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A theoretical approach is presented to analyze the local transport field (LTF) and the voltage
measured by the scanning tunneling microscope (STM) in a current-carrying mesoscopic system.
The phase coherence between an electron wave reflected from a defect and the incident-electron
wave leads to Friedel-like oscillations in both the LTF and STM voltage (V»&). To study this
phase-sensitive feature in scanning tunneling potentiometry, we calculate the spatial profile of LTF
and VsT& for the case of grain boundaries in a thin film and for the case of an impurity near a sur-

face. For the case of a thin film containing grain boundaries within the jellium model, we find that
LTF and V»& differ in their spatial variation, but their drops across a grain boundary are of the
same order of magnitude. In general, the VsT& fluctuates on a larger length scale than the LTF.
For the case of a scatterer on a metal surface, the short-range variations of both V»& and the LTF
near a surface scatterer are on the order of 1 pV when the current density is on the order of 10'

0
A/cm' and the distance d between the STM tip and the metal surface is about 3 A. Observation of
the long-range variation in V»& away from an impurity requires submicrovolt resolution and
smaller values of d.

I. INTRODUCTION

The local transport field (LTF) is a local electric poten-
tial set up by the pileup of current carriers in the vicinity
of defects when a transport current passes through a con-
ductor. ' It is the total LTF drop across a sample that
contributes to the macroscopic voltage drop across the
sample. ' It follows that a complete description of elec-
tron transport should provide a correct LTF picture for
both macroscopic and microscopic systems. In this
respect, a direct experimental measurement of the LTF in
the vicinity of an individual defect could provide a valu-
able check on electron-transport theory and would be of
fundamental value,

Experimental techniques probing the LTF have been
developed recently, using the scanning tunneling mi-
croscope (STM) to simultaneously measure the surface
topography and the spatial variations of the LTF across a
grain boundary in a current-carrying conductor. In ap-
plying scanning tunneling potentiometry (STP), the STM
tip is held at a fixed distance above the sample surface
while the tip is scanned over the sample. The local po-
tential in the sample is identified with the bias potential
between the STP tip and the sample under the condition
of zero tunneling current. A steplike drop of the experi-
mentally determined STM voltage appears in the immedi-
ate vicinity of a grain boundary. ' This is in qualitative
agreement with the expected spatial variation of the
LTF.' The question of whether the STP really measures
the LTF was considered in our recent paper, where we
considered a grain boundary in a metal film and com-
pared the voltage drop across the grain boundary mea-
sured by the STP (5VsT~) with the voltage drop in the
LTF across the grain boundary (5V„T„)for various film

thicknesses. As we previously pointed out, the LTF is

essentially proportional to the local pileup of electron
density associated with the electron-scattering
states, ' ' ' while the STM is more sensitive to those
electron-wave functions that extend farther outside the
surface. ' Consequently, the electron states involved in

the LTF do not contribute equally to the STM voltage,
and 5VsT~ does not equal 5VtTF in general. However,
we did find that 5VsTM and 5VI T„are of the same order
of magnitude, with 5VsT~ exhibiting larger quantum-size

effects than 5 V~T„.
In this paper, we compare the spatial profile of 6VsT&

and 5VtTF. Biittiker"' pointed out that the phase-
sensitive nature of voltage measurement can give rise to
marked spatial oscillations in the STM voltage. This
phase sensitivity is due to the fact that the rejected elec-
tron wave from the grain boundary or defect is still
coherent with the incident electron wave in the neighbor-
hood of the scatterer where the STM tip is positioned.
Interference effects may then play an important role in
the STM voltage. However, except for one-dimensional
(lD) systems, there are two factors that diminish the
phase-sensitivity effects as the STM tip moves away from
localized scatterers. The first factor is the fanning out of
the reAected electron wave, which results in decreasing
interference as the distance from the scatterer is in-
creased. The second factor is that, as more transverse
states are involved, summing the contribution from these
transverse states effectively introduces some phase
averaging. The spatial variations of the STM potential
that we obtain corroborate this viewpoint.

The outline of this paper is as follows. In Sec. II we in-
troduce the general procedure to obtain the STM poten-
tial and the LTF. The incident electron distribution is
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taken to be of a general form and the geometry is a
three-probe configuration ' with the STM tip as an ideal
probe, which probes only one point on the sample surface
at a time. In Sec. III we apply the procedure to a specific
system: a grain boundary in a thin-metal film. Three sit-
uations, which correspond to three different incident-
electron distributions, are considered. The three situa-
tions are the reservoir case, the background relaxation-
time case and the case of a random distribution of paral-
lel semiclassical barriers. In the numerical examples, we
compare the spatial variations of the LTF, the phase-
sensitive STM potential and the phase-insensitive STM
potential. The phase-insensitive STM potential is the po-
tential when all interference effects are ignored, as in our
previous paper. In Sec. IV we apply the procedure to
another system: a surface scatterer at a metal surface.
Numerical examples are given for the incident-electron
distribution determined by a background relaxation time
~. Finally, Sec. V presents a discussion.

II. GENERAL FRAMEWORK

In this section, we consider electron transport in
mesoscopic systems, and we set up general expressions
for the local transport field 5VL~& and the STM voltage
5Vs&M in terms of an incident electron distribution and
the electron-scattering states.

