifold always contains a state with
'I, symmetry whenever the hypotheses of Nagaoka's
theorem' are satisfied [t'&0 for the sc, bcc, fcc (t &0),
and sq lattices]. This result suggests that there is a two-
hole extension to Nagaoka's theorem which yields a
spin-singlet ground state. We leave this result as a con-
jecture, however, and do not offer any proof.

Up to this point we have kept the electron occupation
number N fixed. It is important, however, to examine the
stability of a fixed-N ground state with respect to discom-
mensuration (a macroscopic rearrangement of the crystal
into domains, with different electron number in each
domain, but with an average filling N). The stability of a
particular ground state (for fixed interaction J} is deter-
mined by forming the convex hull of the ground-state en-
ergy versus electron filling and comparing it to the calcu-
lated ground-state energy for N electrons. If the convex
hull is lower in energy, then the ground state with N elec-
trons is unstable against discommensuration. Previous
work on the phenomenon of discommensuration has
concentrated exclusively on one and two holes in the
half-filled band of a square lattice (determining the bind-
ing energy of hole pairs).

Our results are summarized in the form of phase dia-
grams (Figs. 5 —9}. The phase diagrams plot regions of
parameter space that are stable against discommensura-
tion as functions of the electron filling N (y axis) and the
Heisenberg interaction J (x axis). Horizontal solid lines
denote stable ground-state solutions for fixed N. Dotted
vertical lines separate regions where discommensuration
occurs and also denote regions where the ground state for
fixed N has a level crossing (see Tables V —VIII). The lev-
el crossings for fixed N are also marked by a solid dot in
the phase diagrams.

In general, the tendency toward discommensuration in-
creases as the interaction J increases; however, there are
cases where islands of stable ground-state configurations
form [these include N =4 in the bcc, fcc (t &0), and sq
lattices, and N =7 in the fcc (t &0}lattice]. The role of
geometry on the structure of the phase diagrams can be
explained by three empirical rules (listed in order of im-

portance): (1) ground-state solutions with even numbers
of electrons are more stable than solutions with odd num-
bers of electrons (in particular, N =0, 2, and 8 are always
stable); (2) filled or half-filled one-electron shells are stable
in relation to other electron fillings; and (3) when the
ground state for an odd number of electrons (N) is stable,
the ground states for even numbers of electrons (¹1)
are also stable. In particular, the third rule implies that
whenever an odd-N solution becomes unstable with
respect to discommensuration, it always separates into
even mixtures of solutions with ¹ 1 electrons. Howev-
er, when an even-N solution becomes unstable, it
separates into many different kinds of mixtures (N+2;
N+2, N —4; N+2, N —1; N+4, N —2). These empiri-
cal rules explain the stability of ¹=0,1,2, 4, 5,6, 8 for the
sc lattice; N=0, 1,2, 8 for the bcc and sq (t'=0) lattices;
N =0, 1,2, 6, 8 for the fcc (t )0} and sq (t') 0) lattices;
N =0,2, 3,4, 6, 8 for the fcc (t &0) lattice; and
N=0, 1,2, 4, 8 for the sq (t' &0) lattice. The rules do not
explain the stability of N =6,7 in the bcc lattice or N =7
in the fcc (t &0) lattice. We believe the last feature arises
from many-body effects and a sensitivity of the solutions
to the next-nearest-neighbor hopping t'. The bcc and fcc
(t & 0) lattices are strongly sensitive to t', the sq lattice is
moderately sensitive to r', and the sc and fcc (t )0) lat-
tices are insensitive to t'. Finally, we note that although
the sq lattice does show regions of parameter space which
favor pair formation of holes in the half-filled band, it is
the fcc lattice with t )0 (r &0} that shows the strongest
tendency toward hole (electron) pair formation in the
t-t'-J model. This result suggests that frustration is a key
element for stable pair formation in itinerant interacting
electronic systems and that the fcc lattice is more likely
to be superconducting than the sq lattice for a single-
band model.

IV. RESULTS: HEAVY-FERMION BEHAVIOR

Two electrons which have strong correlation (i.e., satis-
fy the super-Pauli-principle) must avoid each other when
moving in a solid. This places an additional constraint
on the electron dynamics which should, in turn, strongly
affect the transport properties; e.g. , reduce the specific
heat, electron conductivity, etc. The constraint is felt in
many-body solutions by a drastic reduction in the num-
ber of available states (reduced by 1 order of magnitude
in eight-site clusters}. Under certain circumstances, how-
ever, some transport properties are enhanced by orders of
magnitude because of strong correlation (as evidenced in
the HF materials ' ). We find analogous behavior in the
many-body solutions to the t-t'-J model on small clusters.

