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We study by Monte Carlo simulation the universality of continuum percolation for randomly

centered disks and spheres.

We specifically consider the amplitude ratio of susceptibilities

C-/C+ which is supposed to be universal but found to be different from the lattice value. Our
data, however, indicate no clear evidence of such a nonuniversal behavior as long as the finite-size
effects are taken into account. We also present simulation data for continuum percolation of the

penetrable-concentric-shell model.

Until recently it has been common to use lattice models
in discussions of percolation in real materials. "> More re-
cently, investigators have focused their attention on con-
tinuum models of percolation since such models are better
able to capture the essential physics in real systems. It
was relatively recently that the question regarding the
universality of continuum and lattice percolation was ad-
dressed. In the prototypical continuum percolation model,
randomly centered particles are distributed in space and a
bond is assumed to exist between two such particles if they
overlap. Various numerical studies indicated that all sta-
tistical critical exponents for continuum percolations of
overlapping disks and spheres are the same as for lattice
percolations. ™3

In contrast to this, however, it has been reported that
the amplitude ratio of susceptibilities, defined by
R=C_/C+, which is supposed to be universal, is different
from the lattice value.® Here C— and C+ are the ampli-
tudes of susceptibilities below and above the percolation
threshold p.. A hint that such a difference exists was pro-
vided recently by the determination of the amplitude ratio
for two-dimensional continuum percolation of random
bonds.” While the lattice value of R is about 200,® the ob-
served value for such a model was at least one order small-
er than this. Motivated by this, Belberg® has carried out
Monte Carlo simulations for overlapping spheres, capped
cylinders, and (two-dimensional) widthless sticks. He ob-
tained R to be less than two for three dimensions and of
the order of three for two dimensions. These are evidently
one or two orders smaller than lattice values, where the
known lattice values are R==196 and 11 for two and three
dimensions, respectively.® Similar difference was also ob-
served previously. For example, Gawlinski and Stanley?
used a certain definition of susceptibility and obtained R
to be about 50 for freely overlapping disks. From these
observations, it is concluded that the universality prevails
weakly, in the sense that only the statistical critical ex-
ponents are the same for lattice and continuum systems,
while the amplitude ratio remains different.

The unexpectedly small values of R might be due to the
different definitions of susceptibility. The susceptibility is
defined in the theory of percolation by two alternative
ways:
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where n; denotes the mean number of clusters of size s per
particle and the prime implies that the biggest cluster is
excluded in the sum for p > p.. The former is usually
called “susceptibility” and the latter often “mean cluster
size.” In the limit of the infinite system, both y and S are
expected to show the same critical behavior; however, for
any finite-sized system, the asymptotic behavior of one is
different from another. To see this clearly, let n; =N,/N,
where N; is the number of clusters of size s and NV is the
total number of particles. Then, Egs. (1) and (2) can be
written, respectively, as
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where N'=X:N;s. For p<p., N'is simply the total
number of particles in the system and both Egs. (3) and
(4) are the same. For p > p,, on the other hand, N' is the
number of particles which are not members of the largest
cluster and thus, smaller than N. Therefore, Eq. (4) is
greater than Eq. (3), indicating that the amplitude of S is
greater than that of x. It is thus clear that the two
definitions yield different values of R for any finite-sized
system. As the concentration increases, the finite clusters
above p. tend to be connected to the largest cluster. For
sufficiently high concentrations the remaining finite clus-
ters are those of, at most, few particles, and therefore, y
and S approach, respectively, to 1/N and 1 as p— 1. This
kind of saturation on unity for S was observed in Monte
Carlo data by Belberg.® Although he claimed that Eq. (1)
was employed in his simulation, we believe that such satu-
ration is due to the mean-cluster-size definition given in
Eq. (2). (Note that what he called mean cluster size is
our susceptibility function.)

The small values of R for the mean-cluster-size func-
tion were already found for lattice percolation.®® While
the susceptibility function in two dimensions gives R to be
about 200, estimated from the mean cluster size was an
order of unity by series analysis'® and about 20 by Monte
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Carlo simulations.®° Because of these inconsistent values,
one must determine which definition is to be used for scal-
ing analysis. Nakanishi and Stanley'' have pointed out
that setting y(p > p.) = y(p < p.) leads to results with an
anomalous behavior in S for p > p., while no such anoma-
ly occurs in y. The source of such an anomaly is evidently
an extra singularity introduced by the denominator in S;
Xsnss~p(1—Ps), where P, the percolation order
parameter, is known to scale as P~ (p —p.)?. Above p,,
the factor (1 —P.) gives a correction term 1+0I[(p
- pc)”], which makes numerical extrapolation at finite
values of p — p, very difficult. Indeed Hoshen er al.® have
found by Monte Carlo simulations that the exponent y
determined from the mean-cluster-size function above p,
had an unacceptably small value of 1.9 in two dimensions.
This is quite similar to the situation in the series results,
where it was not possible to determine y reliably above
pe.'® By these reasonings, Nakanishi and Stanley'' sug-
gested that the susceptibility function be used.