As in our earlier work, we describe the incident-
electron distribution by effective channel-dependent
chemical potentials pL~ and pz~, where u is the channel
index. We define the channel index by the electron quan-
tum numbers which correspond to motion perpendicular
to the direction of the electron-transport current. We
consider the system to have a rectangular cross section,
with the electron transport occurring along direction x.
It follows that a—:(k, k, ), where k» and k, are the trans-
verse quantum numbers. The incident-electron states in a
given channel a on the left-hand side (right-hand side) of
the scattering region are taken to be occupied up to an
energy pr (pR ) at zero temperature. The left-hand side
(right-hand side) region refers to the negative-x (positive-
x) region with respect to the scatterers. Since we shall
assume the linear-response regime throughout, the quan-
tities pL and pz differ only slightly from p, the chemi-
cal potential for the equilibrium system in the absence of
current flow. To simplify notation, we define the effective
chemical potential of the incident electrons as

pL for k )0
Pa I,. for k. (O, (I)

where k =(k„k,k, ) and k refers to the wave vector of
the electrons in the propagation direction. If f (E&) is
the Fermi-Dirac distribution appropriate to chemical po-
tential p, then the incident-electron distribution is

f«~)=f'«~+ p —p~) =f'«~)+5f~

where, in the low-temperature regime considered here, it
is an excellent approximation to take

To derive an expression for 6 VL+F we note that 6 Vn F
arises from the self-consistent screening of the local pile-
up of electron number density, 5n (r), which is set up by
the scattering of electrons by the defects. [5n (r) is
called an electron-wind contribution. ] Now, for a state
lttz incident upon the defects, the scattering state is denot-
ed by gI,+, and 5n (r) is given by

5n„(r)= g 'g'+'(r)~ 5f„
k

= g l&I,+'(r)l'5(E~ —p)(p& —p) . (4)
k

The electron pileup 5n ( r ) acts as an external charge
distribution in an electron gas, and this gives rise to a
self-consistent electron-screening response. In the
linear-response regime considered here, the resulting
self-consistent electrostatic potential energy of an elec-
tron, 5VLiz(r), is related to 5n (r) via a kernel K(r, r') in
the usual way:

5VLr„(r)= fK(r, r')5n (r')d r' . (5)

The kernel K(r, r') is the response kernel for self-
consistent screening in the absence of an electron current.
The appearance of an equilibrium screening kernel is a
consequence of our restriction to the linear regime
of electron transport, where the chemical-potential
difference pL

—pz is so small that the system response
is linear in pL

—p, R, . (Nonequilibrium corrections to
K(r, r') are of order pI —pR, and would lead to contri-
butions to 6 VLCC& which are second order in pL ~

—pz~
and are therefore negligible. )

Now K(r, r') is very difficult to determine because it
describes the electron-screening response in the presence
of the scatterer and any surfaces or interfaces of the sys-
tem. Furthermore, K(r, r') should contain the effects of
the scatterer, surfaces, or interfaces to all orders in their
corresponding potentials. Rather than attempting to
determine K(r, r') from a full self-consistent-field calcula-
tion for an inhomogeneous system, we resort to an ap-
proximation for K(r, r'). In the simplest Thomas-Fermi
approximation, Eq. (5) takes the form'

5VLr„(r)= (dnldE—) '5n (r), (6)
e

where dn ldE is the electronic density of states at the
Fermi level in the absence of scatterers and e is the
charge of the electron. Equation (6) is a good approxima-
tion for 2D and 3D systems at distances beyond a few
screening lengths from a scatterer and away from the im-
mediate vicinity of a surface or interface. The approxi-
mation (6) works best when the screening length is small
and the response is spatially averaged over a window on
the order of a few screening lengths in size.

An improved Thomas-Fermi approximation would re-
place dn/dE in Eq. (6) by the local density of states at
position r in the presence of the scatterers, surfaces, and
interfaces. ' "The resulting form of Eq. (6) is' ' '

—g ~itI,+'(r)~'5(E„—p, )(p„—p)
k

5 VLrF( i') =
g ~gI,+'(r)~ 5(E„—p)
k
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where we have made use of expression (4) for 5n (r), and
have introduced the explicit form for the local density of
states in the denominator of Eq. (7).

Equations (6) and (7) give essentially the same 5Vi TF
for 2D and 3D systems in the region outside the immedi-
ate vicinity of scatterers, surfaces, or interfaces, especially
when averaged over a few screening lengths. Unfor-
tunately, even the result (7) arising from the improved
Thomas-Fermi approximation is not very realistic in the
immediate vicinity of scatterers, surfaces, and interfaces
whose potentials vary over distances on the order of
screening lengths, as is the typical case for metals. Con-
sequently, expression (7) is likely to be only a marginal
improvement over the simpler expression (6). In the nu-
merical calculations to be reported later we used the
simpler expression. More quantitative calculations of
5VLT„must await the availability of the full nonlocal ker-
nel IC(r, r') for scatterers in the vicinity of surfaces and
interfaces.

Now we consider a STM tip located near the surface of
the system. For a state Pi, incident upon the defects, the
charge current tunneling into state v in the STM tip is

I, (k;v)= lM(k;v)l 5(Ek E„), —

where M(k;v) is the tunneling matrix element, Ei, is the
energy of the state f&, and E„ is the energy of the state v
in the STM tip. The tunneling matrix element is of the
form

VsTM(ro) +5VsTM(ro)
e

The second term 5 VsTM in Eq. (13) is

(13)

5 VsTM(ro) =
—X l4~"(ro)l'5«k —v)(v. —

s )
k

'(r )l'5(E„—p)
k

(14)

We emphasize that Eq. (14), unlike Eqs. (6) and (7), is not
based upon any assumption concerning the electron-
screening response.

