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We present an analytic procedure for evaluating the wave-vector, fI, dependence of the lowest-
order exchange contribution to the density and spin-density response functions for the homo-
geneous electron gas. The two types of contributing diagrams are calculated seperately by
different methods. The simpler one based on the lowest-order self-energy insertion can be inte-
grated directly. To obtain the analytic form of the more complex "vertex correction" diagram
a differential equation is derived from the original integral representation and then integrated.
The derivative of the result has a (ln ~q

—2k~~) divergence at q = 2k~, which is stronger than
that of the Lindhard function. Some consequences of this singularity are discussed, e.g. , the
asymptotic structure of the statically screened potential of an impurity in a metal and the den-

sity Suctuation induced by it. Furthermore, from the low-q expansion of the result we obtain
higher-order gradient corrections to the exchange energy functional within linear response.

I. INTRODUCTION

For more than 30 years there have been many at-
tempts to evaluate the eKect of the electron-electron in-

teraction on the wave-vector and frequency dependence
of the proper density response function II(q, ~) of the
homogeneous electron gas, i.e. , to go beyond the Lind-
hard function. A formal expression for the lowest order
correction, II (q, ~), in terms of Feynman integrals was
written down in 1959 by DuBois. The first calculation of
its q dependence was reported in 1970 and was restricted
to the static response function II (q, ~ = 0) (Geldart and
Taylors —in the following referred to as GT). It took al-

most 10 more years until the complete frequency depen-
dence had been examined (Brosens ef al. and subsequent
publications, Holas ef af. , and Rao et al. ). 1I (q, 0)
and variants of it have been recalculated several times
(e.g. , by Tripathy and Mandal, s Toigo and WoodruÃ,
and Alvarellos and Flores~o). All of the above work on
II required substantial numerical integrations due to the
complexity of the Feynman integrals involved. Recently,
there has been renewed interest in II'(q, 0) (I&leinman
and collaborators, ancl Chevary and Vosko ), espe-
cially for the region near ~q~ = q = 0. Again all of these
works were left with very complex two-dimensional inte-
grals, which had to be evaluated numerically. However,
numerical calculations can approach the origin only up
to a small but finite value of q depending on tile quality
of the numerical integration (compare Refs. 11 and 12).
Also the region near q = 2kF is di%cult to treat numer-
ically. In particular, the analytic form of the derivative
of II (q, 0), which is expected to diverge at this point,
cannot be extracted directly. It is the objective of this

paper to present the first completely analytic derivation
of Ilr(q, 0). The novel technique that made this deriva-
tion possible is described since it may be useful for related
problems. Special attention is paid to the region around

q = 2k~. In particular, the singularity in the derivative
of II~(q, 0) at q = 2k& is found tobe (ln ~q

—2k~~)s. If the
strength of this singularity is not damped by higher-order
corrections, its eA'ect on a number of phenomena, e.g. ,

Ikohn anomalies, will be important. We indicate conse-
quences of this property and those of II (q, 0) at q = 0.
It is worth noting that 1I (q, 0) also determines the ex-
change contribution to the spin response function.

Diagrammatically II'(q, to) (we shall refer to II as the
exchange contribution to II in distinction to the Hartree-
Fock series of which 1I is the lowest-order term) is given
by the graphs shown in Fig. 1.'4 In the following we shall
use the notation introduced by Geldart and Vosko, ts who
call the first diagrain in Fig. 1 II~, whereas the sum of the
latter two diagrams is denoted by II&. The frequency in-

tegrations in these diagrams are simple contour integrals.
In terms of the dimensionless function

I(q) = II'(q, 0) = A(q) + B(q)

one finds, for the A and B graphs, respectively,

FIG. 1. Feynman diagrams for II (q, ~), which for ~ = 0

give rise to Eqs. (2) and (3).
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where the + signs in Ay(q) and By(q) refer to the rela-
tive sign between p and k in the Coulomb denominator
inside the large parentheses [note that these formulas dif-
fer from the corresponding ones of GT by a factor of —2,
where the minus sign is due to the different definitions
of 11(q,u)). These "symmetric" (in p and k) forms for
Ay(q) and By(q) are deceptive, in that they make it
appear that the + and the —terms are very similar. In
fact they are not, the + type of term being much more
complicated to evaluate, as will be seen below.

Chevary and Vosko emphasize the importance of
Pauli-principle restrictions for the numerical calculation
of I(q). This shows up in additional step functions in the
integrands of Eqs. (2) and (3) without changing the value
of these integrals. In this way one avoids terms involving
principal-part integrals that do not exist in the final re-
sult. For an analytic evaluation, however, principal-part
integrals pose no problems. We thus use the above simple
form of A(q) and B(q).

