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Zero-temperature statics and dynamics of a random-exchange model
for magnetic properties of La, Sr„Cu04 in the insulating regime
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Results are presented for the zero-temperature statics and dynamics of a random-exchange model

proposed for the magnetic properties of La2 „Sr„Cu04. Numerical calculations of the staggered
magnetization, the static structure factor, the distribution and localization of the harmonic magnon
modes, and the dynamic structure factor are reported for c (& 1, where c is the fraction of ferromag-
netic exchange integrals in an otherwise perfect two-dimensional antiferromagnetic array with
nearest-neighbor Heisenberg interactions. The relevance of the findings to the magnetic behavior of
La2 „Sr„Cu04 in the insulating regime is assessed. It is pointed out that the model accounts for the
crossover from antiferromagnetic to spin-glass behavior, the broadening of the static structure fac-
tor, and the renormalization of the spin-wave modes that occur with increasing hole concentration
at low temperatures.

I. INTRODUCTION

The discovery and subsequent study of high-T, materi-
als has stimulated the development of numerous micro-
scopic models for their properties. In such a situation, it
is important to test the predictions of the models against
experiment, since the results of these tests may make it
possible to eliminate candidate theories.

In this paper, we will focus on the low-temperature
magnetic properties of La2 Sr, Cu04 in the insulating
regime and, specifically, on a model introduced by
Aharony et al. to explain the magnetic phase diagram. '
The essential feature of the model is the assumption that
the introduction of a small number of holes in the Cu-0
planes, brought about by doping with Sr, produces a
short-range ferromagnetic exchange interaction between
the Cu + spins that tends to destroy the antiferromagnet-
ic order characteristic of the undoped material. At low
temperatures, as the hole concentration increases, the
system passes from an antiferromagnetic to a spin-glass-
like state and, ultimately, undergoes a metal-insulator
transition into the superconducting phase at a strontium
concentration corresponding to x =0.06.

The magnetic properties of undoped La2Cu04 are well
characterized by the Heisenberg Hamiltonian

where S; is the spin of the Cu ion (S =
—,
'

) and J, is the
exchange interaction between spins on sites i and j. The
dominant interaction is an antiferromagnetic coupling
between nearest neighbors in the Cu-0 planes for which
J;.=0.12—0. 16 eV. '

In the insulating regime, the holes are immobile at very
low temperatures. Aharony et al. ' assume they reside on

the 0 sites that are midway between the Cu ions. The lo-
cation of the holes is consistent with the theory of Em-
ery5 but differs from the underlying picture of the t-J
model where the holes form singlet states with the Cu
ions. A hole on the oxygen will interact with the Cu
ions and, thus, affect the exchange interactions. The crit-
ical feature of the model introduced in Ref. 1 is the as-
sumption that a hole on an oxygen site between two Cu
spins introduces a strong ferromagnetic exchange interac-
tion between them.

The Hamiltonian associated with this model takes the
form

(2)

where the prime signifies that the sum is limited to
nearest neighbors on a square lattice. In Eq. (2),
J;, =J (J & 0) if there is no hole on the oxygen site be-
tween the Cu ions and J;.= EC (E & 0), if t—here is a hole
on the oxygen site. In Ref. 1, arguments are given for
K/J » 1. The question we are addressing is whether this
Hamiltonian can account for the magnetic properties of
La2 „Sr,Cu04 in the insulating regime. More
specifically, is the model an adequate first approximation
for describing the efFect of the holes on the statics and dy-
namics of the Cu spins at low temperatures?

This paper reports the results of an investigation of the
zero-temperature behavior associated with the Hamil-
tonian displayed in Eq. (2) with a small concentration, c,
of random distributed ferromagnetic interactions. (We
reserve the variable x for the Sr concentration. ) A pre-
liminary report on the effects of the ferromagnetic in-
teractions on the staggered magnetization and static
structure factor was given in Ref. 7. After reviewing that
work, we will concentrate on the dynamical aspects of
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the model. The results of numerical calculations of the
distribution and localization of the magnon modes and
the zero-temperature dynamic structure factor are
presented for c =0.01, 0.05, and 0.10.