The HF materials exhibit large coefficients of the term
linear in the temperature in their specific heat, quasielas-
tic magnetic excitations (large magnetic susceptibilities),
and poor metallic conductivity. We test our solutions to
the t-t'-J model to find candidate solutions that depict
this HF behavior. Since electron correlation effects begin
to be large at N =4, we expect solutions near half-filling
to have the strongest HF character.

The large coefficient of the linear term in the specific
heat arises from an abundance of 1ow-lying excitations,
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i.e., many-body states in the ground-state manifold and

energetically close to it. We calculated the maximum

number of states (including all degeneracies) lying within

an energy of O. 1~t~ of the ground state for 0.0(J & 1.0
(see Table X). The maximum number of states appear for

only a finite range of J, as illustrated for the three cases in
Figs. 10—12. %e search for enhancements in the
strong-correlation regime by comparing the maximum
number of states in Table X with the total number of
states in the ground-state manifold of the noninteracting

(b)

6

I

~l

IX

3 '*

uJ

Lll

0
1 t I

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 3.0
INTERACTION J/t

0 1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.? 0.8 0.9 1.0
INTERACTION J/t

6

5
U

KI-
uJ
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!

I l i l

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
INTERACTION J/t

FIG. 5. Stability phase diagram for the sc lattice. The x axis is the interaction strength J/t and the y axis is the electron filling X.
Solid horizontal lines correspond to stable single phases. Dotted vertical lines denote discommensuration instabilities or level cross-
ings in the fixed-N solutions. Level crossings are also marked by a black dot. Three cases have been calculated: (a) t'=0. 15~t~, (b)
t'=0.0, and (c) t'= —0. 15itit.
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TABLE X. Maximum number of many-body states lying within 0.1 lrl of the ground-state energy (including the degeneracy of the
ground-state manifold). Potential HF states are highlighted in bold.

sc
0

bcc
0

fcc (t &0)
+ 0

fcc (t &0)
+ 0

sq
0

N=l
2
3

5

6
7
8

4
11

2

6

2
1

4
16
10

3
38

256
18

2

12

60
13
60 14

256

2
1

24
32
16
96
256

28
7

48

6
11
10
11
34
10
98
256

34
10
42

8

18
16
2

28
256

2
1

12 4
40 4
60 12
13 5
76 54

256 256

»

6

5 J

ll

3 l

LLj

6

z.
5 J

U

I-

I

UJ

0-
I

0.0 0.1 0.2 0.3 0.4 0.5 0.6 Q.7 0.8 0.9 't. 0

INTERACTION J/t

0
I I

I
I

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
INTERACTION J/t

»

0.8 0.9 '1.0

6

z
5-

D 4 (

LU

LU

0 t (

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.?
INTERACTION J/t

0.8 0.9 1.0

F&G. 6. Stability phase diagram for the bcc lattice. Three cases have been calculated: (a) t'=0 &lrl (b) t'=0 0»»d (c)
r' = 0 5l rl. Note—the. phase islands for X =4.
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TABLE XI. Maximum number of non-interacting-electron states lying within 0. 1
~
t~ of the ground-state energy (including the de-

generacy of the ground-state manifold).

%=1
2
3
4
5

6
7
8

sc
0

2
1

6
15
20
15
6
1

bcc
0

2
1

12
66

220
495
792
924

fcc (t )0)
+ 0

2
1

8

28
56
70
56
28

fcc (t (0)
+ 0

6
15
20
15
6
1

8

28

28
56
70
56
28

sq
0

2
1

12 4
66 6

220 4
495 1

792 8

924 28

7,

,~ ~

4

CCI-
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uJ

Lll

0 1

0.0 0.1 0.2 0.3 0.4 0.6 0.6 0.7 0.8 0.9 '1.0

INTERACTION J/t

0
I I I )

0.0 0.~ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 o.a ~.0
INTERACTION J/t

0 ( J I f

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 f.0
INTERACTION J/t

FIG. 7. Stability phase diagram for the fcc (r &0) lattice. Three cases have been calculated: (a) t'= 1 0~ ~S, (rb) t'=0. 0, and (c)
r'= —0. )S)t[.
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TABLE XII. Many-body solutions to the t-t'-J model that exhibit strong HF character. The range
of interaction strength J/t where the solutions are of HF type and the total spin of the ground state
S, , are included.