The symmetric forms for A(q) and B(q), Eqs. (2) and

(3), have been useful for numerical work in that they al-
low the ln lql singularities present in the individual terms
to be cancelled on a point by point basis. Furthermore,
in evaluating integrals of this type there has been a ten-
dency towards using spherical coordinates. For exam-

ple, GT utilized them and, after performing the two az-

imuthal angle integrations analytically, were left with a
four-dimensional integral which they had to calculate nu-

merically. Brosens et al. appreciated that in cylindrical
coordinates with the z axis in q direction four of the
variables only enter the interaction part of the integrand
and can be integrated analytically. However, the result-
ing expression is very complicated and no way has been
found to evaluate the remaining two integrals analyti-
cally. Qn the other hand it is well known that the 8
type of graph is based on the self-energy which can be
evaluated analytically for a static interaction. Thus the
B diagram is easily reduced to a two-dimensional inte-
gral. Using cylindrical coordinates a.gain this integral ca.n
be performed. We outline the main steps in Appendix A.
Unfortunately, for the A type of graph an unsymmetric
choice for the coordinates does not allow for a straight-
forward integration due to the inherent symmetries in
the integral. To evaluate this integral we utilized a new

technique. Basically, we transform the original integral

(2) into a differential equation for A(q) (again apply-
ing cylindrical coordinates) which can be solved easily.
The boundary conditions in this context are given by

low-order terms of the large-q expansion of the original
integral. This method turns out to be very powerful in
the present case and consequently could be very useful
for similar problems. We demonstrate this point in Ap-
pendix B by applying our method also to B(q), which
makes its evaluation very simple.

The organization of the paper is as follows. In Sec. II
we evaluate and discuss the analytic form of I(q), Eq. (1),
refering to the various Appendixes for details. In Sec. III
the effect of I(q) on screening of impurities in the ho-

mogeneous electron gas is presented, with the surprising
result that for very large distances r from the impurity
the screening charge falls off as [cos(2k~ r)(ln l4ky r l) j/r
in distinction to cos(2kpr)/r for the noninteracting sit-
uation. Furthermore, in Appendix E we use our I(q)
to obtain low-order gradient corrections to the exchange-
energy functional.

II. EVALUATION OF I(Q)

We start with a direct integration of B(q). For the
evaluation of the integral (3) one rewrites it in terms of
the lowest-order self-energy, '

B+(q) = —, d'p, 2,~(l p+ql),2 a 8(k~ —p)
(4)

B-(q) = ——, d'p, , '-"(p)
2 a 8(kF —p)
e g +2@'p

2 I 2 2

B (Q)= l
ln

1 1+Q 1

4Q 1 —Q 4Q2

The subsequent integrations are elementary. They are
summarized in Appendix A. In terms of the characteristic
dimensionless variable Q = q/2k~ the results are

8+(Q) = ln
l

—ln lQl+
1 —Q 1+Qi 1

16 2 1 —
p 4+» ll+ ql — in ll —ql,

1+2Q 1 —2Q
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B(Q)=, ln + ln ~1+ Q(
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It is interesting to note that B~(q) diverge like +I/4Q
for small Q. On the other hand the combined result

B(q)
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only diverges logarithmically, as has been shown previ-
ously by GT and is finite elsewhere. Note that the sin-
gularity of its derivative at Q = 1 is stronger than that
of the static Lindhard function; however, we will see that
the singularity in A(Q) is even stronger.

Using the identity

2.0—

0
0 1.0

q/ 2kF

%a ~ ~» ~ ~
2.0

one can expand this function for small and large Q,

FIG. 2, Wave-vector dependence of the "vertex-
correction" diagram, —A(q) (dotted line), the "self-energy in-
sertion" diagrams, B(q) (dashed line), and their sum, I(q)—
(solid line).
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The small-Q expansion agrees with the result of GT, who

evaluated the logarithm and the constant of 2. The large-

Q expansion agrees with their result in the leading term
(compare Eq. 5 of Ref. 4) but diff'ers for the 1/Q con-

tribution, which is the highest order they present, by a
factor of 7. However, the sum of the large-Q expansion of

B(Q) and A(Q) is given correctly by GT. Note the sim-

ilarity between the small-Q and the large-Q expansion.
The basic ingredient in both cases is the sum

1) = —,'[g(n+ -', ) + Cj+ ln(2)—:4(n),
p

+

where g(n) is Euler's psi function. In the following we

abbreviate this sum by 4(n). As can be seen best from
Fig. 2, B(Q) is positive for all Q (and monotonically

decreasing) .
As already mentioned in the Introduction, we are not

able to find A(Q) by direct integration. We thus have

to rely on a diA'erent technique. In the following we use

the fact that there are several ways of defining a func-

tion. First, one can represent it in terms of elementary or

special functions. A Taylor-series expansion of the func-

tion contains the same information. Equivalent to these
two possibilities are integral representations (which is the
starting point in our case). Finally, a. diff'erential equa-
tion plus boundary conditions gives a function uniquely.
We shall combine the various representations to derive

A(Q). As an illustration of its power and validity, the
same method is applied to B(Q) in Appendix B.

We start with the discussion of A (Q). After scaling

p and k in the corresponding integral ('2) by q/2, one

obtains

A (It ') = —4~
d p d I' O(It —

~p
—q~) O(I~ —~k —

&l~)

2x)s (2x)s (q p)(q k)(p —k)2

where Ix = 1/Q = 2k /q Pand q = q/q. The variable Ii is most useful for the following discussion as it enters only in
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the boundaries of the above integral. In other words, as the first step of our scheme we transform the original integral
in such a way as to make the external momentum only appear in the limits, which is easily achieved in the present
case. We now first shift both the p and k integrations by q,

d p d k e(Ii —p) O(K —k)
(2m')s (2z')s (1+q p)(1+ q k)(p —k)2

Using cylindrical coordinates5 and carrying through the P integrations, one arrives at

(14)

