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Computer simulation of intrinsic localized modes in one-dimensional
and two-dimensional anharmonic lattices
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The properties of stable and movable intrinsic localized vibrations (ILV's) have been investigated
by the particle method. It is shown primarily with the help of computer experiments that an ILV in
an anharmonic lattice is identical to a localized vibration near a force-constant defect in a harmonic
lattice. The temperature dependence of the localization threshold is presented. The difFerences be-
tween ILV's and solitons are discussed. A brief study is also made on the existence of ILV in a
two-dimensional square lattice.

INTRODUCTION

It is well understood that the appearance of localized
vibrational excitations in a harmonic lattice is caused by
mass or force-constant defects. ' It was theoretically
predicted recently that the localization may also occur in
ideal anharmonic lattices. ' For example, if the vibra-
tional amplitude u for any atom satisfies the condition
u ))0.05K2/K4, where K2 is the harmonic and K4 the
quartic force constants, then according to Ref. 3, there
will be a localized vibration with coI )&co, where co is
the top band frequency. It is the relatively large ampli-
tude of the vibration which is a peculiar feature of the lo-
calized vibrations (LV) and especially of intrinsic LV 's
(ILV's). The ILV is thought to be an interesting object in
connection with the problem of local phase transitions
(unstable local modes and nucleation sources), and for
the thermodynamics of quantum crystals. Here we
present the results of investigations of ILV properties in
linear one- and two-atomic chains and in a square lattice.
Computer experiments have been performed in the range
of parameter space where analytical investigation is not
possible. A preliminary report of some of these findings
has already been made.

SIMULATION TECHNIQUE

The lattice under consideration consists of a linear
chain of X particles with nearest-neighbor interactions,

V(r) =(K2/2)(r —ro) +(K3/3)(r ro)—
+(K4/4)(r —ro)

where K2, E3, and K4 are harmonic and two anharmonic
force constants. Under an external pressure or for finite
temperatures, the lattice constant h is not equal to the
minimum ro of the potential. Since V is a function of
r —ro, the energy does not depend on h and r~, but only
on their difference. We set ro equal to h, because one can
eliminate the difference h —ro by a redefinition of force
constants E2, K3, and E4. For the Toda lattice this ques-
tion has been discussed in Ref. 7. In the two-dimensional

where u„aredisplacement coordinates.
To characterize the relative contribution of anharmon-

icity to the vibrational frequency we determine the con-
venient parameter '

3K4u /K~ . (3)

The ILV was excited by providing the initial
configuration of particle displacement of various types:
(i) only one particle with number i has a nonzero dis-
placement u, =u; (ii) two adjacent particles have equal
displacements of opposite sign, u, = + u and
u;+ &

= —u, with remaining elements being at rest; (iii)
three adjacent particles have initial displacements
u, ,

= —u /2, u;=+u, and u;+, = —u /2, respective-
ly. All three types of excitation will be analyzed below.

After initial excitation, we solve computationally the
equations of motion according to the usual procedure.
The time step 5t was chosen so that the total energy was
conserved to within l%%uo accuracy. This value was
T /32, where T =2m/co (to =2+K2=4') is the
period of the top-band vibration in a harmonic case. For
the calculations periodic boundary conditions were used.

To characterize the ILV properties, the Fourier com-
ponent of the particle displacement, A(to, n), and the to-
tal energy per particle, E, were used. Before the deter-
mination of these characteristic parameters, we use up to
1800 steps of randomization. During this time a sharp
initial excitation spreads to some adjacent particles and
acquires a stationary shape. The function A (to, n ) was

(2D) square lattice there are four nearest neighbors for
any particle. For this reason the equation of motion of
the particles should depend not only on the difference be-
tween h and ro, but also on h and ro separately.

If it is not specifically mentioned, we set 6= 1, ro = 1,
and m =1, where m is a particle mass for a monatomic
chain. We also set Kz=(2m) —this has the advantage
that in the limit K3,K4~0, where V reduces to the har-
monic potential, the period of oscillations in this poten-
tial equals unity. After this scaling the Hamiltonian
reads

H=g[u„/2+ V(u„+,—u„)],
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calculated through the time interval T =512T . Note
that the amplitudes of Fourier components contain no in-
formation about vibrational and thermodynamic proper-
ties of the particle system under consideration because of
the absence of ergodicity in these systems.

