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Finite-size effects and anisotropic melting of the vortex solid in high-temperature superconductors

N. -C. Yeh
Department of Physics, California Institute of Technology, Pasadena, California 91125

(Received 5 March 1990; revised manuscript received 3 May 1990)

A mean-field model of anisotropic melting of the vortex solid in high-temperature superconduc-
tors is proposed. For a slab sample with dimensions I,b» l„where 2l,b and 2l, are the average
diameter of the ab plane and the c axis thickness, respectively, large thermal fluctuations and
finite-size eft'ects may result in anisotropic two-dimensional melting at crossover temperatures
Ts(H) below the three-dimensional-melting transition Tss(H). Thus a quasi-two-dimensionally
ordered vortex-liquid phase may exist in Tx(H) & T & Tst(H). Generally, Tz(H) decreases with

the decreasing sample thickness, increasing magnetic field, and larger Ginzburg-Landau parame-
ter x(=-X/g). In the limit of —, H, 2&&H &H, 2, the geometric anisotropy plays a more important
role in determining Ts(H) than the electronic-mass anisotropy.

Despite intense efforts in trying to understand the
mixed-state properties of high-temperature superconduct-
ing oxides, ' s it is an unsettled issue whether the low-
temperature phase is a true zero-resistance, "vortex-solid"
state, or may be described by the conventional flux-creep
model, which asserts nonzero resistance at any finite tem-
perature. Even if such a "vortex-solid" state does exist, it
is also unresolved whether the vortex-solid phase is a near-
ly perfect Abrikosov lattice in the weak-pinning limit, '

or a "glasslike" state. s Finally, it is not known whether
the vortex-solid-vortex-liquid "phase transition" is first-
order, second-order, or merely a gradual crossover. Re-
cent controversial experimental results and interpreta-
tions ' have added more complications to this issue.

In this paper, we consider an extreme type-II supercon-
ductor (x»1) with a high critical temperature (T,n).
We focus on the clean-limit approximation, and only dis-
cuss the thermal effects on vortex motion. This approach
has the advantage of leaving out additional complications,
such as the Lorentz force on flux lines in the presence of
external currents. Using the elastic theory proposed in
Refs. 1-3, we show that large thermal fluctuations and
finite-size effects may result in anisotropic two-dimen-
sional melting below the mean-field upper critical field
H, 2(T). Therefore vortex motion may occur well below
H, 2(T) in thin samples, unless strong pinning mechanisms
are present.

We first consider an upper critical field H, 2(Tst)
H, 2(0)(1 —Tsr/T, n) ", where T,n is the zero-field su-

perconducting transition temperature, and v is the static
exponent which describes the temperature dependence of
the superconducting coherence length ((,—~

T —T,n~ ").
In general, v 2 in the mean-field approximation, and

I

v~ 3 for a disordered three-dimensional (3D) XY mod-
el. ' Since the exact value of v is still unknown, we only
limit the following discussions to the mean-field approxi-
mation. We also note that the notations Tsr(H) and
H, 2(T) both refer to the same mean-field, three-
dimensional-melting phase-transition boundary in the
(H, T) phase diagram.

Generally, the vortex-solid melting transition in a type-
II suPerconductor occurs if is (T Tss) =0, ' where

p is the shear modulus of the flux-line lattice (FLL). In
this context, a vortex correlation length g„ is introduced, '

which may be broken into two components: the longitudi-
nal correlation length g„, i (along the magnetic field) and
the transverse correlation length („i (perpendicular to
the magnetic field). The correlation length g„describes
the translational correlation of flux lines in the dis-
placement-field space, and is defined (analogous to the
definition for superfluids' ) via the correlation function
CG, '

CG(ri, z) —=(exptiG [u(ri, z) —u(0, 0)]1),

CG(ri, z ~) -exp( —
—,
' G'&u'))(1+&, t/z),

CG(ri ~,z) =exp( —
2 G (u ))(I+(., J/ri),

where 6 is a reciprocal FLL vector, and u is the flux-line
(FL) displacement field.