K
A (I~ ') = ——,

' dz
-K

dZ
K

K
d2

K2 + I2
1 1

dg (I+ )(1+")f[( -")'+.+~l'-4»)'~'
The crucial observation now is that a differentiation with respect to I& automatically reduces the number of integrations
by one. Actually, only the derivative of the inner integrals gives a nonzero result. In this way one starts to transform
the integral representation (14) into a differential equation which will turn out to be easier to solve than the initial
integral. This transformation represents the second step of our method. The details of this process are given in

Appendix C. The result is

dl~( )dK R dA ( ) I~(1 —K ) 1 —I

which can easily be rewritten in terms of Q,

d 2 d sd Q 1+Q
dq(' q')dqq'dq"-'q' = 1-q '" 1-q

The solution of this differential equation is the third step of our scheme. In the present case it can be integrated
directly twice using the fact that

Q
p

z Q
dx ~ dygy = I" dygy — dgFz gz

0 0 0 0

where

d—F(&) = f(~)dz

by virtue of a partial integration in which the y integral is used as one z-dependent function, f(z) as the other. One
finally ends up with

A (Q) =—1-q' ( I+Q )' 1 —q'
48Q i 1 —Q ) 24Q', i 1 —z )

ln
/

dz/ In
[

+a/ ln + —/+ +c.6 1 1 —Q2 1+Q ) q ( 1+z 'I t'I —Q 1+Q 2) b
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The terms containing the constants a, b, and c represent the solution of the homogeneous differential equation
corresponding to Eq. (17). As one knows that A (Q) has to vanish like 1jq4 for large Q (see GT or Appendix D)
and is an even function of Q, the coefficients a, b, and c have to be identically zero.

We proceed with the discussion of A+(Q). If one attempts to find A+(Q) in the same way as we obtained A (Q),
one has to start with the scaled and shifted integral

A+(I~ ') = —47r
d p d% O(IC —p) O(Ii —I;)
2z)s (27r)s (1+q p)(1+ q k)(2q+ p+ k)2

(19)

In the shifted form of the integral the difference between A (Q), Eq. (14), and A+(Q), Eq. (19), is apparent. The
additional 2q in the denominator leads to substantial complications. Again the angular integrations can be carried
through directly,

Ap(IC ') = ——,'6

K
dz

—K

K
dz'

—K

K2 2 K —z' I 1
dy (1+z)(1+")([(2+ +")'+~+ ~j' —4»)'"

Differentiating once and carrying through the remaining x integration, one ends up with

.A+(I~ ') = —— dz
dK 4

1 W(z, z', Ix) + z(2+ z + z') + 2(l + z')
dZ ln(1+z)(1+ z') (2+ z+ z')2
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where W(p, k, Ii) is given by

W(p, k, Ii) = [I~ (2+ z+ z') +4(1+ z)(1+ z')(1+ z+ z')j'~ (2o)

In contrast to the case of A (Q) the second differentiation does not simplify the expression sufficiently to perform
further integrations. Thus the second step of our scheme cannot be carried through in full generality for the case of
A+(Q)

To circumvent this difficulty we resort to a power-series expansion in 1/Q (i.e. , Ii). We have calculated the first
five terms of A~(Q) (see Appendix D). After applying the same differential operator on these lowest five orders as we

found useful for A (Ii ), one obtains the small-Ii expansion of the differential equation for A~(Q),

(1 IY)A+(It )2It(1+st+ i5IC+ i'o5K+sisIt+''') (21)

This can be compared to the corresponding expansion of the inhomogeneity in the diff'erential equation of A (I~ ),

(1 —I~ ) .—,A (I~ ') = —2) 4(n) I~ "=—2(1+ sI~ + ,5'. + ',—O5I~ + s,sIC + ) .

n=0
(22)

The difference between both expansions is simply a factor of Ii'. . The similarity of A (Q) and A~(Q) is only evident
after the above differential operator has been applied and does not occur in A (Q) and A+(Q) themselves. We thus
presume

I~' dE I~ dI' + (1 —I' ) 1 —I

and consequently

d 2 d ad 1 1+Q
dQ" Q'dQQ'dQ"'Q' =

Q(1-Q) '"1-Q

(23)

(24)

to be the correct differential equation for A~(Ii ). Again we note that the diff'erence between Eqs. (24) and (17)
is only a factor of Q, the form of the differential operator being an essential ingredient in illustrating the relation
between both functions. At the moment we have no completely general proof for Eq. (24). It is based on the above-
shown lowest, five orders of the small-I~ expansion. However, we have no doubt about the correctness of Eqs. (23)
and (24). We shall comment on this point below.

As for A (Q) the differential equation (24) can be integrated directly, with the result (the homogeneous terms have

already been dropped)

A+(Q) =—1 —Q' ( 1+Q
48Qs ( 1 —Q

(1 1 —Q~

l, 8Q 16Q~

I
ln

1 —Q' ( 1+Q
8Q' q 1 —Q

1 —Q' l 1 ( 1+zl'
I

+ 24Q,

I+Q ) ~ 1 ( 1+z l'
dz —ln

1 —Q) 0 z2 ( 1 —z)
1+Q 1 —Q

2Q
» Il+ Ql+»i ll —Ql+ ln IQI

2Q
(25)

A+(Q) has been written in this particular form in order to emphasize that the last line exactly represents B(Q), —
showing the large degree of cancellation between A(Q) and B(Q) first noted by DuBois.