EXPERIMENTAL RESULTS AND DISCUSSION

Origin of ILV's in a linear chain

It was theoretically predicted that an ILV in an anhar-
monic lattice is identical to a LV near the force-constant
defect in a harmonic lattice. As shown in Figs.
1(b)—1(c), the Fourier spectrum of an ILV's is sufficiently

narrow, indicating the quasiharmonic character of the vi-

bration. One can also see distinct spatial localization and
splitting of the ILV frequency coL from the phonon band
depending on the amplitude of type-(ii) excitation [see
Figs. 1(c) and 1(d)]. Excitations of type (i) and (ii) differ
from type (iii) only in the quantity of the ILV final energy
E' with respect to the initial one, E . For types (i) and
(ii) the ratio E'/E is close to 0.5, whereas for type (iii) it
is approximately 0.7. All other properties of the ILV are
independent of the type of excitation. Distinct spatial lo-
calization and frequency shift are inherent in a harmonic
LV near a force constant or mass defect. But, in our
case, the defect strength depends on the amplitude of vi-
bration.

/

f I (

(c)

FIG. 1. Fourier-transform spectrum 3 (co, n) of particle displacements in a one-dimensional anharmonic linear chain. The calcu-
lation of A (cu, n) was initiated at T=256T and continued during the interval T„=64T,„.The excitation of a set of low-frequency
modes (including co=0) is observed. This is caused by the cubic anharmonicity term in the potential. The anharmonic potential pa-
rameters are K& = —60, K4 =800. The initial displacements of particles of type-(ii) excitation are as follows: (a) u =Q.Q7, no local
ized mode; (b) u =0.1, first observation of a localized mode; (c) u =0.15, a distinct shift of localized-mode frequency from cutoff fre
quency; (d) u =0.4—note the second localized mode in the cutoff region which first appears at u =0.22.
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with a solitonlike envelope function; this type of soliton is
usually observed in nonlinear optics" }.

(a) To perform this type of experiment, we have fitted
the potential (1) to the potential of the Toda lattice by ad-
justing the constants. For this purpose the Toda poten-
tial was expanded into the Taylor series and the K2, K3,
and K4 constants in (1) were chosen to be equal to ap-
propriate coefficients of expansion. For the excitation of
a soliton in the lattice with the potential thus obtained,
we use the relationship between the particle number n

and its displacement u„in the form

exp[(2 K3/K~ )( u„+,—u„)]—1=(P /Kz )sech(an +/3t ),
(4)

FIG. 2. Moving ILV excited in a linear chain close to the
fixed end particle. The type-(ii) excitation with initial ampli-
tudes u& =0.1, u3 = —0. 1, u l

=—0 (fixed particle). Different
peaks correspond to ILV at different times: T =20T (solid
curve), T=40T (dashed curve), and T=60T (dotted-dashed
curve).

There is also another approach to the ILV problem
from its solitonlike nature. ' One may readily excite a
moving ILV near the fixed end of a chain. Such an ILV
looks like a soliton (Fig. 2). The dispersion law for the
ILV (dependence of peak frequency cot on velocity) is

presented in Fig. 3.
To investigate the origin of ILV's or the extent of the

similarity of ILV's to solitons, computer experiments
were carried out in three ways: (a) the Fourier analysis
was performed on solitons excited using the analytical
solution for the Toda lattice; (b) the Fourier analysis was
performed on ILV s in the linear chain containing 10 par-
ticles; (c) the Fourier analysis was performed on particle
vibrations in a linear chain with the potential (1) and with
excitation of a so-called envelope soliton (we call an en-

velope soliton an excitation of the top-band vibration

where P=+K2sinho, . The soliton width is h/a and the
quartic anharmonic force constant K4 = —', (K3 /K2 ).
After this, the equations of motion for 128 particles, with
the particles at the end fixed, were solved for a time inter-
val T„=512T. During the time of motion there were
many reflections of the soliton from the fixed end parti-
cles. All this time the shape and the energy of the soliton
were observed to be conserved very well (within 1% of
the initial energy). The result of the Fourier analysis of
the particle displacements is shown in Fig. 4. Note that
low-frequency modes are effectively involved in the soli-
ton. Another important result is the relatively low
anharmonicity of this excitation: the relative contribu-
tions to the particle energy of harmonic, third, and quar-
tic anharmonic terms are equal to 1, 0.1, and 0.01, re-
spectively.