It is tempting to conclude from the identical form of
the right-hand sides of Eqs. (14) and (7) that the STM
does indeed faithfully probe the local transport field.
However, this conclusion is not correct because in Eq.
(14) ro refers to a point in the vacuum region outside the
surface, while in Eq. (7) r refers to a point within the me-
tallic system. What is at issue is whether 5VsTM(ro) and
5VLT„(r) have the same spatial profile for r inside the
system and ro outside the system. Comparing 5V„T„and
5VsTM in Eqs. (7) and (14), we see that the spatial depen-
dence of the scattering state QI,

+' plays an essential role
in the overall spatial dependence. The exponential tails
in gi,

+' outside the system will favor the components of
that correspond to larger momentum perpendicular

to the surface. Thus, in general, we do not expect 5VLT„
and 5Vs&~ to have the same spatial profile. Calculations
of 5VLT„and 5VsTM, respectively, are presented in the
following two sections.

IM(k; v) I'= Co I
q„'+'(r, ) I', (9)

III. GRAIN BOUNDARY IN A THIN-METAL FILM

where Co is a constant dependent only on the tip's prop-
erties and ro is the position of the STM tip s center of
curvature. Expression (9) was derived by Tersoff and
Hamann' within the spherical-tip approximation in
which the wave functions for electrons in the tip are ap-
proximated by their s-wave component. We emphasize
that ro is outside the system, and so Pi,

+ ' consists of ex-
ponential tails of various decay lengths.

Taking ps&& as the chemical potential in the STM tip,
the total tunneling current Is&& into the STM tip is given

by

IsTM —g QI, (k;v)5(Ei, —p)(pk —
psTM) .

v k

(10)

The ps&& is measured using the zero tunneling-current
condition, i.e., Is~~=0. The resulting expression for

PSTM 1s

& I&i,"(ro)I'5«k —p)pi

ps (ro)=
X lent '(ro)l'5«~ —

) )

k

VSTM(ro) PSTM( 0)/

which can be separated into two terms as follows:

(12)

The STM potential Vs~~ is related to ps~~ through the
expression

In this section, we consider a grain boundary in a thin-
metal film. The metallic thin film is taken to confine an
electron gas by finite potential barriers. The confining
potential U, (z) is given by

0, —W/2&z & W/2

U, l
l~W/2 (15)

where 8' is the thickness of the film. The unperturbed
electron states f„i,in the film have the form

ikp
f„i,(r) = —Q„(z ), (16)

where m' is the effective mass. The energy of the state

g„i, is E„&=E„+A'k /2m*. Since only the electrons
near the Fermi level EF are involved in the scattering, the
magnitude of the wave vector k for an occupied subband
(n ) becomes kF„.

A grain boundary is taken to lie parallel to the y direc-
tion in the film and its potential Uz is modeled within the
film as

where A is the area of the film, k=(k„,k~), and

p = (x,y ). Here n is the subband index and P„(z ) satisfies
the equation

r

~
+ U, (z) Q„(z)=&„f„(z),

2m Bz
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0, x(0
U~= fE. F~, 0&x&6,

0, x)A,
(17)

where 6 is the width of the grain boundary, and the bar-
rier height is expressed in units of EF~, the bulk Fermi
energy for a given electron density, with f being a dimen-
sionless parameter. Uz is zero in the region outside the
film. The modeling of the grain boundary as a potential
barrier within the jellium model is a crude but useful ap-

proximation. ' In the following analysis, we consider the
case where the electron-transport current is perpendicu-
lar to the grain boundary and the transport electrons
move along direction x. To make connection with the
notation introduced in the previous section, the channel
index is defined as a=—(n, k ), and the incident-electron
distribution is described by pI and p„where the left-
hand side region refers to the negative-x region and the
right-hand side region refers to the positive-x region.

When a state f„z of positive k„ is incident upon the
grain boundary from the left-hand side, the scattering
state is

ik y

l('+'(r) = '
Xnk

I

e " P„(z)+g r„„.(k„)P„.(z)e ', x &0
n'

g t„„(k,)P„(z)e ", x ) b,
n'

(18)

and when a state l(„z of negative k„ is incident upon the grain boundary from the right-hand side, the scattering state is

gt„'„(Ik, I)(t„(z)e ' " ", x &0
ik y n'

x
e "(t.(z)+ gr„'„(lk„l)P„(z)e "

n'
x)A, (19)

where the summations are over all subbands and r„„,r„'„are the reflection coefficients while t„„,t„'„are the transmis-
sion coefftcients. Here the effective wave vector along the x direction in subband (n') i s given by

k„(n') = [(2m '/A' )(E„E„)+k„]'— (20)

which can be imaginary if subband (n') is unoccupied. The conventional notation (
—1)'~ =+i is adopted throughout.

The summations in Eqs. (18) and (19) only include the subbands which have energies lower than the confining potential.
This is a good approximation if we consider regions that are at a certain distance away from the grain boundary. For
the case of an ultrathin film with only a few propagating subbands, this distance is on the order of a few times kF, where
A,F is the bulk Fermi wavelength. For thick films, the distance is on the order of A,F. We note that Equations (18) and
(19) have contributions from propagatimg channels, i.e., the occupied subbands, as well as from the evanescent com-
ponents, i.e., the unoccupied subbands.