Combining the results (18) and (25) leads to the complete A(Q),

A(Q) =—1 —Q ( 1+Q 1 —Q2 ~ 1 —z2 t' 1+z
48Qs 0 1 Q 24Q~ 0 z2 0 1 —zI

ln + dz
I

ln

8Q 16Q2 1 —Q 0 z2 1 —z ) (26)

This result, of course, satisfies the combined differential equations (17) and (24). We did not find a representation for

A(Q) in terms of elementary functions. However, there are several ways of representing A(Q) via simple integrals or
special functions. The version chosen here exhibits the finite value of A(Q) and the strength of the singularity of its
first derivative at Q = 1 most clearly.

For completeness we present the expansions of A(Q) for small and large Q,
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As for B(Q) the large-Q expansion agrees with the work of GT for the leading I/Q~ term T.he coefFicient of the
1/Q contribution (which is the highest order that they present) differs from their result (Eq. 3 of Ref. 4) by a factor
of 2s. As already mentioned for the expansion of B(Q), GT's expansion of the sum of A(Q) and B(Q) is correct.
Note, that the coefficients of both expansions of A(Q) diff'er from the corresponding ones of B(Q) just by an additional
4(n), Eq. (12), in A(Q).

In Fig. 2 A(Q) is compared with B(Q). A(Q) is negative for all Q and one has

IA(q) I
& IB(q) I

(29)

Furthermore, Fig. 2 indicates the large degree of cancellation between the diagrams.
With the results for B(Q), Eq. (9), and A(Q), Eq. (26), it is straightforward to write down the exchange contribution

to the response function at zero frequency, I(Q),

1 —Q4 ( 1+Q 1 —Q~ ~ 1 —z~ I' 1+x)
48Qs ( 1 —Q 24Q~ z2 ( 1 —z

1 /i 1 —Q~ 1+Q( ~ 1 —z2 1+zl
ln !dzln

8 (Q 2Q' 1 —Q), z' 1 —z)

Equation (29) represents the main result of the present paper. The above form exhibits most obviously the structure
of I(Q) and its first derivative at Q = 1. To allow for comparison we furthermore show the Taylor expansions of I(Q)
for small and large Q,

I(Q) = &

—1+ —) ~

' " ' ' 'Q~") = —fy —Q~y 6Q4y ~~6 Qsy ~4~3Qsy. . . Q&f@(n)[@(n)—1]

+=1

(@(n)[@(n) —1] 1 ( ( 1 1 23 1 1562 1 34 906 1

(, (n+ 1)(n+ 2) Q2"+~) 27Q 675 Q 55125 Q 1488375 Q

(30)

where 4(n) is given by Eq. (12). Both expansions agree
with all existing work 15 ~ 6 to the orders that were
already known (the coefficients of the second and third
terms in the large-Q expansion have been evaluated by
Chevary and Voskois). For the large-Q expansion this is
in no way surprising as our calculation is based on this
expansion. On the other hand it is a strong confirmation
of our result that the value of I(Q) at Q = 0 is identical
with DuBois's calculation. -

The values for I(Q) from our analytic function are
identical with those of the numerical calculation of
Chevary and Vosko. The agreement between both re-
sults depends only on the accuracy of the numerical in-
tegration they used. The two regions of Q that are nu-
merically difficult to treat are near Q = 0 and Q = 1.
Consequently one finds at Q = 0.001 a relative accu-

racy of 10 and at Q = 0.5 less than 10 . The point
Q = 1 represents the numerically most subtle case. So
the agreement reduces to 1.5 x 10 7 at Q = 0.999 and
finally to 3 x 10 5 at Q = 1. For values of Q greater than
1 the agreement is even better (Q = 1.001:10 ). Also
Chevary and Vosko fitted the first four coeKcients of the
small-Q expansion from their numerical results (without
knowledge of the analytic form presented here). The co-
efficients of Q and Q that they obtained are identical to
our result; the Q coefficient is off'by no more than 0.36%%uo.

This comparison definitively establishes the correctness
of our analytic I(Q) in spite of the missing general proof
for the differential equation for A+(Q).

One can also directly calculate the leading terms of an
expansion of I(Q) around Q = 1. Defining Q = Q —1

one finds
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2( q)'
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1 —z' (
dz

z
ln

p z ( 1 —z )
= 3.606 1707097

Isp(Q) = —,'[I(q&) + I(qi)] .

Here Qt and Qt differ by their scale given by the spin-up
and spin-down Fermi momenta,

„ I(q)
Q~ ]

( i —q~', i —q
2 I ln

I + x ln
24 ( 2 ) 2

+ finite terms

which is stronger than that of the static Lindhard func-
tion. Assuming this result to be characteristic for the ex-
act screening function leads to interesting consequences,
the most basic of which is discussed in Sec. III. It is,
however, not clear to what extent dynamic screening will

alter this behavior. Thus any use of this result for real
physical phenomena has to be regarded as tentative.

So far we have discussed only the spin-unpolarized
case. Noting that for a spin-polarized system the spin-

up and spin-down electrons respond seperately for all one
electron-hole pair processes, we can write

The relative accuracy of Eq. (32) is 4 x 10 at Q = 0.9
and 4 x 10 s at Q = 1.1. I(Q) is plotted in Fig. 2. Note
that the value at Q = 1 can be evaluated analytically by
using

f 1 —z' ( I+z l'
dz

I
In

zz ( 1 —z) 3

The value of ~I(q = l)I = s2/24 = 0.411233517.. . may
be compared to the numerical results of GT (0.4089),
Antoniewicz and Kleinmanii (0.4098), and Chevary and
Voskoi2 (0.411 221) confirming the accuracy Chevary and
Vosko are claiming to reach (0.41122 6 0.00002).