Our approach to the problem is based on large scale
calculations of the properties of finite arrays of spins.
Apart from those inherent in the starting Hamiltonian,
our principal approximation is to neglect quantum fluc-
tuations and work within the framework of a classical
(Neel-like} ground state and harmonic (linear) spin-wave
theory. Although both of these are severe approxima-
tions for two-dimensional, spin- —,

' systems, nevertheless,
there is experimental and theoretical evidence that they
provide a reasonable starting point for a "first-
approximation" characterization of the statics and dy-
namics in undoped La2Cu04. ' '

Recent studies have shown that our methods can ac-
count for the neutron scattering from three-dimensional
dilute magnetic semiconductors in the spin-glass re-
gime, ' and the quasi-two-dimensional magnet
Rb2Mn, Cr, C14,,

" which, like the model under study,
has competing ferromagnetic and antiferromagnetic in-
teractions. Apart from the question of quantum correc-
tions, we expect a similar degree of success from our
analysis of the random bond model. Judging from the
situation in La2Cu04, we anticipate that a fully
quantum-mechanical calculation would produce results
which were qualitatively similar, but differed quantita-
tively on the order of 20%, a scale set by the effect of
quantum fluctuations on the zero-temperature staggered
magnetization and spin-wave velocity of the two-
dimensional Heisenberg antiferromagnet.

The remainder of this paper is divided into four sec-
tions. Section II is a summary of the pertinent results for
the static properties presented in Ref. 7. The distribution
and localization of the magnon modes are given in Sec.
III, while the calculation of the dynamic structure factor
is outlined in Sec. IV. Section V is devoted to a discus-
sion of our findings and their relation to experimental
studies.

II. STATIC BEHAVIOR

The starting point in the analysis is the establishment
of equilibrium spin configurations of the corresponding
classical spins for various distributions of ferromagnetic
bonds. In this step, we followed the approach of Walker
and Walstedt' in consecutively rotating the spins into
the directions of their local fields until the total energy
stabilizes to 1 part in 10. With the configurations in
hand, it is possible to calculate a variety of equilibrium
properties. Of particular importance are the staggered
magnetization and the static structure factor.

We have carried out a series of calculations of both the
staggered magnetization and the structure factor for
K/I=3. Representative calculations of the staggered
magnetization were also carried out for other values of
the ratio, and it was found that quantitatively similar be-
havior was obtained as long as K/J ) 1.

The staggered magnetization associated with a particu-

s=& '

a=x,y, z
gn, g—n,

where n; (n. ) is a unit vector pointing in the equilibrium
direction of the ith (jth) spin on the A (B) sublattice and
X is the number of spins. The average and standard devi-
ation of the staggered magnetization obtained from 10
configurations of 80X80 spins are displayed in Table I.
From the table it is evident that the introduction of 1%
ferromagnetic interactions produces an approximately
28% reduction in the staggered moment (Ms=1 for
c =0). Such a result is consistent with the analysis of
Parker and Saslow' and Vannimenus et al. ' The latter
authors used an effective-medium approach to establish a
critical concentration, c„(E/J), at which widespread
noncolinearity of the spins first appears. According to
their analysis, in two dimensions, c«=0 for ElJ~1,
which suggests that even a very low concentration of
"wrong sign" interactions will reduce the staggered mag-
netization by a significant amount when the strength of
the ferromagnetic coupling exceeds the antiferromagnetic
interaction. We note that the rapid decrease in the stag-
gered magnetization with increasing c is qualitatively
consistent with the crossover from antiferromagnetic to
spin-glass-like behavior in La2, Sr„Cu04 that was dis-
cussed in Ref. 1.

The static structure factor, S(q), is obtained from the
Fourier transforms of the unit vectors associated with the
equilibrium spin configurations according to the equa-
tions

n(q)= g e 'n
J

S(q)=N 'n(q) n( —q) .

In our studies we focused on the neighborhood of the su-
perlattice point n (1, 1 } associated with antiferromagnetic
long-range order. The calculations were carried out for q
along [1,1] according to the prescription
q=n(1+Q, 1+Q), 0 Q l.

The results for c =0.05, 0.10, and 0.15 are shown in
Fig. 1. The data are obtained by averaging over 30
configurations of 60X60 arrays and 10 configurations of

TABLE I. Calculated values of the staggered magnetization
as a function of the fraction, c, of ferromagnetic exchange in-
teractions for 80 X 80 arrays with E/J =3.