In this Rapid Communication we present Monte Carlo
simulation results of the amplitude ratio of susceptibility
for continuum percolation of freely overlapping disks and
spheres. We obtained R to be about 192 and 19 for two
and three dimensions, respectively. These values are
reasonably close to the known lattice values, and thus, our
data do not indicate a clear evidence of a nonuniversal be-
havior in R, unlike the work of Belberg.® We also present
the simulation data for the penetrable-concentric-shell
(PCS) model.'? In the PCS model, each sphere (disk) of
radius o/2 (where we have let 6=1) is composed of an
impenetrable core of radius Ac/2, encompassed by a per-
fectly penetrable shell of thickness (1 —A)o/2. The ex-
treme limits A =0 and 1 corresponds, respectively, to the
cases of fully penetrable and totally impenetrable parti-
cles.

The susceptibility function y defined in Eq. (1) was cal-
culated for overlapping disks and spheres as a function of
reduced number density n [defined by n=(N/L?)V,,
where V) is the volume of each D-dimensional sphere] for
several values of the size of system L; L =30, 40, and 50,
and L =15, 18, and 20 for two and three dimensions, re-
spectively. The periodic boundary conditions were em-
ployed to minimize the finite-size effect. The percolation
threshold 7, was set as a parameter and selected in such a
way that ¥ below and above 1. show power law with the
same exponent. Plotted in Fig. 1 are the data for overlap-
ping spheres averaged over 100 realizations, using
n.=0.3480 (cf. n.==0.35 by Monte Carlo simulations'?).
For n <., data are similar to the previous Monte Carlo
data;® however, for n> 1. our data show much smaller
amplitude, indicating a larger amplitude ratio. The major
difference is that our data are free of the apparent satura-
tion which was found in all data in the previous work.®
This supports our assertion that the mean-cluster-size
function instead of susceptibility has been employed in
Ref. 6. The critical exponent y and the amplitude ratio R
were estimated from the plot; y=191%+0.01 and
R =19 %1, where the quoted errors are those associated
with linear regressions and there may be additional sta-
tistical errors not accounted for. The value of y is reason-
ably close to the lattice value (y=1.8, cf. Ref. 14) and is
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FIG. 1. Double logarithmic plot of susceptibilities for contin-

uum percolation of overlapping spheres. The percolation thresh-
old used is n. =0.3480.

also close to the previously measured continuum value.®
On the other hand, our estimate of R appears to be some-
what large compared to the lattice value;® however, it is
not one or two orders different from it, unlike the work of
Belberg.® [Note that our data are at least 1 order of mag-
nitude higher statistics than in Ref. 6.] It is thus certainly
unfair to conclude, without taking into account the finite-
size effect, the “nonuniversality” of the amplitude ratio of
susceptibilities. In fact, considering the two-dimensional
result (see below), we believe that R is also universal for
continuum percolations of overlapping disks and spheres.
Plotted in Fig. 2 are the data for overlapping disks aver-
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FIG. 2. Double logarithmic plot of susceptibilities for contin-
uum percolation of overlapping disks. The percolation threshold
used is n, =1.1314.
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aged over 200 realizations. Data again show very good
power law both below and above 7, using n. =1.1314, for
a wide range except for the two extreme limits of 7, where
the finite-size effect is known to smear the divergent be-
havior. The least-squares fit to the data in the linear re-
gion yields y=2.39+0.02 and R=192+20. The esti-
mate of ¥ is again close to the lattice value (y= 13, cf.
Ref. 1) and also close to the previous Monte Carlo esti-
mate’ for the continuum system. The amplitude ratio R
is also reasonably close to the known lattice value
R=197.% This is a good indication that the amplitude ra-
tio of susceptibilities for continuum percolations of over-
lapping particles are the same as for lattice percolations,
and thus, they belong to the same universality class even
when the amplitude ratio is considered.

For random bond percolation, however, the susceptibili-
ty definition yielded a smaller amplitude ratio in Ref. 7.
Since the connectivity rule defined for such a model is
different from that for the standard continuum percola-
tions of overlapping particles, our work does not rule out
the possibility of nonuniversal behavior in R between such
model and lattice percolations. The kinetic gelation'® and
the AB bond percolations ' are similar cases, but we claim
that the continuum percolations of overlapping particles
are not such cases.