The strength of the singularity of the derivative of I(Q)
at Q=1 is

2krg
'

III. STATIC SCREENINC
IN THE HOMOGENEOUS ELECTRON GAS

In order to show the asymptotic behaviour of bn(r), this
integral has to be evaluated for large r. A standard proce-
dure (compare Ref. 14) is to rewrite Eq. (I) as a contour
integral. Noting that due to their origin all logarithms in
II (Q, O) can be interpreted as

ln
I
1 + QI =

z lim ln[(l 6 Q) + ri2], (37)

one can write Eq. (36) (to first order),

One of the most important consequences of the struc-
ture of the response function is the screening of impu-
rities in the homogeneous electron gas. To lowest order
this leads to the well-known long-range oscillations in the
density deviation bn(r) (induced by a localized charge)
which, e.g. , are responsible for the Friedel oscillations
due to impurities in metals. ' In the following we want
to show that the exchange contribution to the response
function qualitatively changes the large-r behaviour of
bn(r).

In linear response the density deviation induced by a
point charge of strength Ze is given by

g CO (
bn(r) = dqqe""

I

—1
4xzr (q

—4s e'II(q, 0) )
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bn(i. )
Zi . , „(lim dq qe'~"

~

—1
4x r u o i, qz —4+e2[11„(q,0) + II„(q, 0)]

(38)

where the subscript g indicates that all logarithmic terms have to be replaced by Eq. (37). Choosing the branch cuts
of ln ~(l +Q)z+ g~~ to extend from +I 6ig to kl 6 ioo and deforming the integration contour to go along these branch
cuts as shown in Fig. 3, the integral (38) is essentially determined by the phase shift of the logarithms in II&(q, 0). The
new feature of II (q, 0), Eqs. (1) and (29), is the occurrence of squares and cubes of the logarithm whose associated
phase shifts along Ci 2 (where Q = +1+ iv) are

lim([ln ~(a+iv) + il )]
—[ln [(—~+ iv) + g []'}= 4xiln [v

lim([ln [(c+ iv) + rl []
—[ln [(—c+ iv) + g [] }= 6xi(ln (v —il [) —2x i .

For the asymptotically dominant terms one finds (including the lowest order )

bn(i. ) -— n2p2
x~ (2+ +

™~'
7I' 12 )

cos(2kFi. ) nr. $7r' 21+ '
~

——1+ (1 —C —ln ~4k/r~) as p oo,
2ir i, 4

(39)

Im(q)

branch cut
of ln(2kF —q+ ig)

C2
pole

-2kF 2kF

&neutral integration contour

Ae(q)

FIG. 3. Cq and Cq are the deformed contours for the
asymptotic evaluation of Eq. (38).

where n = (4/9ir)i~a and C = 0.5772. . . is the Eulei'. —

Mascheroni constant. Note that the integrated asymp-
totic density remains finite.

Thus for very high density and not too large r the low-

est order in e, i.e., r, , dominates. But with increasing
r the ln ~4kFr

~

term from the exchange contribution be-

comes more important than the lowest-order term for all

densities. This effect sets in for smaller r the lower the
density. As an example one finds at the nearest-neighbor
distance in aluminum, ~N = 8.58/2k~, that the ex-
change term changes bn(i NN) by a factor of 1.5, whereas
in sodium, rNN

—6.73/2k~, it is already a factor of 3.
Similar modifications to the Ruderman-Kittel-Kasuya-
Yosida (RI&KY) interaction will occur since IIi(q, 0) is

also the exchange contribution to the spin response func-

tion.
Of course, dynamic screening of the bare Coulomb in-

teraction may affect the singularity of the derivative of
II (q, 0) at q = 2kF. If screening alters the singularity
this can only lead to a reduction of its strength, and even

in this case it is not clear whether the reduction would

soften the singularity so much as to let IIO(q, 0) dominate

for all r. Furthermore, as one could expect higher-order
contributions to II(q, 0) to contain still higher powers of
the relevant logarithm, this result is only an indication
that the lowest-order term Ilo(q, 0) might not represent
the final answer. The complete response function could
lead to a qualitatively different asymptotic behavior than
the Lindhard function.

IV. CONCLUSIONS

We have derived the analytic form of the first-order
proper response function, Eqs. (1) and (29). Although
for one part of this function a completely general proof
is still lacking, there can be no doubt that the part of
the result obtained by generalizing a large-q expansion,
Eq. (25), is correct (especially in view of the identity
of our analytic result with the numerical calculation of
Chevary and Vosko). The most interesting feature of the
analytic 1Ii(q, 0) certainly is its structure near q = 2kF.
The cubic logarithmic divergence of its derivative at this
point dominates over the single logarithmic divergence
of the Lindhard function. We demonstrated the qualita-
tive change in the density deviation induced by an impu-
rity in a homogeneous electron gas. If this result is un-

affected by dynamic screening, important consequences
would emerge due to the effect of screening on various

physical phenomena. The so-called Kohn anomalies in
phonon dispersion curves may serve as an example.