(b} This experiment was perfortned to answer the ques-
tion about the type of spectrum (one particle or many
particle) forming the ILV. For the detailed investigation
of this problem, we use a linear chain containing 10 parti-
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FIG. 3. Dispersion (frequency velocity) curves for excitation
of a moving ILV. ( X ) corresponds to initial excitation u2 =u,
El 3 Ec ( 0 l

—0 fixed) ( + ) corresponds to excitation 0 3 Q

u4= —u (u, =0, fixed).

FIG. 4. Frequency spectrum 3 (co) of particles in a linear
chain with an excited soliton (solid curve). The potential pa-
rameters are K3 = —218, K4 =800. The characteristic displace-
ments of particles in the soliton are of the order of 0.03. The ra-
tio of corresponding harmonic and anharmonic parts of energy
related to Kz, K3, and K4, terms is 1:0.1:0.01. Dashed curve:
the frequency spectrum of the harmonic chain (K3 K4 0).
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cles and exclude the term with E3 from the potential (1)
to remove the ILV damping. Figure 5(a) demonstrates
that for a sufficiently high initial amplitude of type-(ii) ex-
citation (u =0.2), the A (co) spectrum of the particles in-
volved contains phonons (delocalized vibrations) and an
ILV. The ILV is represented by the shifted top-band vi-
bration in this figure. The A (cu) spectrum of the unin-
volved particles contain only undisturbed phonons [Fig.
5(b)]. Note that the relative contribution of the anhar-
monicity, determined, according to (3), by A, , to the fre-
quency of vibration of involved particles is close to unity
in this case. Figure 5(c) presents the situation when there

(a)

0.2-

is no ILV splitting from the phonon band ( u =0.1).
(c) The results obtained in this experiment present a

crossover regime from weakly anharmonic solitons to
strongly anharmonic ILV's. Figure 6(a) presents the fre-
quency spectrum of 30 particles involved (solid line) and
uninvolved (dashed line) in the envelope soliton. It is
clearly seen from Fig. 6(a) that soliton formation in this
case requires anharmonic coupling of several modes:
there is a wide peak in the frequency spectrum of the in-
volved particles in place of the several narrow peaks cor-
responding to decoupled modes of uninvolved particles.
The relative anharmonic contribution to the total energy
in the case shown in Fig. 6(a) is about 3%%uo. The higher
anharmonicity (15%%uo) of vibration [Fig. 6(b)] leads to
splitting of a single mode from the vibrational band, indi-
cating ILV formation. Note that a genuine single-mode
splitting is shown in Fig. 6(b), in which the total number
of modes is equal to 15, as in the harmonic case.

The observed results indicate the similarity of an ILV
and a harmonic LV near the force-constant defect. This
means that the frequency of an ILV may be regarded as a
solution of the Lifshitz equation, '
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FIG. 5. Fourier transform A (co) of particle displacements (a)
involved and (b) not involved in the ILV of type-(ii) excitation
with initial displacement u =0.2; (c) corresponds to initial dis-
placement u =0.1, where the ILV is not excited. The potential
parameters are K3 =0, K4=800. Phonon peaks are marked by
X, overtones bv O.

FIG. 6. Frequency spectrum of particles involved (solid
curve) and not involved (dashed curve) in (a) the envelope soli-
ton and (b) the ILV excited in a monatomic chain containing 30
particles. Potential parameters are K, =0, K4= 800. The form
of excitation was represented by the top-band mode of the am-
plitude (a) +0.05 and (b) +0.03 with modulation envelope func-
tion sech[(n N/2)/3]. In order to—reveal the vibrational-band
spectrum, there was an additional random contribution of a rel-
atively smaller quantity to the initial particle displacements.
Overtones are marked by O.
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FIG. 7. Type-(ii) ILV excited with u =0. 1 in a diatomic
(m

&

= 1,m &
=2) chain containing 64 particles with potential

coefficients K3=0, K4=800. Frequency spectrum 3 (co) (a) of
particles involved in the ILV; (b) of uninvolved particles.
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with the effective defect strength y and the phonon spec-
trum co(k).