We have also carried out Monte Carlo simulations for
the PCS model for 0 <A <1 for both two and three di-
mensions. A conventional Metropolis algorithm!? was
employed to generate equilibrium realizations and the sus-
ceptibility was calculated for several selected values of A
as a function of 7.

Data for L =20 and A =0.6 and 0.8 for three dimen-
sions, averaged over 100 realizations, are compared in Fig.
3 with those of overlapping spheres. The parallel lines
were obtained using 7.=0.3196 and 0.3396 for A =0.6
and 0.8, respectively. As A increases, the susceptibilities
both below and above 7, seem to decrease. The source of
this effect is the short-ranged repulsive interactions, which
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FIG. 3. Double logarithmic plot of susceptibilities for the
three-dimensional PCS model for A =0.6 and 0.8, compared to
those of overlapping spheres (A =0). The percolation thresholds
used are n. =0.3196 and 0.3396 for A =0.6 and 0.8, respectively.

in general appears to force particles apart and form clus-
ters of relatively smaller sizes. Estimates of y from the
plot are y=1.84 + 0.02 for A =0.6 and y=1.79 +0.02 for
A=0.8. These values are slightly smaller than, but still
reasonably close to, our estimate for overlapping spheres.
As A increases, y in general seems to decrease slightly;
however, the difference appears to be within statistical er-
rors. (Note that errors quoted are those associated with
linear regressions.) The estimates of R, R =18.1 = 1.1 for
A=0.6 and R=22.3+1.6 for A =0.8, are also close to
that for overlapping spheres, indicating that the hard-core
repulsion does not affect significantly the critical behavior
in three dimensions.

In Fig. 4, data for two dimensions for L =50 and A =0.3
and 0.7 are compared similarly with those for overlapping
disks. The estimates of y are y=2.41 +0.03 for A =0.3
and y=2.38 +0.02 for A =0.7, which are again close to
that for overlapping disks. On the other hand the ampli-
tude ratios estimated from the plot, R =381+ 20 for
A=0.3 and R=615%+60 for A =0.7, are considerably
greater than our estimate for overlapping disks, and,
moreover, R seems to depend upon A. This is rather
surprising because we obtained y for all considered values
of A very close to the overlapping particles for both two
and three dimensions and, in addition, the amplitude ratio
in three dimensions was also estimated to be similar even
for relatively large hard-core volume fractions. One possi-
ble way to explain such large values of R is to assume that
the finite-size effect is dependent upon A, i.e., the finite-
size effect becomes important as A increases. The 7
which was used in our data analyses is, in general, deviat-
ed from the true percolation point 7™ and the deviation
Anc-lnfﬁ—n}'“ﬁs expected to diminish as the size of
the system increases. The comparison of An, for different
values of A seems to indicate that the finite-size effect
indeed becomes important as A increases. Using the re-
cent accurate determinations of 7, '® An. can be estimat-
ed as An.==0.01 for both A=0.3 and 0.7, while that for
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FIG. 4. Double logarithmic plot of susceptibilities for the
two-dimensional PCS model for A=0.3 and 0.7, compared to
those of overlapping disks (A =0). The percolation thresholds
used are n. =0.9932 and 0.7792 for A =0.3 and 0.7, respectively.



RAPID COMMUNICATIONS

4880

A=0 is only about 0.003. Clearly A7, increases as A in-
creases even though we used the same size system L =50
for all three cases of A. Another possibility one can think
of is that such increases of R as A increases might be a
precursor to a crossover from the extreme of A =0 (fully
penetrable case) to a different universality class at A =1
(impenetrable, hard-particle system). If we consider the
mean cluster size for the hard-particle system, it would be
precisely 1 for n <n. because the probability of having
two particles in contact is exactly zero, while that at
close-packing volume fractions diverges suddenly, sug-
gesting a possible large increase in either y or R. The re-
cent work !° for continuum percolation of short-ranged po-
tential also appears to strengthen the latter postulate.

In any of these cases, however, similar behavior should
be observed for three dimensions as well. As we have al-
ready seen, such a large increase in R was not a charac-
teristic for the three-dimensional PCS model.

In summary, we have studied by Monte Carlo simula-
tion the susceptibilities of continuum percolation for over-
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lapping spheres and disks and for the PCS model for
several selected values of A between 0 and 1. For overlap-
ping particle systems, we found that the amplitude ratios
of susceptibilities were similar to the lattice values, indi-
cating a strong universality between lattice and continu-
um percolations. For the PCS model for intermediate A,
we found the susceptibility exponents similar to the fully
penetrable cases for both dimensions. The amplitude ratio
R in three dimensions was also found to be close to the
overlapping sphere system. On the other hand, in two di-
mensions, it seems to be considerably greater than
(though, of the same order as) that of the overlapping
disks. We discussed some possible causes of such large in-
creases.
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