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The effect of the distribution of pinning energies on the current-voltage characteristics, magnet-
ic flux creep, and critical currents of superconducting films in a transversal magnetic field H has
been considered. In the case of macroscopic inhomogeneities of the pinning forces, the flux creep
has been formulated as a percolation transition in the vortex system. The model proposed gives
the strong dependence of the critical current on H at low H in the absence of weak links in a su-
perconductor, the increase of the flux-creep activation energy with temperature 7 at low 7 and H,
and the nonlogarithmic time decay of the magnetization in the flux-creep regime.

The recent studies of the resistive transition,! magnetic
flux creep,2 and, especially, electric-noise measurements>
indicate a wide distribution of pinning energies E, in
high-T, superconductors with E,~0.03-1 eV and the
dispersion AE ~E,. This fact proves to be essential for
the dependence of the magnetic-flux-creep rate on tem-
perature T and magnetic field H, which is important for
the current-carrying capacity of high-7, materials.

In this paper the resistive states of a superconducting
film containing randomly distributed pinning centers with
different pinning energies £, have been considered. The
film is assumed to be thin enough, when the distortion of
the vortex line is negligible and the value E, is equal to
the difference of the energies of the pinned and unpinned
vortices. Two characteristic cases are examined. In the
first case the sizes of the pinning centers, a, are assumed
to be small as compared to a spacing /, between them and
the density of the pinning centers to be uniform on the
scales considerably exceeding /,. The second case corre-
sponds to macroscopic space modulations of the pinning
forces. For these models the current-voltage characteris-
tic and the flux-creep activation energy U have been found
within the framework of a self-consistent mean-field ap-
proach.

To describe the resistive state in the case of uniform
density of the pinning centers, let us divide the vortex den-
sity B/¢o into the mean density of the pinned vortices n,
and the mean density of the free vortices ny depinned due
to thermal fluctuations. Assume the differential resistivity
of the superconductor p(j) is determined by the equilibri-
um density of the free vortices by analogy with the flux-
flow resistivity p, as p(j) =psns¢o/B. Here j is the aver-
age current density, py~p,B/H,,, B is the magnetic in-
duction, ¢y is the magnetic flux quantum, H,, is the upper
critical field, and p, is the resistivity in the normal state.
Then the average electric field & associated with the
viscous motion of the free vortices is given by

é"pfd}oB_]J-ojnf(j')dj'. (1)

This model differs somewhat from the approach based
on the thermally assisted hopping of vortices between pin-
ning centers.* However, such a model seems to be more
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adequate just in the case of “point” pinning centers
(a<1,) and low B (see below) for which the motion of
the free vortex between pinning centers at j =0 is not
directly due to the interaction of the vortex with them, but
rather has a diffusion character. At j> 0, this motion is
determined by the balance of the Lorentz and viscous
forces; the vortex-vortex interaction, correlated vortex
motion, and collisions of vortices with pinning centers are
assumed to be taken into account in the value p;. This
model also describes the crossover between the flux-creep
and the flux-flow regimes, for instance, the critical-state
model corresponds to ny,=B/¢o at j > j. and ny=0 at
Jj <Je, which yields j =j.+p; '€ at j > j. where j is the
critical-current density. The fluctuations result in the
smearing of the jump in ny(j) at j=j. and the arising of
thermally activated vortices at j < j. where the value ny
considerably depends on 7, B, and ;.

To calculate ns(j) let us define the distribution function
of the pinning energies f(E) so that the product f(E)dE
would be equal to the density of the vortex positions hav-
ing the depinning energies E, with E < E, < E+dE and

S r@rag=n,. @

Here n, is the total density of the pinning positions cor-
responding to all local minima of vortex energies per unit
area. Examine the low-field region B < H,~¢on, for
which the number of the pinning positions exceeds the
number of vortices. Then the interaction between vor-
tices, modifying the bare pinning energies, may be taken
into account in the mean-field approximation, which re-
sults in the dependence of f(E) and n, on B and j at
B> H,, where H,, is the lower critical field. At B> H,
all pinning positions are occupied and the rest of the vor-
tices are pinned due to the collective interaction.® Here,
we do not discuss the specific mechanisms of pinning so
the values E,, np, and f(E) are assumed to be phenome-
nological functions which depend on B, T, and j (for qual-
itative estimates one may assume n,~I, %, so H,
~0.1-10 T if /,~10%-10% A).