We perform the summation over k„and k in 5n„„given by Eq. (4), and find

5n (r)= g J d8[~g' „'+(r)~'(pt p)+10'„+„'——(r)l (pq p)], —
n

(21)

where k„——:kF„( cos8x+sin8y ) and the summation is over all occupied subbands. For a grain boundary in a thin
film, it is appropriate to consider the thickness-averaged local transport field. We note that the density of states within
the film is

dn mN

dE
(22)

where N is the total number of occupied subbands. The approximation (22) is valid when the extension of P„(z) into
the vacuum is much smaller than 8'. The thickness-averaged local transport field is then given by

I

5VLTF(p)= g I d8 1+ g ~r„„(kF„cos8)~ e " +2Re[r„„(kF„cos8)e " ] (pL p)—
elm „o

I

+ g ~t„'„.(kF„cos8)~'e " (p~„p)—
n'

(23a)

and
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5VLT„(p)= g f dO g ~t„'„(kF„cos0)~ e "
(pL —p)

eNm „o
t

+ 1+ g ~r„'„.(kF„cosO) ~
e " +2 Re[r„'„(kF„cosO)e "

] (pt( p—)
n'

(23b)

where 5VLTF and 5VLT„are the thickness-averaged LTF for x (0 and x )b„respectively, and k„(n')
=[(2m'/A' )(E„E„—)+kF„cos 0)'~ . Evanescent wave components occur in the LTF when k„(n') is imaginary. In
obtaining Eqs. (23a) and (23b), we have substituted Eqs. (21), (22), (18), and (19) into Eq. (4) and then averaged the result
over the width W spanned by the subband wave function P„(z ).

Similarly, we perform the summation over k„and k in the general expression (14}for 5VsTM and find

g f «[lf'„+k'(ro) ~'(pL. —p}+~4'„'„'-(ro)~'(pR. —p })
1 n

n ' n

5VsTM(ro}=-
dO[~q(+) (r )~2+ (q(+( (r )~2]

Pt

(24)

where the summation is over occupied subbands. The full expression of 5VsTM in terms of all the refiection and
transmission coefficients can be obtained by a direct substitution of Eqs. (18) and (19) into Eq. (24), and will not be given
here explicitly.

The analysis so far is quite general for the case of a grain boundary in a metal film except that the grain boundary
must preserve the translational invariance along the y direction within the film and that we must stay away from the
immediate vicinity of the grain boundary, as mentioned after Eq. (20). In the following, we introduce the further ap-
proximation of neglecting interchannel scattering. This should be a good approximation for strong confining potentials,
as is the case for metal films. (For Uo = ~ it is exact. ) The refiection coefficients are then given by

and

fkF~sinh(KE)
r„„(k„)= r(k„)=

2iKk, cosh(KA)+(k„—K )sinh(Kb )
(25)

r„'„(k )=r'(k )=r(k„)e (26)

where K =(fkF~ —k„)' and kF& is the bulk Fermi wave vector. f is the barrier-strength parameter defined via Eq.
(17). Here k„ is taken to be positive. In this approximation, the LTF Eqs. (23a) and (23b) reduce to

and

VL m/2
5VLTF(p)= g dO[pL~+pz~ 2p+R—(kF„cosO)(pt~ pt(~)+—2(pt, —p)G„(O,x)],

eN~ „o (27a)

vr/2

X "0[p«+p«2p R(kFncosO)(pL pt( )+2(pR p}G.(0 ~ x)]
eNm „o

where R =
~(r and T= ~t ~

= ~t'~ =1—R, and

(27b)

G„(O,x)=Re[r(kF„cosO)e "
] .

Evaluating the STM voltage expression (24}, we find that

—g ~(t(„(zo)~ f dO[pt +pR 2p+R(kF„co—s0)(p, p„)+2(pt ——p)G„(0,xo)]
5VsTM(ro) =

2g ~P„(zo)~ f d0[1+G„(O,xo)]
0

(28a)

and

5VsTM(ro}=

—g ~(t„(zo)~ f dB[pL +p~ 2p R(kF„cosO)(p—L —p—„)+2(p„p)G„(0,b, xo)]— —

2y l(t„(zo)l'f dO[1+G„(O,xo —~)]
(28b)
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and

pL =p+ Ap (29a)

pea p . (29b)

This corresponds to the situation in which the grain
boundary is connected through perfect film conductors to
two incoherent reservoirs, one on each side of the grain
boundary. The chemical potentials of the two reservoirs
are characterized by p, L and pR as given in Eqs. (29a)
and (29b). For the background-scatterer case, we have

pL =p+Ap and p~ =p —Ap, where

kFn
Ap =eEol cosO,

FB
(30)

and where Eo is the x component of the electric field set

up by the background ~ and l is the bulk mean free path.
This is the situation when the conducting film on either
side of the grain boundary contains background scatter-
ers which can be characterized by a collision time ~. For
the case of random distribution of parallel semiclassical