From elastic theory and the definition in Eq. (1), the
correlation lengths g,, t and (,, i for a finite sample thick-
ness 21, are related to the shear and tilt moduli p and K by
the following expressions:"

& d q i cos(Q„z);v,, ktt T kgT
, P~'j(qi)z z + (2tr) 4l iiqi +Kq,

'
(2@+A.)qi +Kq,

~ d'q cos(g„z);„„. ka T kgT
2P; qir ~ ~ ~ (2tr ) 41~ pq i +Kqz (21t +A, )q i +Kq&

(2)
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where n integer, Q„n»/2l„ i,j x,y, P;, (q&) and
PJ(qi) are two-dimensional transverse and longitudinal
projection operators, ' p, (2@+A,), and K are the shear,
compression, and tilt moduli, respectively, and the sum
over n, i,j is understood. The shear modulus p is nearly
independent of wave vector, and decreases with increasing
temperature via the following temperature dependence: '

H@p
forH, ~&H& 2H, 2,

4 (4zkL)'
(3)

where A, L is the London penetration depth. The compres-
sion and tilt moduli (2@+1)and K are q dependent, and
therefore their nonlocal expressions should be considered
in calculating Eq. (2). For»» 1, M3»Mi, q G+k,

I

p=7xlo (I —H/H, 2) for —, H, 2«H(H, 2,

and 2 H, 2(T) «H & H, 2(T), we find (ski/Gp) & [(1
-b)/2h» ]«1 for most ski values, which implies that
the nonlocality is satisfied. Here Gp 2mJ2H/3'~

&g@p is the smallest nonzero reciprocal-lattice vector,
and @p is the flux quantum. Thus, (2p+k)-p, and

K(lkl &0) -Kp
2hz

(4)
[H,2(T) —Hl M )

Sx»2

where Kp=K(ski 0) H /(4') is the tilt modulus in lo-
cal elastic theory, h—=H/H, z(T), and M&,M3 are the
electronic masses for the ab plane and the c axis, respec-
tively

From Eqs. (2)-(4), (,,~~(H, T) and g„~(H, T) becomes
(in cgs units):

1 + 1

[(2p +~)Kl '"

ka TG$
&,, (tH, T, ») = +

Sx p 2@+X,

kg TG$
(H, T, ») =

600k'
epH, '2 (o)

x' TH
[(1—T/T, p) "—H/H 2(0)]

kg TGp2

41rdpK

220k'» T[H(M3/M])] '

4 [H (0)l [(1—T/T, p) "—H/H, 2(0)]

V(T) =- 1—T
Tc0

~ Q(H, T, », l, )

H A vTH ()H„(o) H„(o)
where A —= (600k'/4p) in cgs units. Note that T~(H)

Note that both g„,ii and g„,~ diverge at T T~(H), be-
cause [1 —T~(H)/T, p]

" H/H, 2(0). Thus Eq. (5) is
consistent with the assumption of a second-order phase
transition at T~(H) ~ We also note that the correlation
lengths in Eqs. (2) and (5) are only correct if there are no
dislocations.

Instead of using the Lindemann criterion of melting for
an infinite system, ' we show below that there may be a
dimensional crossover temperature T~(H) below T~(H),
due to the finite sample dimensions. '5 Consider an exter-
nal magnetic field applied along the c axis of a slab high-
temperature superconductor with l,b » I„where l,b and I,
being the averaged ab-plane radius and the half-thickness
of the sample, respectively. Since (, ~~&&g, , ~ and l, &&l,b,
there is a finite temperature interval, T~(H) & T(T~(H), in which the conditions g, ii~ I, and f„,i
&I, b may be satisfied. Here T~(H) is defined as the

temperature where (, ~~ I, for a given field H. We sug-
gest that a continuous 2D melting transition may take
place within the temperature interval Tv (H ) (T
& TM(H), and that the vortex phase in the temperature

range T~(H) & T & T~(H) can be described by a
"quasi-two-dimensionally ordered vortex liquid.