In the thermodynamic equilibrium these positions are
occupied by the vortices, beginning with the positions hav-
ing maximum values of E,. To describe the relaxation of
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a metastable vortex configuration, let us separate this pro-
cess into two stages. At the first stage the local redistribu-
tion of vortices on the scales of order /, </ occurs and the
thermodynamic equilibrium in the vortex system deter-
mined by local values of j and B is settled [/ ~ (¢o/B) ' is
the vortex spacingl. After that, the magnetic flux creep,
being accompanied by slow decay of macroscopic
currents, begins. Such separation is possible only in the
case [, </ for which the local redistribution of vortices
does not change the macroscopic magnetization. We as-
sume the first stage is fast enough as compared to the
second one and so do not consider here metastable filling
of pinning positions.

Notice that at B < H,, each pinning position can be oc-
cupied by only one vortex, which is due to the interaction
energy of two vortices, being at a distance less than the
magnetic penetration depth, is of the order of the energy
of a lone vortex Wo. The value Wy exceeds E, even in the
case of the strongest pinning of the vortex core by normal
precipitates or local variations of the film thickness as the
vortex core itself gives the small contribution to Wy.®
Considering the filled pinning positions as a localized vor-
tex states, one can conclude that the pinned vortices obey
some “‘exclusion” principle due to which of these states
cannot be filled simultaneously by more than one vortex.

The equilibrium filling of the pinning positions can be
found from the standard expression for the thermodynam-
ic potential 0 (Ref. 7)

Q= —len% fexpl(u+E,)/kTHN. (3)

Here N is the number of vortices which can occupy the
state with the energy — E, counted off from the energy of
unpinned vortex, the vortex interaction in the mean-field
approximation is taken into account in the dependence of
E, on B and j, u is the chemical potential in the vortex
system, and k is the Boltzmann constant. If the function
f(E) is finite at any E, than the probability that two
different pinning centers have the same value E,, is negli-
gible and so the number N in Eq. (3) can be equal either
to 0 or 1. As a result, the minimization of Eq. (3) with
respect to p yields the “fermion’-energy distribution
p(E) (Ref. 7) for pinned vortices

P(E) =1/ W ENT A1), my= [ " p(EIF(E)IE,  (4)

where f(E) plays the role of the density of localized vor-
tex states and u = —U.

The “‘exclusion” principle is not valid for the free vor-
tices which can occupy, without restrictions, the degen-
erate state £ =0 for which the maximum density of all
possible space positions of a vortex H.»/¢o considerably
exceeds both the total vortex density B/¢o at B < H, and
the density of pinning positions n,. Hence, it follows that
the number N can run all integer values from zero to
infinity and so the summation in Eq. (3) and the
differentiation of the result with respect to u yields the
Bose distribution’ for the free vortices, i.e.,

ny=(H_.»/$0)/lexp(U/kT) —11. (5)

The equation for U follows from the condition of the
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FIG. 1. The density of pinning positions vs j.

vortex number conservation n, +ny =B/¢o:

B‘ Hc2 +¢().!-0°° dEZ(E,B,T,l.) . (6)

eU/kT_l e(U—E)/kT+1

At U> kT, the value U is the activation energy which
depends on T, B, and j. The density of the pinning posi-
tions n, decrease with the increase of j due to the Lorentz
forces as it is sketched in Fig. 1. At j > j. the largest part
of the pinning positions disappears, which corresponds to
the resistive transition to the flux-flow regime where
n,— 0and U=kTIn(H/B+1).