From Eqs. (27a) and (27b) and (28a) and (28b) it is ap-

parent that 6Vs-fM and 6VL~„are not ~q~~l. The 6Vs~M
is more sensitive to the higher-occupied subbands be-
cause of the weighting factor ~(t„(zo)~ which is the ex-

ponential tail' of subband (n ) electron density outside
the surface region. In the case of one occupied subband,
the sPatial variation of 5V&zz and 6Vs+M are different be-

cause of the extra spatial dependent term in the denomi-
nator of 6Vs+M, however, the spatial variation scale is

the same, being determined by the effective k„of the oc-
cupied subband. For the case of more than one occupied
subband, the sPatial variation of 6Vs&M is dominated by
the spatial variation in subbands closest to the highest-
occupied subband. This then implies that 5Vs~M has a
longer variation scale than does 5VL~„. This feature has
been pointed out also by Buttiker. ' That the 5Vs&M is

able to pick up the interference between an incident-
electron wave and the wave reAected from the grain
boundary is shown by the existence of the interference
term 6„ in both the numerator and the denominator of
5Vs&M. It is the interference that gives rise to the spatial
dependence in 5Vs~M, and to phase-sensitive scanning
tunneling potentiometry. Dropping this interference
term from the 6Vs&M expression leads to the phase-
insensitive STP result, which is characterized by a con-
stant 5Vs~M on each side of the grain boundary. Equa-
tions (28a) and (28b) also show that some phase averaging
occurs as we sum the contributions from all possible k
channels within the same subband. Hence, except for the
one dimensional case, the deviation of the phase-sensitive
result from the phase-insensitive result is expected to de-
crease as the STM tip moves away from the grain bound-
ary.

The analysis thus far has not specified the form of pL „
and pz . In the following we consider three different
cases: the reservoir case, the background scatterers case,
and the case of a random distribution of parallel semiclas-
sical barriers. For the reservoir case, we have

barriers, we have pL =p+hp and pz =p —hp, where

Ap is given by

e6V
Ap~-

2R (k~„cosO)
(31)

where 6V is the total voltage drop across the sample di-
vided by the number of barriers. In obtaining Eq. (31),
coherent multiple scattering between barriers is neglect-
ed, as in Landauer's original treatment. ' This should be
a reasonable first approximation for weak-scattering
grain boundaries in the absence of appreciable back-
ground scattering, though some incoherent background
scattering should exist to remove the long-range,
coherent inter-grain-boundary multiple scattering.

For numerical examples in the three cases, we take the
film to be an aluminum film. The bulk Fermi wave vector
k+B equals 0.927 a.u. and Uo =1.36E~B, which we obtain
from the aluminum work function. For the grain bound-
ary potential parameters in Eq. (17) we choose f=0.2

and 6=4 a.u. The distance d of the STM tip to the film
surface is chosen to be 9.4 a.u. and the film thickness 8'is
chosen to be 60 a.u. With this film thickness, the number
of occupied subbands N is 18. The numerical examples
have all assumed that the transport electrons move from
left to right, along direction x. Hence b,p in Eq. (29a) is
positive while Eo and 5 V in Eqs. (30) and (31), respective-
ly, are negative.

In Fig. 1 we present a plot of 5VL~F, 5Vs~M, and the
phase-insensitive 5VsrM versus the STM tip distance
from the grain boundary for the reservoir case. The vert-
ical axis is in units of bp/~e

~
and. the horizontal axis is in

atomic units (Bohr radii). The grain boundary is shown
in the figure also. The 6Vs&M plot is the curve that oscil-
lates about the Phase-insensitive 5Vs+M value which is in-
dicated by the dashed line. On the left-hand side of the
grain boundary, 5Vs~M has a longer variation scale than
the 5 VL~~. However, on the right-hand side of the grain
boundary, the 5V„~„becomes a constant indicated by a
solid horizontal line. This is due to our assumption that
all excess electrons come from the left-hand side, which
gives no interference on the right-hand side of the grain
boundary. We note that the drops across the grain
boundary for 5VL~„and 5VsrM differ by a factor slightly
larger than 2 and hence are of the same order of magni-
tude.

In Fig. 2 we p~ese~t a plot of 5VLTF 6VsTM and the
phase-insensitive 6Vs~M versus position from the grain
boundary for the background-scatterer case. The vertical
axis is in units of ~Eol~. Again, the 5Vs~M curve oscil-
lates about the phase-insensitive 6Vs~M value which is in-
dicated by the dashed line. The 6Vs+M has a longer vari-
ation scale than the 6VL~„. A11 the three potentials are
odd functions of the distance from the grain boundary,
measured relative to the nearest edge of the grain bound-
ary. We note that the drops across the grain boundary
for 6VL~i. and 6Vs+M differ by a factor slightly larger
than 1 and hence are of the same order of magnitude.

In Fig. 3 we Present a Plot of 6VL+z, 6Vs+M, and the
phase-insensitive 6Vs~M versus position from the grain
boundary for the case of a random distribution of parallel
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FIG. 1. 5VG. 1. 5 V„TF, 5V»M, and the phase-nonsensitive 5VsTM plot-
ted against x for the reservoir case when a grain boundary is in
an aluminum film of thickness 60 a.u. The vertical axis is in

units of —b,p/e and the horizontal axis is in atomic units. The
region of the grain boundary is 0 x 4 a.u. The STM tip
hei ht is 9.4'g '

. a.u. , and the grain-boundary potential parameter

f=0.2. The phase-insensitive 5 VsrM is indicated by the dashed
line.

FIG. 3. 5 vLTF 5 vsTM, and the phase-insensitive 5 vsTM plot-
ted against x for the case of random distribution of parallel
semiclassical barriers. The vertical axis is in units of ~5V~ and
the horizontal axis is in atomic units. Other parameters are the
same as in Fig. 1. The phase-insensitive 5VsTM is indicated by
the dashed line. Both the 5VLTF and the 5VsTM oscillate about
the dashed line. The 5VsTM curve has a longer wavelength.