As a by-product of our analytic result for IIi(q, 0) we

also obtained (in Appendix E) low-order gradient contri-
butions to the exchange-energy functional within linear
response beyond the corrected Sham term.
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APPENDIX A: DIRECT ANALYTIC INTEGRATION OF B(q)

Starting with Eqs. (4) and (5) and using cylindrical coordinates one has to evaluate

4 k p QkF~ —z~

Bp(q) = dz dp E(/pz+ z~+ 2zq+ qz),
o q+ '2z ~ (A1)

4'
B-(q) =-

e q

kF
dz

—kF
,~(V'p'+ z')

q+2z ~ (A2)

With the transformations

G = gpz+ qz+'2qz+ zz, p'+ z',
for B~(q) and B (q), respectively, one can perform the p integration directly,

kF

B+(q) =, dz
z [F( q'+ 2qz+ kF) —F(q+ z) —3kF(k~ —z')],

q+ 2z
(A3)

2
B-(q) =

3q

kF

dz [F( ) —F(kF) + 3kF(kF —z )],q+ 2z
(A4)

F(z) = (z —3k&z —2kF) ln 1+ —(z —3k&z+ 2kF) ln 1 — + k~z
kF F kF

(A5)

Note that these integrals are well defined for all values of q [apart form the point q = 2kF where only the sum of
B+(q) and B (q) is finite]. Singularities of individual terms cancel each other. Apart from the first term in B+(q) the
integration is straightforward after a shift in the integration variable, 2z = y —q. For the first term the transformation
u = gqz + 2qz + k&~ is applied. Finally one uses the fact that

kF q

kF+q

ln
/

1 —tz
[ ln

/
1 —t~

fdt + df,
2kF+q 2kF —q

ln(z( 2k~+q l
dz ln

z 2kF —
q ) (A6)

by virtue of the transformation z = I/t in one of the terms. After some algebraic manipulations one finds Eqs. (7)
and (8).

APPENDIX B:ALTERNATIVE EVALUATION OF B(q)

As shown in Appendix A, B(Q) can be obtained by direct integration. The problem is that the same is not possible
for A(Q). However, we can derive an ordinary differential equation for A (Q) and infer one from the large-Q expansion
for A~(Q). These differential equations are easily solved. In this Appendix we want to demonstrate this procedure
for B(Q) in order to establish the method.

The scheme we shall use can be summarized as follows. We first derive an ordinary differential equation for B (Q)
from the integral representation (3), i.e. , with symmetric integration momenta p and k. We show that this procedure
is no more di%cult than the direct integration in the more appropriate unsymmetric coordinates. However, we cannot
find the differential equation for B+(Q) using the symmetric coordinates. Instead of applying the same unsymmetric
coordinates as for the direct integration (which we know to solve this problem) we shall simulate the situation where
one does not have this possibility [as for A+(Q)]. We shall resort to a power-series expansion for large Q, calculating
its lowest five orders. We then construct the differential equation for B+(Q) from this expansion. It turns out to be
very similar to that of B (Q) and thus allows for a much easier integration than the original integral.

As first step in this alternative evaluation of B(Q) we rewrite the original integral such that the external momentum

Q only enters in the boundaries of the integral. After scaling all momenta in Eq. (3) by q/2 one finds the equivalent
of Eq. (13),

B (I~ ') = 4ir
d p d% 8(K —ip —qi) 8(Ii —[k —qi)
2')s (2ir)s (q p)z (p —k)z

where q = q/q and Ii. = 1/Q. In cylindrical coordinates the angular integrations are easily carried through,



42 %AVE-VECTOR DEPENDENCE OF THE EXCHANGE. . . 4949

K K -s K K —z'
1 18 (I% ) = is dz dz dz dy (1+ )'([( — ')'+ +yj' —4 y)"' (B1)

The z and y integrations can also be performed. However, the result is a rather complex two-dimensional integral
that has not been evaluated analytically up to now. By the method we want to illustrate in this Appendix, one
obtains simple integrals even for the above symmetric coordinates.

As second step we derive a differential equation for 8 (Q). Differentiating Eq. (Bl) by Ii and carrying through
the remaining z and y integrations yields

dz'(ln (z' —It
) + ln [z + Ic ~)

K

K
dz'(ln (z' + I~

( + ln
(
z —I&0 —2 dz'ln (z —z'(

K
K

dz z[(z —I&) ln [z —Ii
~

—(z+ Ii. ) ln [z+ Ii [+2It ln (2K]+ I&] .
(1 + z)'

There are several ways to proceed from this point. In anticipation of a transformation that is useful for A (Q), we

substitute y = (1+ z)/(1 + I& ) and find

1 d g 1 2K 2I~ 2I~ 2 1+K l'
8 (Ii ) = — —,ln (I+ Ii[+,ln (I —Ii (+,z(21n ~2I& [+ 1)+ ln1+ I& 1 —I~~ 1 —It )

l —K ]+K
1+K 1 —y 1-h. 1 y

dy ln [I —
y~ + dy ln [I —

y~y2 y2

Of course, one could perform the remaining integral by use of the substition z = 1/y. But we want to show that
our method does not require "refined" transformations. We thus take one more derivative and find the differential
equation

d 1 d, , 1 1 1+ K I~

de Ii d jy 2 I —Ii 2 1 —Iy (] —I/2)~

In terms of Q this means

(B2)

dQ dQ 21 —Q' 1 —Q (1 —Q )

This differential equation can be integrated much easier than the original integral,

(B3)

8 (Q) = ln
~

+ ln
1 —Q2 1+Q ) 1 1+Q
16 ~ 1 — ) 4 1—

1 a
4Q' Q' (B4)

Finally, as one sees from the original integral after the shift p ~ p+ &q, k ~ k+ 2q,