"
More explicitly, we find from Eq. (5) that the condition

for the onset of a 2D melting (g, ii
~ I, ) may be written as

follows:
2v

I

occurs at P(Tx) g(Tx, H, », l, ). The physical signifi-
cancies of P(T) and Q(H, T,», l, ) can be manifested by
rewriting Eq. (6) into the following expression,

H„(T) (H+~H, ~H=—W»+TH/I, . (7)

The effect of a finite sample thickness on the melting tran-
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FIG. 1. A proposed mixed-state vortex phase diagram of

high-temperature superconductors is shown for Hllc axis of the
superconductor. The dotted and dashed lines of T~(H) corre-
spond to sample half-thicknesses I, 1 and 0.1 pm, respectively.
The two solid lines denote the mean-field upper critical field

H 2(T~) in the thick-sample limit (I, ~), and the 2D melt-

ing transition T2o(H) in the thin-sample limit (I, «A), respec-
tively.
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sition may therefore be considered as adding an effective
magnetic field AH to the applied field, such that a 2D
melting transition begins as soon as the "total" magnetic
field [H+AH] exceeds the upper critical field H, 2(T).
We emphasize that in the first-order approximation,
T~(H) is not sensitive to the effective ma-ss anisotropy,
because („t is mostly determined by p, as shown in Eq.
(5).

In Fig. 1, we obtain the magnetic-field dependence of
T~(H) in the mean-field limit (v —,

' ) by calculating the
solutions for P(T) g'(H, T) of Eq. (6), for samples with
half-thicknesses I, 1 and 0.1 pm, and parameters
H, 2(0) 10 G, T,p 93 K, and L 200. From Eq. (6) it
is obvious that the values of Tx(H) are sensitive to ma-
terial properties such as T,p, v, x, and H, 2(0). We note
from Eqs. (6) and (7) that T~(H) in a thinner sample is

consistently lower than that of a thicker sample. Further-
more, the temperature difference hT(H) —= les(H)—T~(H)) increases with increasing magnetic fields and

I

decreasing sample thicknesses.
These theoretical predictions qualitatively agree with

recent experimental results by various groups: ' (i) We
find that the values of T~(H), determined by the temper-
ature of onset resistivity, generally decrease faster with in-
creasing field in YBa2Cu307 films and thin single crystals
than those in thick single crystals. ' ' (ii) An anoma-
lous change of slope in the resistivity versus temperature
plot at a constant field (H, i «H & H, 2) occurs above the
onset of resistivity p' i.e., above T~(H). We attribute
the temperature where the anomaly occurs to Tst(H),
and find that AT(H) indeed increases with increasing H,
consistent with our predictions.

In addition to the finite-size effect imposed by the thick-
ness of a sample, there is also a transverse crossover tem-
perature T~(H) in the ab plane due to the finite sample
dimension. We can estimate T~ by assigning g„& l,b

and by using Eqs. (4) and (5):

Tx'

Tc0

0 +
H, 2(0) H, 2(0)

(Tg) Hit M3

I,2b Mi

where A'=(220k@/@p) =2.8x10 5 (cmG/K), in
cgs units. We find that for a typical YBa2Cu307 single
crystal with l,b =0.5 mm, the difference of the crossover
temperature Tx(H) from the bulk melting transition
temperature Tts(H) is about tt T'=—Tst —T~ & 0.1 K for
H ~ 10 T and (M3/Mi) 100, much smaller than that
along the c axis. Therefore the vortex-solid melting tran-
sition for a slab high-temperature superconductor with
Hllc axis is generally determined by the longitudinal
crossover temperature Tx(H), unless the mass anisotropy
is much greater than the geometric anisotropy. That
is, unless the condition (M3/M i )(I,/l, b ) » (A/A')
x(QI,H)/(JTtc) is satisfied.