0.2

0. 1

tX

I- 0.0—
O
CL

LTF

semiclassical barriers. The vertical axis is in units of
~5 V~. In this case both 5 VsrM and 5 VLzF oscillate about
the phase-insensitive 5VsrM value indicated by the
dashed line. The 5Vs+M still has a longer variation scale
than the 5V„r„. All the three potentials are odd func-
tions of the distance from the grain boundary. We note
that the drops across the grain boundary for 5VL&F and

5VsTM differ by a factor close to 1.
Besides the above three examples, we examined other

cases of different film thickness, including cases when
there is only one occupied subband. All in all the numer-
ical results are consistent with our aforementioned quali-
tative picture, that 5VsrM and 5VtrF do not have the
same spatial profile, that 5VsrM has a longer variation

scale than that of 5 VL~F, except in the case of one occu-
pied subband, and that the phase-sensitive spatial varia-
tions in 5Vs~M diminish gradually with increasing dis-
tance from the grain boundary, except in the case of one
occupied subband. We remark that the spatial fluctua-
tion in 5VsrM away from the grain boundary should be
experimentally observable.

al. 4
o make connection with the experiments of Kirtl t

a., we consider the random-barrier model and choose
8 =1200—200 a.u. Using the current density appropriate to
these experiments (J—10 A/cm ), we find that the drop
in 5 Vs~M across the grain boundary is on the order of 200
pV, which is in agreement with the measured value. Our
calculated fluctuation amplitude of 5Vs~M away from the
grain boundary is about 1% of the voltage drop across
the grain boundary. This fluctuation amplitude, which is
on the order of microvolt, is at least an order of magni-
tude smaller than observed by Kirtley et al. , in addition,
the spatial period of the calculated fluctuation is much
longer than the observed spatial period. This suggests
that other factors are contributing to the large experi-
mental fluctuations.

IU. SURFACE SCATTERER NEAR A METAL SURFACE

—0. 1

-0.2
-100

I

-50
x (a.u. )

I

50 100

In t~'this section, we consider an impurity in the vicinity
of a metal surface. The metal surface is modelled by a
finite barrier U, (z ) which is given by

Uo, z&0
U, (z)= '0

0, z+0,
FIG. 2. 5VG. 2. 5vLT„, 5 vsTM, and the phase-insensitive 5 vsTM plot-

ted against x for the background-scatterer case when a grain
boundary is in an aluminum film. The vertical axis is in units of
~E~l ~

and the horizontal axis is in atomic units. Other parame-
ters are the same as in Fig. 1. The phase-insensitive 5 V»M is in-

dicated by the dashed line.

where for later convenience we define U in the f
$2 2

0 in e orm

q /2m *. The impurity potential is assumed to be
spherically symmetric and confined within a small
muffin-tin radius. Although a screened potential close to
a metal surface may be far from the spherically sym-
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metric muffin-tin type, we expect the results from this
simple model would still contain essential features of the
real problem. We describe the scattering behavior in
terms of the impurity scattering phase shifts. From now

on, we assume that the impurity scatters electrons iso-
tropically and keep only the s-wave phase shift 50.

For a plane-wave state k incident upon and reflected by
the barrier alone, the resulting scattering state is given by

P~+(r)= X '1

0

2k, —(q —k ) z ik r2 2 1/2
II II z )0

+i (q2 —k2) /2

k 1 (q
2 k 2)1/2

e +ik+r (
~ ~ ik r2e, z 0

k, +i(q k,—)' '
(33)

where k —=kII+k, z, k, is taken to be positive, and 0 is the volume of the system. Here k)I=(k„,k~) and rII=(x,y).
Now, in addition, we have an impurity with its position r; = —bz. The total wave function outside the metal surface
(i.e., z & 0) is found (see the Appendix) to be

2k,(+ )(r)— e
&n k +i( ' —k')'"

I

where

i5o—(q —k ) z (/II
~

zII
2i stn50 e

&4~ A()(k, )B(r) (34)

and

Ao(k, ) e ' +[[k,—i(q —k, )' ]/[k, +i(q k, —)'/ ]}e
i5o4qr 1+i sin50e 'Co

1 ~ KIIJO(
II II} ((k —K ) b —(q +K —k ) zB(r)=

"
(kFs —K')'"+1(q'+K( '—kF's)' '

(35)

(36)

C =—
0

In Eq. (35), the factor Co in the denominator is

E 2i ( k 2 g 2
)

1 /2

dK [(k —K )' —i( +K —k )' ] e (37)
2k II(k K }

/2
FB FB

In Eq. (36), Jo(KI(rII ) is the cylindrical Bessel function of order zero and rII =(x +y )' . B(r) is a function of rII and z
and is therefore cylindrically symmetrical. As in the previous section, the convention ( —1}' =+i is implied in the in-

tegrands of both Eqs. (36) and (37).
For the metallic system, we assume uniform background scatterers which set up the transport-electron distribution as

well as the transport field. In the following analysis, we consider the case where the transport electrons move along
direction x. The incident-electron distribution is described by pk, which is given by

P —eE0lk X,
I"k=

p, k, &O,

k, &0
(38)

where Eox is the field—set up by the background scatterers (Eo &0). The LTF is obtained from the general expression
in Eq. (4) and from the wave function and electron distribution in Eqs. (34) and (38), respectively. The result in the re-
gion very close to the barrier (z =0 ) is given by