Equation (5) is written within the effective point-defect
approximation. The role of a point defect is played by
the mean-square amplitude of the ILV, which leads to
phonon scattering and localization of the top-band vibra-
tional mode. Further increase of the amplitude also leads
to localization of the second top-band vibration [see Fig.
1(d)].

The analogy of an ILV to the defect LV is also
confirmed by experiments with a diatomic linear chain.
If one makes a type-(ii) excitation of an ILV in such a
chain, then there appear two ILV's arising near the tops
of optical and acoustical bands [see Fig. 7(a)] and they are
formed by localization of respective top-band vibrations.
Figure 7(b) presents the band states of the diatomic chain
without an ILV. The optical ILV can be excited in a dia-
tomic chain by setting the initial displacements of two ad-
jacent particles u;=u and u;+, = —m2u /mi. The
main difference in the ILV excitation in a diatomic chain
is a decrease in the localization threshold for an ILV ex-
citation near an optical band, because the optical band is
narrower. If this threshold, E,h, is the minimum energy
required to form an ILV, the localization threshold for a
monatomic chain with m = 1 is E,h

= 1.25, while for a di-
atomic chain (m, =1, mz=5) with the same potential
parameters, it is E,h =0.25. This result is analogous to
the localization threshold observed in the harmonic lat-
tice, and is determined by the strength of the defect pa-
rameters and bandwidth of the delocalized excitation
spectrum. The results obtained above allow one to
recognize the region of existence of different types of lo-
calized excitations in the space of the anharmonicity pa-
rameter k. The last parameter was determined for a cen-
tral particle involved in any type of local vibrations. Fig-
ure 8 presents the qualitative A, dependence of the half-
width of local vibration in real space and on the peak fre-
quency.

Thus, we may conclude that (a) ILV's are nearly identi-
cal to harmonic LV's near a force-constant defect, and (b)
The soliton and ILV are different types of localized vibra-
tions. The first corresponds to anharmonic coupling of
several vibrational modes and requires relatively low
anharmonicity. The second has an essentially high
anharmonic contribution and consists of a single top-
band vibrational mode split from the vibrational band.

Temperature dependence of the localization threshold

0.1 0.2
l

0.3 0.4
1.00

FIG. 8. k dependence of half-width and peak frequency of lo-
calized vibrations in the 1D anharmonic lattice. Parts of the
curves to the left of the vertical dashed line corresponds to soli-
tons (multimode complexes) and those to the right to intrinsic
localized vibrations (single-mode excitations). C, envelope soli-

ton;, ILV with parameters the same as Fig. 6,

We define the localization-threshold energy as the
minimum energy required for the ILV excitation. To de-
scribe the temperature dependence of the localization
conditions, one may try to use (5).

At first, we will deduce the expression for y in (5). Let
us suppose that an ILV is fairly confined on only one par-
ticle with n =0 [type-(i) excitation]. One may introduce
the effective phonon-phonon scattering using the assump-
tion that the inhomogeneity of the chain is caused by the
high vibrational amplitude of this particle:

H,„,=(IC4/4)(~' (u„))[(u, —uo) +—(u, —uo) ],
(6a)
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128 ( u ~ ) characterizes the temperature of the chain accord-
ing to the relation k&T=K2(u„) (kz is Boltzmann's
constant).

Substituting (6b) into (6a},one obtains

1
12

H;„,=4K4(a —( u„))g'Qk Qk sink sink ',
k, k

m/2) k, k') 0, (6c)

or, in a simplified form,

H,„,=4K~sink sink'(u —(u„)) g Qkgk* =y g Ql, gk
k, k' k, k'

(6d)

1-
0 time

'I

100 Tm

Thus, from (6) it is clear that to maintain the defect
strength u —( u„)=u —ks T/K2 as temperature in-
dependent, one must take the temperature dependence of
the initial excitation amplitude in the form

[u (T)] =[u (0)] +k&T/K2 .
FIG. 9. Time dependence of ILV's for the monatomic linear

chain of 128 particles at elevated temperature. The type-(ii)
ILV was excited on 64 and 65 particles by setting initial dis-
placements (a) u =0.12 and (b) u =0.13. The initial displace-
ment of the other particles was generated by a random number
generator with mean-square amplitude ( u„')=0.003. The black
lines on the map correspond to a cell with total energy exceed-
ing the 0.5 level of the maximum value.