0.01
0.05
0.10
0.15
0.20
0.25

Ms'

0.725
0.193
0.071
0.035
0.026
0.019

EMs

0.221
0.062
0.029
0.022
0.010
0.008

' Average (Ms ) and standard deviation (EMs ) of the staggered
magnetization obtained from 10 configurations of randomly dis-
tributed ferromagnetic interactions.

lar equilibrium spin configuration is obtained from the
expression

2 1/2
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80 X 80 arrays. In all cases E!J =3. The data show very
clearly that a small concentration of ferromagnetic in-
teractions has a substantial effect on the Bragg peak. In
addition to the overall broadening of the peak, a shoulder
develops in the neighborhood of Q =0.1. Although vary-
ing less rapidly with impurity concentration, the behavior

350
C=0.05

of the structure factor is qualitatively similar to neutron-
scattering data for La2 Sr„Cu04 reported by Birgeneau
et al. "

One can infer an effective inverse spin-correlation
length, ~, from the half-width at half maximum of the
peak in S(Q) according to the equation Ir=&2m times
the HWHM (Lorentzian approximation). From Fig. 1 we
obtain the values c =0.05, ~=0.11; c =0.10, x=0.31;
c =0.15, ~=0.66; c =0.20, v=0. 88; c =0.25, v= 1.1,
where v is in units of the reciprocal of the lattice constant
of the spin array. The rapid increase in ~ is consistent
with the falloff in the staggered magnetization displayed
in Table I, while the magnitude indicates that the correla-
tion length is on the order of the average spacing between
ferromagnetic bonds. '
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III. HARMONIC MAGNONS

The equilibrium spin configurations discussed in Sec. II
are the starting point for the calculation of the spin exci-
tations in the linear approximation. As shown in Ref. 12,
these excitations, which we refer to as harmonic mag-
nons, are the eigenvalues of a dynamical matrix of dimen-
sion 2NX2N obtained by linearizing the equations of
motion about the equilibrium spin orientations. Because
of computational considerations, the diagonalization was
limited to arrays of size 24X24.

In Fig. 2 we show the distribution of magnon modes
for c =0.01, 0.05, and 0.10 in a system where E/J =3.
The histogram displays the combined data from three
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FIG. 1. Static structure factor vs Q. Q is related to the wave
vector by q=m(1+Q, I+Q). + average of 10 configurations in
80 X 80 arrays, 6 average of 30 configurations in 60X 60 arrays.
c =0.05, 0.10, 0.15„0.20, and 0.25. Note change in vertical
scale.

FIG. 2. Distribution of magnon modes for K/J=3. Data
shown are from three configurations with a fraction, c, of ran-
domly distributed ferromagnetic exchange interactions in an ar-
ray of 24X 24 spins. (a) c =0.01, (b) c =0.05, (c) c =0.10. Note
change in vertical scale.
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N

g (ti2 +b2 )2 g (a,„+b,'„)

where a;„and b,„are expansion coefficients of the vth
mode at the site of the ith spin. Broadly speaking, the re-
ciprocal of I. is a measure of the number of sites on which

con6gurations of randomly distributed ferromagnetic in-

teractions. The data for c =0.01 show the characteristic
distribution of a two-dimensional Heisenberg antiferro-
magnetic, which has a peak at E =4JS, along with a
small number of high-energy modes at E=(6—7}JS.
With increasing c, the peak at 4JS decreases in amplitude
and more modes appear at high energies.

Information about the localization of the magnon
modes can be obtained from the localization indices (or
inverse participation ratios) defined by'

the magnon mode has significant amplitude. Thus, smaH

values of L, L —N ', are associated with extended states,
whereas values of L ~0. 1 characterize modes where the
amplitude is confined to a relatively small number of sites
(e.g., S 10}.

Values of the localization indicates of single
configurations of spins with K/J =3 and c =0.01, 0.05,
and 0.10 are plotted in Fig. 3. Two features of the data
are immediately evident. First, the high-energy modes
are strongly localized, and, second, the modes at the top
of the spin-wave band become more localized as c in-
creases.