3

4
7

7

7

7

7

Lattice

sc
sc

sc

fcc (t)0)
fcc (t &0)
fcc (t &0)

t' &0
t'=0
t'=0
t'&0
all t'
t') 0
t'=0
t'&0

0.0&J/t &0.05
0.0&J/t &0.04

0.05 & J/t &0.065
0.12 & J/t &0. 13

0.0&J/t &0.01
0.1&J/t &0. 12

0.17 & J/t &0.19
0.15 & J/t &0.16

Sg,

2

2 or 0
7 1—or—
2 2
7 5—or—
2 2

1

2
5 3—or—
2 2
5 3—or—
2 2

3
2

3--
I-
LLl

LLI

0 I

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 $.0

INTERACTION J/t

E

0.0 0.'1

I
I I I I

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
INTERACTION J/t

7

6

,j
LI

Ze 4

! I

0.0 O. l 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 5.0
INTERACTION J/t

FlQ. 8. Stability phase diagram for the fcc (t (0}lattice. Three cases have been calculated: (al t'=0»ltlI, (bl t'=o. o, and (cI
t'= —0. 15~ tI, Note the pha. se islands for X =4 and 7 and that N = 1 is unstable.
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regime (Table XI). The degeneracy of the noninteracting
ground-state manifold is determined by a paramagnetic
filling of the one-electron levels of Table IV (all of the ex-
cited states in the noninteracting electron spectrum lie
beyond O. 1~t~ of the ground state). The possible HF lie
predominantly near half-filling and are highlighted in
boldface in Table X. Both the bcc and the sq (t'=0) lat-
tices show no tendency toward HF behavior due, in part,
to the large density of states of the noninteracting elec-
trons at half-filling.

Large magnetic susceptibilities and large magnetic
fluctuations occur whenever two states with different to-
tal spin are nearly degenerate. These fluctuations in-
crease when more than two different total-spin
configurations are nearly degenerate (a feature that we
call the spin-pileup effect). Many solutions exhibit this
spin-pileup effect: the case of a half-filled band has, for
all structures, five different total-spin configurations de-
generate at J =0; for X =7, the spin-pileup effect is seen
in the sc (t'~0), bcc (t'=0), fcc (t )0), and sq lattices;

7-

6

5—
LL

2a

6

LL

Zr 4

K
3--

LLj

0 I I ! I I I I I

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

INTERACTION J/t

0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

INTERACTION J/t

8-

7
t

6

U

4 l

0 --',

0.0 O. t 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
INTERACTION J/t

FIG. 9. Stability phase diagram for the sq lattice. Three cases have been calculated: (a) t'=0. 15~t~, (b) t'=0.0, and (c)
t' = —0. 15~ t~. Note the phase islands for N =4.
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FIG. 10. Total number of states in the ground-state manifold
and in the low-lying excitations within 0.1 ~i~ of it for the sc
(t'(0) lattice and N =3.

for X =6 and 4 it is observed in the fcc (t )0) lattice and
in the sc (t'=0) lattice, respectively. A simple example
of the spin-pileup effect is illustrated in Fig. 11. Cases
when only two different total-spin states are nearly degen-
erate occur in the regions near isolated level crossings be-
tween the two states. These regions have been summa-
rized in Tables V —VIII.

Finally, we require candidate HF solutions to exhibit
weak metallic conductivity. Previous investigations '

have shown that electrons in the strongly correlated re-
gime are poor conductors (in particular, the half-filled
band has electrons that are frozen in space, i.e., an insula-
tor). We expect, however, an enhancement of the con-
ductivity whenever a solution is close to a discommen-
suration instability, since the system has states with two
different charge distributions which are nearly degen-
erate.

Solutions to the t-t'-J model that satisfy all three cri-
teria are the best candidates for models of HF systems.
These solutions are listed in Table XII. The solutions lie
predominately near half-filling, are quite sensitive to vari-
ations in J, are moderately sensitive to changes in t', and
may be magnetic. In fact, the geometrical tendency to-
ward HF appears to be closely linked to the geometrical
tendency toward magnetism of Sec. III, with the sc and
fcc lattices having stronger HF character than the bcc
and sq lattices.