5VLTF( II) 5VLTF(
II

} 0 4'

where

(39)

2
5VLTF(r(I }

'2
kFB

x( 1 x 2)1/2J [k r ( 1 x2)1/2]

XRe[sin50e /I p(krsx)B(r)I)[x+i(q kFsx )' /kr—s]] (40)

Here J, is the cylindrical Bessel function of order 1 and (t is the azimuthal angle. Similarly, the STM potential is ob-
tained by substituting Eqs. (34}and (38) into the general expression (14). The result is

5 vsTM (ro) =5 vsTM(r((, zo )(Eo1 )cos(t',

where r0=rll+z0z is the position of the STM tip and

(41)
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5VsTM(&~, zo) =

f 'dx

1

dx x ( I x 2
)
1/2—x J kFB1'ii( 1 x ) eX

2k x

]exp[ —(q' —k'ex FBX ) z R, o

q k—FBx )'i ], '' z, + —'Ia(kzo + o FBx)8(ro)I D 00
—D(x, ro)

(42)

where

4 Ao(k x o ino FBX )8 ( 1o)sin6

k x —'
FBXF, —i(q —k'

and

I
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the amplitude of the long-range oscillations goes like r
~~

in the asymptotic region. We also find that for zo =2 and
4 a.u. , 5VsTM(r~[ zo) and 5VLr„(r~~) vary in a similar way
in the asymptotic region, and they are of the same order
of magnitude. For z0=6 a.u. , 5VsrM(r~~, zo} is much
smaller than 5 V„r~(r~~ ) in the asymptotic region.

In Fig. 5, we present plots of 5 V„T~(r
~~

) and

5VsrM(r~~, zo) versus r~~ for the case b =5 a.u. The phase
shift 6o is again chosen to be 60 . The negative dip in the
close-in region is an order of magnitude smaller than that
in Fig. 4, while the longer-range oscillations are of the
same order of magnitude as those in Fig. 4. Again, as in
Fig. 4, for the case zo=2 and 4 a.u. , 5VsTM(r~~, zo) and

5VLT„(r~~ ) vary in a similar way in the asymptotic region,
and they are of the same order of magnitude. For z0=6
a.u. , 5VsTM(r~~, zo) is much smaller than 5VLT&(r~~ ) in the
asymptotic region.

In general, from Eqs. (39) and (41), the azimuthal
dependence of 5VsTM and 5V„T„ is the same as that of a
dipole field. The 5VLT„and the 5VsTM are of the same
order of magnitude in the region close to the scatterer.
However, except when the distance zo between the STM

0

tip and the metal surface is very small (zo -2 A in our
numerical examples), the 5VsTM fails to trace the asymp-
totic spatial variation of the 5V„T„. The asymptotic
5 V„T„(r~~) of a surface scatterer decreases like r

~~

times a
spatially oscillating factor, which is a consequence of in-
terference between the incident electron wave and the
scattered wave. Similar r~~ dependence is found in an
infinite-barrier model when the impurity is just inside the
surface. ' For

r~~ &&I, the interference effect should be
small and 5V„T„(r~~) should vary as a dipole field in the
radial direction. This would correspond to the asymptot-
ic field of a residual resistivity dipole located near a metal
surface. This asymptotic field is not contained in our
analysis because we have restricted attention to the near-
field quantum-mechanical regime where r~~

&&I.
We estimate that sub-pV sensitivity is needed in order

that the 5VsTM can efFectively probe the close in 5VLr„.
Using the relation E01=3n fiJOI(e kr), and assuming
that the current density Jo 10 Amp/cm, we obtain
Eol &4 pV. From Fig. 4, for the case of a surface

0
scatterer and for zo & 3 A, a conservative estimate of the
close-in variations of 5VLT& and 5VsTM gives values on
the order of 0.1 (Eol) 50.4 pV. A scanning tunneling
microscopy of sub-pV sensitivity is shown to be experi-
mentally possible by Pelz et al. Hence, for a close
enough STM tip (zo ~ 3 A}, the change in 5VsrM due to
the presence of a surface scatterer in a transport situation
should be experimentally observable.

V. DISCUSSION
A general theoretical approach is presented to analyze

the local transport field and the STM potential in a
current-carrying mesoscopic system. We have shown
that the phase sensitivity of the STM voltage measure-
ment gives rise to spatial variation of the STM voltage.
The STM tip is a weak-coupling probe which does not
couple equally to all subbands, but is more sensitive to
the higher-occupied subbands. Hence 5 VsTM and 5 VLTz

do not have the same spatial variation. However, we
have seen that the STM can still be used as a qualitative
probe of the spatial profile of the local transport field.
The phase-sensitivity of the STM measurements is not so
pronounced as was found by Biittiker for 1D systems. "
The point is that summing the distribution from different
channels leads to the integrals and summations in Eqs.
(28a), (28b), and (42). These integrals and summations in-
troduce some phase averaging to 5VsTM which results in
decreasing interference as the distance from the scatterer
is increased. We then expect the phase sensitivity to
remain significant at a11 locations only in one-dimensional
systems. "' A possible realization of such a system is
the narrow constriction having no more than a few prop-
agating channels.