Due to the fact that the modes above 4JS are strongly
localized, one can use a local field picture to account for
their energies. In this picture, the magnon energy is
equal to the Zeeman energy in the local field, i.e.,

Esr= g J,J(S )
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When c =0.01, the modes in the neighborhood of 6JS are
associated with spins which have one ferromagnetic in-
teraction and three antiferromagnetic interactions. In
the simplest approximation, the two spins connected by
the ferromagnetic exchange are parallel, whereas the an-
tiferromagnetically coupled spins are antiparallel. In
such a situation

EM =(3+If /J) JS,
so that E~=6JS when K/J=3. With increasing con-
centrations of ferromagnetic bands, the spins are no
longer approximately colinear so that the eigenvalue dis-
tribution broadens into a band. In addition, modes ap-
pear which are associated with spins that have two or
more ferromagnetic interactions.
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IV. DYNAMIC STRUCTURE FACTOR

As discussed in Ref. 16, numerical calculations of the
zero-temperature dynamic structure factor S(q, E),

S(q,E)=S„„(q,E)+S (q, E)+S„(q,E),
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FIG. 3. Localization indices, Eq. (6}, for K/J =3. Data
shown are from one configuration with a fraction, c, of random-
ly distributed ferromagnetic exchange interactions in an array
of 24X24 spins. (a) c =0.01, (b) c =0.05, (c) c =0.10.

can be carried out for finite arrays of spins. The calcula-
tions involve the integration of the linearized equations of
motion for the boson Green's functions that are derived
by carrying out a Holstein-Primakoff expansion about the
equilibrium spin configurations obtained through the
minimization procedure outlined in Sec. II. The results
of such calculations for a 40X40 array are shown in Figs.
4 and 5 for c =0.0 and c =0.01, 0.05, and 0.10, respec-
tively. The q values span the range from (m, m. ), the anti-
ferromagnetic superlattice point, to ,'(n, vr), the bound—ar.y
of the antiferromagnetic (AFM) Brillouin zone, according
to the equation q=(2m /40)(n, n), with n =21, 22, 23, 25,
27, and 30. All curves are normalized to the same area.

In the data for c =0 (Fig. 4), the peaks follow the
dispersion curve for the ideal square antiferromagnet
where the spin-wave energy is given by

E(q)=4JS[1—
—,'(cosq„+cosq } ]'~

In the undoped system, the finite width of the peaks
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FIG. 4. Dynamic structure factor for an ideal square antifer-
romagnet. 40X40 array. Curves labeled {a)-{f) correspond
different q values according to (a) q=(2m/40)(21, 21), (b)
q=(2m. /40)(22, 22), (c) q=(2~/40)(23, 23), (d) q=(2n. /
40)(25,25), (e) q={2n/40){27,27), and (f) q={2n./40){30,30).
All curves are normalized to the same area.

arises from the exponential cutoff, exp( —at), in the
Fourier sine transform leading to the dynamic structure
factor. ' As discussed in Ref. 16, a cutout'factor is needed
to smooth out the oscillations arising from the finite in-
terval of integration. The optimal choice of a depends on
the characteristic frequency and, thus, on q. Writing q as
before, (2n/40)(n, n), we used the following (n, a) pairs:
(21,0.083), (22,0.010), (23,0.125), (25,0.167), (27,0.200),
and (30,0.250). Note that for the pure system, the full
width at half maximum of the spin-wave peak is equal to
2a.

The data for c & 0 show that the effect of the ferromag-
netic bonds is to shift and broaden the spin-wave peaks
and to introduce a low-energy tail which has a tendency
to rise near E =0. At c =0.10, in the case of the wave
vectors near the superlattice point, curves (a)—(c), the
buildup in the intensity near the origin dominates the
spectrum, whereas for curves near the AFM zone bound-
ary, curves, (d)-(f), the spin-wave peak is still prom-
inent. [As a point of reference, the modes labeled
(a)—(f) in Fig. 5 are associated with the Q points in Fig.
I according to (a) Q =0.05, (b) Q =0.10, (c) Q =0.15,
(d) Q =0 25, (e) Q =0 35, and (f) Q =0 50 ] An
analysis of the data shows that the modes which are most
strongly damped are the ones whose wave vectors are ap-
proximately within an inverse correlation length of the
superlattice point, i.e., modes for which ~q

—(n, ~)
~

The broadening of the spin-wave peaks in the dynamic
structure factor reflects the fact that the wave-vector Q is
no longer a good quantum number when the system lacks
translational symmetry. The inelastically scattered neu-
tron excites a number of magnon modes rather than the
single mode excited in a translationally invariant system.
For this reason, the peaks can be looked upon as being in
homogeneously broadened in contrast to the spin-wave
peaks in systems without bond disorder, which are homo-
geneously broadened at finite temperatures due to
magnon-magnon interactions.