8 (q) = 64m
d p dsk e(kr —p) 8(k~ —k)
2ir)s (2~)s (q2+ 2q. p)2(p —k)2 ' (B5)

8 (Q) falls off like 1/Q4 for large Q. This leads to the conclusion that a = b = 0.
If one now tries the same procedure for 8+(Ii ) using symmetric coordinates, one ends up with

1 .8+(I~ ') = —s dz
—K

1 ) W(z, z', Ii) + z(2+ z+ z') + 2(1+ z')
dz

I, (1 + z) 2 (1 + z') 2 ) (2 + z + z') 2

where W(z, z', I~ ) is given by Eq. (20). This integral seems to be prohibitively complex. Further differentiation does

not simplify the problem. The symmetric coordinates are not appropriate for the discussion of 8+(Ii ). Of course,

we know from the direct integration that an unsymmetric choice for the coordinates solves this diKculty. However,

assuming that this would not be possible, we can find the differential equation for 8+(Q) by a large-Q expansion.

To this aim we first calculate this expansion of 8+(Q) from the integral (3) shifted by q/2 and scaled by k~,

8+(q) = -4 d p d I' O(1 —p) O(1 —k)
2ir)s (2ir)s (Q+ q p)2(2Qq+ p+ k)2

' (B6)
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Again, instead of using a partially integrated version of this integral for expansion we attack it by a "brute-force
expansion, thus simulating a more complicated integrand. Its general expansion reads

8+(Q) = —
s ) 2 s e(l —P)O(1 —k) ) ~

a„b + e„~d~ I (B7)

a = (2m+ l)(q p) (B8)

1=0
(Bg)

e = (2m+2)(q p)' +', (B10)

) I I24 (7+&)I"+'l(7+~)'I" ')22~+'
q (m —j)1 (21 + I) ~

(B11)

The resulting integrals are elementary, but become very lengthy for higher orders. We thus restrict ourselves to
presenting the result of the lowest five orders,

1 1 11 1 183 1 506 1 7141 1

85Q 10Q 175 Q 525 Q 8085 Q~ ) (B12)

In order to derive a differential equation from this expansion, we act on it with the same difI'erential operator that we

found in the differential equation of 8 (Q),

d s d 2 1 22 1 244 1 1012 1 14282 1

dQ dQ
+ 3 Qs 15 Q7 105 Qs 315 Q» 3465 Q's

We now compare this with the expansion of the differential equation (B3) for 8 (Q),

d s d ( 1 4 1 '23 1 176 1 563 1 6508 1

dQ dQ Qs 3qs 15q7+ 105qs + 315Q» + 3465Q» +

1 2 3 4 5 6
Q3'Q5'Q" Q''Q" 'Q"' ) '

(B13)

where we have seperated the expansions of both contributing terms. Looking carefully at both expansions, one
recognizes that the coefficients of the 8+(Q) equation are just the diff'erence of the above two series instead of their
sum as for 8 (Q). One thus concludes that 8+(Q) should obey the differential equation

d sd 1 1 1+Q Q
dQ dQ 2 1 —Q2 1 —Q (1 —Q2)-" (B14)

In fact, this equation is satisfied by the exact result (7). We thus have found the correct differential equation by use
of the large-Q expansion. A straightforward integration of Eq. (B14) as for 8 (Q) consequently gives exactly Eq. (7).

Of course, all results of this scheme are identical with those of the direct integration presented in Appendix A. It has
the particular advantage that it can be used when a direct integration is not possible, while some kind of expansion
is (almost) always available.

APPENDIX C: DIFFERENTIAL EQUATION FOR A (K i)

In this Appendix we derive Eq. (16). To this aim we differentiate Eq. (15) with respect to I1,

dZ
K

K
A (I~ ') = ——

4

K
dZ

—K

K2 2
1

dz
(1 + z)(1 + z')

X
{[(Z—Z )2 + Z + I1 2 — 2]2 —4Z(IX 2 —Z 2))1/2

Carrying through the remaining z integration, one arrives at

1 G
g

IY.A (I~ ') = ——
AdK 4

dz
K

dz' ln(1+Z)(1+ Z') (Z' —Z)'
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A second differentiation,

dI& I4 de 4
Jr (1+ z) pl+ I& I& —z

1

(1+z)(l + z')(It—

and evaluating the z' integration gives

1 2K+ ln
1 —I& Il+z y

E K 1

") ' -~ . (1+z)(I+")(I&+") '

(1 —I4 ) — A (I& ') = —
4 dz (1 —E&)

~

ln +2lnd 1 d i i 1 ( 1+z 2'
1+z I& —z )

+(1+Z) I
» + 2»1+z 2I~

1+ Ic' I~ +z j
Using the transformations y = (1+ z)/(1 6 Ii) for the more complicated second and fourth terms one obtains

(1 —I&) — A (I& ')= —-~ln
~ +2ln

d 1 d, 1( I+I&1
4& 1 —I&)

1 —IC 2 1 + I& &-~ ln ~1 —
y~ln . + dy

4I1 2 1 —I& 1

Filially one can carry tlirough tlie last, Ii differentiation. This leads to the differential equation (16)

APPENDIX D: LARGE-Q EXPANSION OF A(Q)