In the flux-creep regime kT KU the stepwise Fermi
function p(E), in Eq. (6), varies at E=U much more
sharply than the smooth dependence of f(E). Then the
integral in Eq. (6) can be evaluated by the standard pro-
cedure used in the low-T thermodynamics of the electron
gas (see, e.g., Ref. 7), which yields

U(T,B,j) =Uo—n*k*T*f (Uo)/6f(U) , 7)

B=p0 J, fE.T.B.j)dE. ®)

Here Uo(T,B,j) is the minimum depinning energy for the
filled positions (Fig. 2), the prime denotes the differ-
entiation with respect to E, and the last term in Eq. (7) is
assumed to be small.

At U> kT the current-voltage characteristic can be
calculated explicitly, assuming the energy U(j) decreases
with j. Then at j> j.kT/U the main contribution to &
gives the narrow vicinity of the point j'=j in Eq. (1),

L
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FIG. 2. The qualitative dependence of f(E). The area of the
hatched domain is proportional to the total density of vortices.
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where one can put U(j') =U(j)+ (j'—j)dU/dj and tend
the lower limit to — oo, The result is

& =Pp,kT |dU/dj|"exp(—U/kT) , 9)

with B=p H.o/p.B. At j<j.kT/U(j) the current-
voltage characteristic is linear with the resistivity given by

p=PBpnexp(—U(0)/kT), (10)

where the pre-exponent depends weakly on B in accor-
dance with the results of Ref. 1.

Generally, at j> j.kT/U the dependence U(j) deter-
mined by Eq. (6) is nonlinear, which correlates with the
nonlinearity of U(j) observed in high-T, films® (see also
Ref. 9). Consider, for example, the simple case of depin-
ning energies decrease similarly with the increase of j as
Ep(j)=y(j)E,(0), where y(j) is a function vanishing at
Jj=Jjc. Then all parameters with the dimension of energy
in f(E) should be multiplied by y(j), which is equivalent
to the scaling f(E,j)=y(j) ~'fIE/y(j))] with n,(j)
=const. As a result, Eq. (7) becomes

U=Uwy(j)—n*k>T* ' (Uo)/6y () f(WUy) ,

with Uy corresponding to j =0. Thus, the activation ener-
gy U(j) proves to be nonlinear even if the local values
E,(j) depend linearly on j, i.., y=1—j/j.. In this case
the nonlinearity of U(j) increases with T and j.

This nonlinearity manifests itself in the nonlogarithmic
time decay of the induced current J(¢) in the flux-creep
regime. The process is described by the electrodynamic
equation LdJ/dt+V(J) =0, where L is the inductivity of
the superconducting circuit and V' (J) is the resistive part
of the voltage determined by Eq. (9). Acting in the same
manner as when obtaining Eq. (9), one finds

Uli(t)1=kT1n(t/ty), t>19, (1)

where to=L/BR, and R is the resistance of the circuit in
the normal state.

The resistive transition in a sample with macroscopic
inhomogeneities in j.(r) and U(r) has the specific
features as compared to the case discussed above. In the
flux-creep regime (U>>kT) the relatively weak inhomo-
geneities in U(r) can result in strong inhomogeneities in
p(r), which is accompanied by the arising of some
domains with high-local-creep rate surrounded by
domains with low-creep rate. The existence of such high-
creep drops inside a superconductor essentially influences
the macroscopic flux creep only if their concentration
exceeds the percolation threshold, when the vortices or the
vortex bundles* can move along the corresponding net-
work of the percolation channels through the whole cross
section of the specimen (see Fig. 3). Notice that only a
small part of all high-creep drops belongs to the so-called
infinite percolation cluster'® contributing to the macro-
scopic flux creep, which, in particular, should be taken
into account when reconstructing the distribution function
of the activation energies F(W) (Ref. 2) by means of the
measured dependence U (B).