Although many of the spectra are seen to have peaks at
low energies, i.e., E &0.5, these are likely to be an ar-
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FIG. 5. Dynamic structure factor for a 40X40 array. Data

shown are from a single con6guration with a fraction, c, of ran-
domly distributed ferromagnetic interactions. K/J =3. Label-
ing of the curves is the same as in Fig. 4. Cutoff parameters are
as described in text.
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FIG. 6. Dynamic structure factor at q=(2m. /40)(21, 21).
Data shown are from single con6gurations of a 40X40 array
with a fraction, c, of randomly distributed ferromagnetic bands.
(a) c=0.0, (b) e=0.01, (c) c=0.05, (d) c=0.10. K/J=3,
a=0.04. All curves are normalized to the same area. The
cutoff parameter is a =0.042.
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FIG. 7. Dynamic structure factor is at q=(m. , m ), the antifer-
romagnetic superlattice point. Parameters and labeling of the
curves are the same as in Fig. 6.

tifact of the numerical calculations which force the struc-
ture factor to fall to zero at E =0 in an interval of width
a. ' We have explored this point in a high-resolution cal-
culation of the structure factor in the neighborhood of
the superlattice point. Figure 6 shows the results ob-
tained with a =0.042 at the point (2n /40)(21, 21).
Curve (a) is the spin-wave peak in the undoped system
and thus has an intrinsic width 2a. The spin-wave peak
is still present, albeit broadened, for c =0.01. In addi-
tion, there is significant intensity below 0.2JS. Curves (c)
and (d) show the spectra for c =0.05 and 0.10, respec-
tively. The spin-wave peak has disappeared and the in-
tensity rises below 0.1, before falling to zero as discussed
above. Figure 7 shows the data at the superlattice point,
(m, n ) For c =0..0, 0.01, and 0.05, the intensity is strong-
ly peaked at E =0 (in the limit a~0). In contrast, the
data for x =0.10 suggest the possible existence of a
nonpropagating AFM resonance-like mode with an ener-

gy equal to 0.15JS.
Although there is limited inelastic neutron-scattering

data available for doped La2Cu04, our results are qualita-
tively consistent with the findings of Ref. 4 for
La& 95Bapp5Cu04 in that, relative to La2Cu04, the low-
energy spin-wave modes are overdamped, whereas the
higher-energy modes are shifted to lower energies and
broadened.

V. DISCUSSION

The principal result to emerge from our calculations is
that the random-bond model proposed in Ref. 1 gives a
good account of the magnetic properties at low tempera-
tures in the insulating phase of Laz „Sr„Cu04. It repro-
duces the crossover from antiferromagnetic to spin-glass
behavior, ' the broadening of the static structure factor, '

and the renormalization of the spin-wave modes seen in
the related compound La, 95Bap p5Cu04. With our
choice for the ratio K/J, the changes that occur with in-
creasing c come more slowly but on the same scale as the
changes in La2 „Sr„Cu04 seen with increasing Sr con-
centration. Although this difference may reflect the ap-
proximations inherent in the model Hamiltonian, it is
also possible that the neglect of quantum fluctuations in
our calculations weakens the effects of the random bands.

Our results contrast with what could have been ob-
tained had we assumed that holes in the Cu-0 planes
formed singlet states with the Cu + spins. In this pic-
ture, doping with Sr introduces magnetic vacancies. In
the insulating regime, the vacancies are static, and the
equivalent spin Hamiltonian is that of a dilute Heisen-
berg antiferromagnet. Although the efFect of dilution on
the ground state of the two-dimensional spin- —,

' Heisen-

berg antiferromagnet does not seem to have been studied
in any detail, it appears unlikely that there would be a
crossover from antiferromagnetic to spin-glass-like be-
havior in the region x &0.06. '

Finally, it must be emphasized that our analysis has
been based entirely on the spin Hamiltonian for the Cu +

lattice. The effect of adding holes to the Cu-0 planes, in
so far as the magnetic properties are concerned, is as-
sumed to be accounted for by modifying the parameters
of the spin Hamiltonian. It appears that such an ap-
proach is an adequate first approximation for the insulat-
ing regime where the holes are immobile at low tempera-
tures. How the system behaves at high tempertures when
thermally activated hopping is important or at high hole
concentrations, when the system is metallic, is beyond the
scope of the model.
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