V. CONCLUSIONS

We have studied the effect of geometry on the exact
many-body solutions of the t-t'-J model in eight-site
small clusters. We examined five particular cases: sc,
bcc, fcc (t )0), fcc (t (0), and sq lattices. Spin and

space-group symmetries were used to reduce the Hamil-
tonian to block-diagonal form, which decreased the diag-
onalization time by 6 orders of magnitude.

FIG. 11. Total number of states in the ground-state manifold

and in the low-lying excitations within 0.1 ~t~ of it for the fcc
(t &0) lattice and N =7. There are no low-lying excitations in

the range 0.1 & J/t (1.0. The spin-pileup effect can be seen at
J =0.

The spatial symmetry, k vector, and total spin of the
ground state were calculated for all electron fillings as a
function of the interaction strength. We found that the
ground state typically has minimal spin and there are
many accidental degeneracies. Magnetic solutions (in-

cluding ferromagnetism) occur in some cases when J (&t.
In particular, we verified Nagaoka's theorem, ' found the
ferromagnetic solutions to be quite unstable with respect
to increasing J, and we proposed an extension of the
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FIG. 12. Total number of states in the ground-state manifold
and in the low-1ying excitations within O. 1~t~ of it for the fcc
(t &0) lattice with t'=0 and N =7. There are no low-lying ex-

citations in the range 0.5 (1/ t
~
( 1.0.
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TABLE XIII. Character table for the space group of the eight-site sc cluster. The space group is isomorphic to the cubic point
group Oq, with an origin at the center of the small cluster, when spherically symmetric orbitals are placed at the lattice sites. E is the
identity, C„ is the rotation of 2~m /n about an n-fold axis, and J is the inversion. Both the space-group and the point-group nota-
tions for the irreducible representations are included.

R2
R,
R)~
X,
X2

Aq„
Eg
Tlg

T2g

Aq„
E„
Tl u

T2

3

C4

1

1

2
—1

—1

1

1

2
—1

—1

6

C4

1
—1

0
1

—1

1

—1

0
1

—1

6
C,

1

—1

0
—1

1

1

—1

0
—1

1

1

1

—1

0
0

1

1
—1

0
0

3

JC4

1

1

2
—1

—1

—1
—1
—2

1

1

6
JC4

1

—1

0
1

—1

—1

1

0
—

1

1

6
JC2

1

—1

0
—1

1

—1

1

0
1

—1

8

JC,

1

1

—1

0
0

—1
—1

1

0
0

TABLE XIV. Character table for the space group of the eight-site bcc cluster. The space group operations are constructed by a
point-group operation with origin at site 1 followed by a translation. The symbol 0 denotes no translation, ~ denotes a nearest-
neighbor translation, and 0 is a next-nearest-neighbor translation. The subscripts ~~, l, and 2 refer to translations that are parallel to,
perpendicular to, and at an angle to the rotation axis of the point group operation.

r,
I ~

I is

I2s

H)
Hq

H)2
His
H2s

N,
N,
N)
N4

1

E
0

6

C4
00 (I

2
—1

—1

1

1

2
—1
—1

2
—2
—2

2

24

C4
00

0
1

—1

1

—1

0
1

—1

12
C~

09,

0
—1

1

1

—1

0
—1

1

2

0
0

—2

32

C3
00

—1

0
0

1

1

—1

0
0

4
E

12
C2

T

2
—1

—1

—1

—1

—2

1

1

24
C4

0
1

—1

—1

1

0
—1

1

12

C2

0
—1

1

—1

1

0
1

—1

0
—2

2

0

12

C~

0
—1

1

—1

1

0
1

—1

0
2

—2

0

32
C3

'T

—
1

0
0

—1
—1

1

0
0

3
E
8

6
C4
t9,

2
—

1

—1

1

1

2
—1

—
1

—2
2
2

—2

12

C2

0,

0
—1

1

1
—1

0
—1

1

—2
0
0
2

TABLE XV. Character table for the space group of the eight-site fcc cluster. The notation is identical to that of Table XIV.

r,
I,
Ii2
I is

I2s

X,
X2
X3
X4
X,

Li
L2
L3

1

E
0

6
C2

00

1

1

2
—1
—1

3
3

—1
—1
—2

24
C4

08~,

1

—1

0
1

—1

1
—1
—1

1

0

12

C2

Or()