We have considered two situations: a thin-metal film
containing grain boundaries and a scatterer on a metal
surface. For a thin-metal film containing grain boun-
daries, the 5 VsrM is shown to fiuctuate on a larger length
scale than the local transport field. The phase sensitive
6 VsTM always oscillates about the phase-insensitive
5VsTM value which is constant in space except for a step-
like change across a grain boundary. We have considered
three different incident-electron distributions for compar-
ison. The 5VsTM and the local transport field are of the
same order of magnitude for all three incident-electron
distributions. However, the incident-electron distribu-
tions that correspond to both the parallel semiclassical
barriers and the background-~ cases have fewer electrons
in the higher-occupied subbands. Hence the 5VsTM and
the local transport field have about the same spatial aver-
age. We have also shown that the fluctuation amplitude
of 5VsTM for typical parameter values is of the order of 1

pV, which should be observable experimentally.
For a scatterer on a metal surface, the 5VsTM and the

local transport field in the metal are of the same order of
magnitude provided that the STM tip is not too far from
the surface. In addition, the 5VsTM has the azimuthal
dependence which is typical of a dipole field. The radial
dependence of the local transport field is not the same as
in a dipole field in the regions where interference is im-
portant. However, in the region where r &&I, where r is
the distance from the scatterer, the local transport field is
expected to become a dipole field. Also, it appears that
sub-pV sensitivity is needed for the STM to probe the
effects of the local transport field in the vicinity of a sur-
face scatterer.

In our analysis, we have idealized the STM probe to be
able to probe a point on the surface at a time. For a more
realistic consideration, we have to consider the finite size
of the STM tip. The finite-sized tip should probe over a
region on the surface and a first approximation would be
to average our results over a small window corresponding
to the lateral resolution of the STM. Our results are
essentially unchanged for a window size less than 2 A.
Finally, we point out that we have not included in-
coherent scattering or inelastic-scattering explicitly, but
we have implicitly assumed that incoherent scattering is
involved in defining the incident-electron distribution.
Therefore, our results are valid when the STM tip is
much closer than a mean free path from the scatterer.
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On the other hand, when the STM tip is on the order of a
mean free path from the scatterer, incoherent scattering
must be included in the quantum-mechanical scattering
process. Further work is required to describe scanning
tunneling potentiometry in this transition region.
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APPENDIX

In this Appendix, we briefly outline the derivation that
leads to Eq. (34). The derivation is simpler when the im-
purity is an s scatterer. However, it is straightforward to
generalize beyond s scatterers and to include all phase
shifts 51. It is convenient to express the wave functions in
terms of spherical harmonics about the position of the
impurity. The expansion of P„+(r), given by Eq. (33), is

pz+(r)= g Ai~'j&(kFB Ir —r; I) Y& ((r —r; )/Ir —r; I),1

Q 1

(A 1)

where

k, +i(q k,—)'/
(A2)

Here we have taken the energy to be the Fermi energy. If the scattering problem is exactly solved, the AI ' will be re-
normalized to A& and substituting A& in place of AI

' in (Al) gives the self-consistent wave incident upon the impuri-

ty. The total wave which scatters from the s-like impurity, is then given by i sin50e '(/too/&4m Q)ho" (kFB Ir —r; I).
From now on, we define

Aoo= A() . (A3)

We now consider a spherical wave ho '(kFBIr —r; I) incident upon the finite barrier. The spherical wave can be
written in an integral form

i(k 2 —+2 )1/2tz+ b IiK I II

hii" (kFBIr+bzl )= JdKiie
2m'kFB(kFB E

i )
(A4)

where K~~ =(K„,E ). We allow each plane-wave component in the integrand of Eq. (A4) to be reflected from the sur-
face barrier. The wave reflected from the finite barrier is

2 2 1/2i(kFB-Kll) b
(k2 -K2)l/2

II[(k2 It 2 )1/2 1( 2+1( 2 k2 )1/2]2 e F~

(I 2 ~2)1/2q FB FB II

and the s component of the reflected wave is defined by —Co&4m such that

2i(k 2 g 2 )1/2b

—C &4~—= [(k2 ~2 )1/2 l(q2+g 2 k2 )1/2]2
II

2k 1
II II

FB II II FB (k2 It 2 )1/2
FB FB II

The self-consistent condition is then given by

i 50Ao= Aoo' —i sin5oe AoCO,

(A5)

(A6)

or

A() = A (0)

1+i sin6o e 'Co
(A7)

The explicit expression for Ao is given in Eq. (35). The final step is to find that part of the wave inside the vacuum re-
gion that is due to the scattered wave from the impurity. The total wave scattered from the impurity and incident upon
the surface barrier is

imp

i sin50e 'Ao
ib

r(keg +K
II

) Iz+b I

~ 2 2 1/2

e II
e

&4mB ' 2nk(k —K )'.
FB FB

ithin the vacuum region, the wave due to the incident ij'j; wave is given by
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vacuum
imp

i5o (k' —K2i'"bisin5e A II II

' F& II

&4~n (k2 ~2 )1/2

2+K 2 k 2 )1/2z
2(k —K )'FB

(k2 g 2)1/2+ ~

( 2+I( 2 k2 )1/2
FB II

' +
II FB

(A9)

We perform the angular integral of P,
"""" in Eq. (A9) and get

vacuum
imp

ibp
2i sin5oe Ao

dK
i(k2 K2)l/2b (q2+K k ) zF& II e II F&

v 4~flk p ll (k2 I( 2 )I/2+& ( 2+g 2 k2 )1/2
(A 10)

Adding 1(t,
"""" to the incident wave in the vacuum region gives Eq. (34).
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