The above arguments can be illustrated in the frame-
work of the effective-medium theory which gives the fol-
lowing equation for average resistivity (p) in the two-
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FIG. 3. The percolation network of the high-creep channels
(hatched) in a superconducting film.

dimensional (2D) case'°

1=2f " dW FW)p(W)/loW)+(p)] (12)

Here p(W) is the local resistivity and the integral of
F(W) over W from 0 to o is equal to unity. For
p(W) =poexp(—W/kT) with po=const, Eq. (12) be-
comes

1 -2_[;°°dWF(W)/(e‘W‘U’/”+ 1), (13)
{p) =poexp(—U/kT) . (14)

At U> kT the integral (13) containing-the Fermi func-
tion p(W) can be transformed in the same manner as Eq.
(6), which yields

U=U,—n%?*T*F'(U,)/6F(U.) , (15)

(16)

Here U, is the percolation threshold for the potential
U(r). At j> j.kT/U the problem becomes more compli-
cated as it reduces to the analysis of current distribution
in randomly inhomogeneous nonlinear media.'!

Thus, the resistive flow of the free vortices can both be
uniform (I, <) and considerably nonuniform (see Fig.
3). In both cases, however, the value U is determined by
the form of f(E) and F(W) so the existence of low-
energy tails or peaks in f(E) or F(W) due to the effect of
granularity, chemical inhomogeneities, etc., results in the
essential decrease of U.

The dependences of U on T, B, and j are determined by
Egs. (6) and (13). For instance, at low T the supercon-
ducting parameters are independent of T so the function
f(E) may also be assumed to be independent of 7. Let us
introduce the field B,, at which the energy Uo(B,,) corre-
sponds to the maximum in f(E) as shown in Fig. 2. Then
the activation energy U(T) increases with T for B < B,
and decreases with T for B > B,, due to the last term in
Eq. (7). For macroscopic inhomogeneities, the sign of the
last term in Eq. (15) is not so clear in physical meaning
and depends on the shape of F(W). In particular, for 2D
cases there is the exact result'? U, =(U(r)), F'(U.) =0 if
the function F(W) is symmetrical with respect to the
point W=(U). The case F'(U,) <0 takes place for the
nonsymmetrical function F(W) with a pronounced high-
energy tail (see Refs. 2 and 3).

U,
=2 fo FW)dw .



RAPID COMMUNICATIONS

4860

The relation between U and the activation energy U,
measured in flux-creep experiments U,, = — kT j.d Int/dj
(Refs. 13-15) is given by Uy, =j. |dU/dj| [see Eq. (11)].
For nonlinear U(j) the energy U,, depends on j, however,
in the case of slow decay of j(¢) in the flux-creep regime
one can put U, =U,,(j), where j is an average value of
j(t) within the measured interval 1, <t <t,, that is,
j(ty) <j<j(t;) and j(z,) —j(z;) <j. Notice the energy
U, was observed to increase with T at low T (Refs.
13-15), for instance, the data of Ref. 15 for oriented
grained YBa,;Cu30; fit the formula Uy, ={/o+AT? with
Uo=30 meV and 4=0.244 meV/K? (5 K< T <30 K),
in accordance with the predicted low-T dependence of
U(T) given by Egs. (7) and (15).

As it follows from Fig. 2, the value U(B) decreases at
B < H), on the scale of B~H, <H.,. The opposite case
B> H), corresponds to the essentially collective pinning
for which U(B) varies on the scale of B~H,> H,.>'®
Thus, the distribution of pinning energies leads to the ap-
pearance of low-B cusp in U(B) at B <H,. This results
in the corresponding low-B cusp in the measured critical
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current density j. due to flux creep, the cusp increasing
with T

Je={1—[kT/U(T,B)In(Ee/E e a7

where j. =j.(T =0), &, is a constant of the material, &,
is the threshold voltage criterium, and U(j) is assumed,
for simplicity, to be linear. The correlation between
strong dependences of j.(B) and Uy, (B) at B <0.5 T and
the increase of low-B cusp in j.(B) as T increases were
observed in Ref. 14 for oriented grained YBa,;Cu;0,.

Finally, the phenomenological model, taking into ac-
count the effect of distribution of pinning energies on the
resistive state of superconductors, has been proposed. The
results obtained are insensitive to specific pinning mecha-
nisms, which allows us to conclude about some general
features of the resistive transition and of the dependences
j(T,B) and U(T,B).
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