1

—1

0
—1

1

1

—1

1
—1

0

2
—2

0

32
C3
0~,

1

1

—1

0
0

1

1

—1

6

7

6
C2

TJ

1

1

2
—1

—1

—1

—1

3

3
—2

12
C2

1

1

2
—1
—1

24
C4

1

—1

0
1

—1

—1

1

1

—1

0

24
C2

Tg

1

—1

0
—1

1

—1

1

—1

1

0

12

Cq

0~,

1

—1

0
—1

1

1
—1

1
—1

0
—2

2
0

32
C3
L9v,

1

1
—1

0
0
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TABLE XVI. Character table for the space group of the eight-site sq cluster. The symbol a denotes the mirror planes perpendicu-

lar to the x and y axes, and 0.' denotes the mirror planes perpendicular to the diagonals x+y. The translations are denoted by 0 (no

translation), r (nearest-neighbor translation), 8 (next-nearest-neighbor), and 0 (third-nearest-neighbor). The subscripts
~~

and t refer

to translations parallel to or perpendicular to the normals of the mirror planes.

r,
Iq
r,
I4
r,
Mi
M2
M3
M4
M5

X,
X2
X3
X4

1

0

8

C4
000

1

1
—1
—1

0

1

1
—1

—1

0

2
C2

00

1

1

1

1
—2

1

1

1

1

—2

2
2

—2
—2

1

—1

1
—1

0

1

—1

1
—1

0

2
—2

0
0

CT

00,

1
—1
—1

1

0

1

—1
—1

1

0

2
—2

8

C4

1

1

—1

—1

0
—1

—1

1

1

0

4
C2

T

1

1

1

1

—2

—1

—1

—1
—1

2

1

—1

1
—1

0
—1

1

—1

1

0

0
0

—2
2

1

—1

1
—1

0
—1

1

—1

1

0

0
0
2

—2

1

—1

—1

1

0
—1

1

1
—1

0

2
E
0

2
C2

0

1

1

1

1

—2

1

1

1

1

—2

—2
—2

2
2

1
—1

1
—1

0

1

—1

1
—1

0

—2
2
0
0

4
0'

0IIQ

1
—1
—1

1

0

1
—1
—1

1

0

—2
2

1

E
0

theorem to the case of two holes: Whenever the hy-
potheses of Nagaoka's theorem' are satisfied and there
are exactly two holes in the half-filled band, then the
ground-state manifold includes a spin singlet with I,
symmetry. This conjectured extension of Nagaoka's
theorem indicates that the ferromagnetic solution is quite
unstable to both interaction strength J and electron filling
N.

We studied the stability of the many-body solutions
with respect to discommensuration. Amazingly enough,
we found that the phase diagrams can be almost entirely
described by a one-electron picture: The stability of solu-
tions tends to decrease as the interaction J is increased;
the one-eighth- (N =2) and one-half- (N = 8) filled bands

are always stable; an even number of electrons tends to be
more stable than an odd number; and an odd number of
electrons that forms a half-filled one-electron shell tends
to be stable. Frustration was a key element to the bind-
ing of two holes or two electrons, as shown in the fcc lat-
tice. In particular, we found no evidence for enhanced
superconductivity (via the binding of holes) in the two-
dimensional sq lattice versus the three-dimensional lat-
tices.

Heavy-fermion behavior was studied by examining the
character of the ground-state manifold and its low-lying
excitations. We found many-body solutions that have a
large density of many-body states near the ground state,
have large spin fluctuations, and are poor metallic con-

TABLE XVII. Equivalence classes of the eight small-cluster sites in the sc, bcc, fcc, and sq infinite lattices.

Class sc

(2i, 2j, 2k)

(2i + 1,2j,2k)

(2i + 1,2j + 1,2k)

(2i, 2j + 1,2k)

(2i + 1,2j, 2k + 1)

(2i, 2j,2k + 1)

(2i, 2j + 1,2k + 1)

(Zi + 1,2j + 1,2k + 1)

bcc

(4i, 4J,4k)
{4i +2,4j +2,4k +2)

(4i +2, 4j,4k)
{4i, 4j +2, 4k +2)

(4,4J,4k +2)
(4i +2,4j +2,4k)

(4~,4J+2,4k)
(4i +2,4j,4k +2)