For excitation of type-(i) vibrations, the initial energy E
is related to u by

E =K (u ) +(K /2)(u )

Thus, from (7) and (8) one can evaluate the temperature
dependence of the localization threshold,

E,h( T) =E,h(0)+ [1+(2K4/K2 )Eh(0) ]'i ka T

+(K4/2K' )(ks T) (9)
u„=(1/&N ) g [Ql, exp(ikn)+ Ql,'exp( ikn)], —

k

(6b)

where Qk is the phonon with wave number k (Qk's are
orthogonal, but not normalized to unity because of the
nonzero temperature), and (u„)is the mean-square am-

plitude of the host particle. With the assumed units,

The temperature dependence of E,h was determined
experimentally using a random number generator for all
particles, except that used for ILV excitation. The point

100---
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FIG. 10. Temperature dependence of the localization thresh-
old.

FIG. 11. Thermal ILV excitation by means of the generation
of random initial displacements of all particles ( ( u„') =0.09) in

the chain. (a) %'ith the same potential parameters as described
in Fig. 1. (b) The potential without the quartic term (E4 =0).



42 COMPUTER SIMULATION OF INTRINSIC LOCALIZED MODES. . . 4927

was marked on the map in Fig. 9, if the sum of the poten-
tial and kinetic energies of a particle exceeds one-half of
the maximum value per atom during the calculation.
Two examples of the ILV excitation in a linear chain
with the temperature T corresponding to (u„)=0.003
for the excitation energy (a) under and (b) over the
threshoid energy are shown in Fig. 9. The tracks of the
high-energy regions corresponding to an ILV with the in-
itial amplitude [u (T)] =1.4[u (0)] are observed in
Fig. 9(b). Figure 9(a) shows the destruction of the ILV
when the initial amplitude is [u ( T)] = 1.3[u (0)] . The
ILV destruction criterion was roughly determined as the
disappearance of the track during the time T=100T
This quantity is typical for the ratio of the lifetime to the
period of vibration of real phonons. The T dependence of
the E,h thus determined is presented in Fig. 10. One can
see a stronger temperature dependence of the experimen-
tal E,„compared to that given by (9).

It is interesting in connection with the E,h temperature
dependence to consider the possibility of random excita-
tions of ILV's. Figure 11 shows thermally activated
ILV s. The procedure is to set up a random initial dis-
placements for all the particles in the chain in the way
described above. Figure 11(a) shows bright tracks corre-
sponding to ILV's. When the quartic term in the poten-
tial is eliminated, the ILV disappear [see Fig. 11(b)].

QJC
QJ 0

FIG. 12. ILV in a square anharmonic lattice (h =0.99,
ro=l) with the potential parameters K&=(2n. )', I(:3=0, and
E4 = 1400. The square lattice has 40 particles per side. The ini-
tial displacements ( ~

tt„=
~ u~ ~

=0.1) of the four neighboring par-
ticles in the middle of the lattice are directed to the center of the
square unit cell. Time after excitations is 40T . The relative
anharmonic contribution A. , determined according to (3), is close
to unity.

ILV's in a square lattice

It was shown theoretically that solitonlike excitations
in 2D discrete space are unstable. " With regard to the
ILV's in a 2D lattice, a condition very similar to excita-
tions of ILV's in a linear chain exists. The ILV in a
square lattice with the potential (1) is presented in Fig.
12. As in a 1D lattice, there is a very strong dependence
of the ILV stability on the vibration amplitude in a 2D
lattice.

As to the mobility of an ILV in a square lattice, we
have failed in exciting a moving ILV by a manner similar

to the 1D case. All variants of excitation lead to ILV de-
struction.

It is obvious that in two dimensions there may be a
great variety of ILV types (longitudinal and transverse of
different shape). A detailed investigation of such excita-
tions in different 2D lattices (square, triangular, etc.) will
be considered in the future.
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