A suitable starting point for an evaluation of A(Q) for large Q is found in Eq. (2) after the transformations

p ~ p+ -q, k ~ k+ 2q and scaling of both momenta by kF,

4s' dsp d'k 8(1 —p) O(1 —k)
+ Q2 (2s')s (2ir)s (Q+ q p)(Q+ q k)(2Qq+ p+ k)

4+4 dap d% 8(1 —p) O(1 —k)

Q (2s) (2s) (Q+ q p)(Q+ q k)(p —k)

where q is the unit vector in the q direction. Both integrals can be expanded to all orders in Q = 41'&/q,

4 00

(Q) ) P ( P) ( ) ) ( k)2n-rn(" )rn

Q Q " (2s) (27r) ( —k)
(Dl)

A+(Q) = —
s ) 2 s s O(1 —P)8(1 —Ir) ) ~

e„b + 2f„~d (D2)

=).(q k)' '(q p)'
L=O

(D3)

f = ).(q k)' +' '(q p)',
L=O

(D4)

where b„a dnd„are given by Eqs. (B9) and (Bll). We would like to mention that using the standard Feynman
trick to combine denominators turns out to simplify the expansion considerably for A (Q) (where one has only two

polynomials to combine), but does not, help for the more interesting case of A+(Q). The above integrals can be solved

completely. One finds five coupled sums for the coefficient of order n At the momen. t we are not able to simplify
these results in order to allow for further manipulations. Instead we show the lowest five orders. Using

f
y2n (n (y2 + p2)2l+1 (p2 + 2)2n

—1 ~2 + p2 2pI, y 1 (2ii 2f I)(2pg)2l+2 (2pI. )2n+1dy, , = —2 ) + ln
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and

1 2n —1

dp k~ + p2 —2pky

2pk
k~+ p2 k~+ p2 —2pky

'dg

f
1 1 +x2 +1 k2 +1 +—k 2(n+ m+2) l n+ 1, 2!+1 m+ 1 21+ 1)

one arrives after a considerable amount of algebraic manipulations at

1 1 1 13 1 1 394 1 1 21946 1 1 217219 1 1 28333519 1

4 Q4 f6 (3)2 Q6 g4 (f5)2 Q6 40 (/P5)2 Qltl 6O (3/5)2 Q12 g4 (3465)2 Q14 )
(D5)

( 1 1 1 1 43 1 19 1 12139 1

36 Qs 40 Qs 2100 Q'P 1134 Q'2 873180 Q'4 )
The expansion (D6) is used to derive Eq. (21). Adding up A (Q) and A+(Q) leads to

(D6)

1 1 1 /4) 1 1 23) 1 1 (176) 1

4 q 12 3) q 24 15) qs 40 105) Q'

1 563 1 1 (6508 1

60 315 Q'~ 84 3465 Q'4 (D7)

APPENDIX E: GRADIENT CORRECTIONS
TO THE EXCHANGE FUNCTIONAL

IN LINEAR RESPONSE

Within linear response, i.e. , for a slightly disturbed
system with density deviation bn(r) from the density
no of the unperturbed homogeneous system, the change
of the exchange-correlation functional from the homoge-
neous system is

AE„,[np, 6n] = —
2 bn(q)

1

11(q, o)

1

n (, o))""'-'
(El)

represents the lowest-order correction to the exchange
functional of a homogeneous system.

For the lowest-order gradient contribution to this ex-
change functional, only the two lowest coeKcients of the
Taylor expansion of IIi(q, 0) and II (q, 0) for small q are
necessary. This lowest-order gradient contribution to the
functional (E2) was first evaluated by Sham. As the
analytic form of II (q, 0) was unknown, he expanded the
integrands of Eqs. (2) and (3) in powers of q in the spirit
of the related work of Ma and Brueckner on the cor-
relation energy functional. As this expansion does not
exist for small q, he had to introduce a finite screening
parameter into the Coulomb interaction which serves as a

The contribution of order e to the functional (El),

(g) 1 d q II'(q, 0)
E[nP6n]Q(2)3»(q)[IIP(0)]2( —q)

(E2)

19 261 ['Pion(r)]
882 000 [n(r)]s)'

)(E4)
As is obvious from the identity of our analytic result for
II (Q, o) with the numerical evaluation of Chevary and
Vosko, we find the same prefactor as these authors and
Kleinman and collaborators.

regularization to keep all integrals finite for low momen-
tum. After carrying through the integration, the limit of
vanishing screening parameter is taken. Even with that
prescription only the sum of both integrals remains finite
as individual divergencies due to the leading logarithms
in both A(q) and B(q) have to cancel. This procedure
leads to the well-known exchange functional

(,) 7e 3 [Tn(r)]2
432lr(3+2)')'3 [n(r)]~)'3

'

The prefactor of this functional, however, has been ques-
tioned by Ikleinman and collaborators in a series of
publications. Their numerical evaluation of the q co-
efficient of II (q, o) led roughly to a, relative prefactor
of 7 for the lowest-order exchange functional compared
to Sham's coeKcient. In their highly accurate numerical
treatment of II (q, 0), Chevary and Vosko come to the
same conclusion with an accuracy of about 10 . They
also could show numerically that the order of taking the
limits q —0 and qsglgelqjl, g 0 is crucial for that result.

XVith our analytic result it is easy to obtain low-order
gradient corrections to the exchange functional within
linear response. After transformation into r space, one
ends up with the exchange-energy density

—5e'-' |[«(r)]" 73 [»(i.)]'-
216'(3ir2) )' ( n(r)4)'3 500 [n(r)]2
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