(4i + 1,4j + 1,4k + 1)
(4i +3,4j + 3,4k +3)
(4i +3 4J'+ 1 4k + 1)
(4i + 1,4j +3,4k +3)
(4i + 1,4j + 1,4k +3)
(4i +3,4j + 3,4k + 1)
(4i +1,4J +3,4k +1)
(4i +3,4j + 1,4k +3)

fcc

(2i, 2j, 2k)
i +j+k =even

(2i, 2j + 1,2k + 1)
i+j+k =even

(2i + 1,2j,2k + 1)
i +j+k =odd

(2i + 1,2j + 1,2k)
i +j+k =odd

(2i, 2j,2k)
i +j + k =odd

(2i, 2j+1,2k +1)
i +j + k =odd

(2i + 1,2j, 2k + 1)
i +j+k =even

(2i + 1,2j + 1,2k)
i +j +k =even

sq

(2i, 2j)
i +j=even
(2i+ 1,2j)

i +j=even
(2i + 1,2j + 1)

i +j=odd
(2i, 2j + 1)

i +j=even
(2i, 2j)

l+J —odd
(2i + 1,2j)
E +J =odd

(2i + 1,2j + 1)
i +j=even
(2i, 2j +1)
l+J —odd
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ductors. These solutions exhibit HF character for only a
small range of the interaction and are sometimes magnet-
1c.

Geometry plays a similar role in both magnetism and
HF behavior. The sc and fcc lattices have a stronger ten-
dency toward magnetism and HF behavior than the bcc
and sq lattices.

In conclusion, the small-cluster technique is an alter-
nate approach to the many-body problem that treats elec-
tron correlation effects exactly, but has uncontrolled
finite-size effects. Group theory is used to simplify the
problem, so that many different cases can be studied. We
find a richness to the structure of the ground-state solu-
tions as functions of the interaction strength, electron
filling, and geometry, that includes magnetism and HF
behavior.
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APPENDIX

The cubic point group 0& has 48 operations; however,
the improper rotations and inversion yield no additional
information when spherically symmetric orbitals are
placed at each lattice site. Therefore, the relevant cubic
point group for the small clusters that we study is the or-
thogonal group 0 which has 24 operations. Similarly, the
relevant point group for the square lattice is C4„, which
has eight operations. The 8-site cluster has eight transla-
tions which yield space groups of order 192 (64) for the
cubic (square) lattices. However, it turns out that there is
a fourfold redundancy of group operations in the sc lat-
tice when spherically symmetric orbitals are placed at the

lattice sites (a similar phenomenon occurs in the four-site
tetrahedral cluster ). This reduces the order of the space
group for the sc cluster to 48 and this reduced group is
isomorphic to the point group 0& with an origin at the
center of the cube.

The sc Brillouin zone" is sampled at four symmetry
stars: I (d =1), R (d =1), M (d =3), and X (d =3).
The character table is reproduced in Table XIII with
the conventional and the space-group notations for the
ten irreducible representations.

The bcc and fcc lattices display the full symmetry of
the proper space group. Their Brillouin zones are sam-
pled at three symmetry stars: I (d =1), H (d =1), and
N (d =6) for the bcc lattice and I (d =1),X (d =3), and
L (d =4) for the fcc lattice. The character tables ' are
reproduced in Tables XIV and XV. The space-group
operations are denoted by a point-group operation with
origin at site 1 and a translation vector. Nearest-
neighbor translations are denoted by ~ and next-nearest-
neighbor translations by 8. The subscripts ~~, l, and 2
refer to translations that are parallel to, perpendicular to,
or at an angle to the rotation axis of the point-group
operation,

The sq lattice also displays the full symmetry of the
proper space group. The Brillouin zone is sampled at
four symmetry stars: I (d =1), M (d =1), X (d =2),
and X (d =4). The character table is reproduced in
Table XVI. The symbol 0. denotes reflections in the
planes perpendicular to the x and y axes, o. ' denotes
reflections in planes perpendicular to the diagonals x+y,
0 denotes the third-nearest-neighbor translations, and
the subscripts

~~
(i) refer to translations that are parallel

(perpendicular) to the normal of the mirror plane.
Finally, we elaborate upon the algebraic identification

of the lattice points in an infinite lattice with those of an
eight-site cluster with PBC s. A sc lattice is described by
triples of integers (i,j,k). The eight-site sc cluster with
PBC's describes the same set of points, but each point on
the infinite lattice is identified with one of eight
equivalence classes, determined by the site in the small
cluster with which it is equivalent. These equivalence
classes are given in Table XVII for the sc, bcc, fcc, and sq
lattices.
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