For comparison, we remark that in Ref. 3 the FLL
melting has been studied by using the Lindemann cri-
terion in an infinite system. The FLL-melting tempera-
ture thus obtained is found to be significantly reduced by a
large electronic mass anisotropy, in contrast to our finding
for 2 H, 2(T)«H &H,2(T) and a finite sample thick-
ness. This difference may be due to much larger mean-
square FL displacements (tt ) for an infinite system
(I, oo). However, a more general description of the
FLL melting theory for a finite-size sample in an inter-
mediate magnetic field (H, i & H & H, 2) is still to be ex-
plored.

In the thick sample limit (I, oo), we note that
5'(H, T) f H/H (2)0l from Eq. (6), and therefore
T~(H) Tst(H), indicating an ideal three-dimensional

I

0.353M 2 H, 2(T2D) —H @p
ttT2D H

gn J3 Hc2(T2D) 4x A(T2D)

I

melting. On the other hand, T~ T2D in the thin-film
limit (l, «A, A—=A,s/I, denotes the effective penetration
depth in 2D), where the 2D-melting temperature T2D is

implicitly determined by the universal condition 6

lim
1 + 1 a

, (9)
T Tiv p2D(T) p2D(T)+~2D(T) 4nkttT2D

where ap=1.075J@p/H is the Abrikosov FLL constant,
and p2D, A, 2D are the Lame constants of the two-dimen-
sional FLL. We may obtain quantitative estimates of the
2D-melting temperature as a function of the magnetic
field from the two-dimensional FLL melting theory in
thin-film superconductors. ' According to Ref. 17, the
zero-field 2D-melting temperature for a thin film with
sheet resistance R„ is

T2D(0) T p 1+ 3g R„
Ai R,

(10)

where R,=—fi/e 4.12 kQ/square, and 0.4 & Ai ~ 0.75 is
a constant. ' Typically, T,p 93 K and the normal-state
resistivity p„=70 ttOcm for YBa2Cu307 single crystals.
Assuming a sample thickness 21, 10 A, and A i 0.75, '7

we obtain T2D(0) = 50 K.
The 2D-melting temperature T2D(H) in a magnetic

field can be obtained by rewritting Eq. (9) into the follow-
ing equation (in cgs units):

0.35322@(I, H
32n3~3 Hg2(0) (1 —T2D(H)/T~p)

1— T2D(H )
TcO
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where A2-I is a constant, ' and a two-fluid model has
been assumed in Eq. (11) so that A,a(T) ka(0)[1
—(T/T, o) ) '~ . We thus obtain an estimate of the 2D-
melting phase boundary T2o(H) for a thin-film
YBa2Cu307 with 2l, 10 A and A,a(0) —10 A, as shown
in Fig. l.

The vortex phases are therefore summarized as follows:
(i) A 3D-ordered vortex-solid phase for T & Tx(H), if I,
is in the bulk limit; or a 2D-ordered vortex-solid phase for
T & T2n(H), if l, «A. (ii) A quasi-2D-ordered vortex-
liquid phase for T~(H) & T & Tsr(H), which continuous-
ly melts with increasing temperature. (iii) The normal
state for T & Tsr(H). Thus T~(H) is bound by two lim-
its: Tsr(H) if I, ~, and T2n(H) if I, &&A.

Since accurate predictions of Tsr(H) and T~(H) de-
pend on the material properties, only the principles of ob-
taining T~(H), rather than the absolute values of Tx(H)
estimated here, should be taken seriously. We also note
that our semiempirical calculations are based on a mean-
field, clean-limit approximation. Obviously the material
parameters T,o, v, x', H, i(0), and H, 2(0) may be very
sensitive to the presence of pinning defects and disloca-
tions. It is reasonable to expect modifications for g„ i and

g, & in the strong pinning or extremely dirty limit, so that
the crossover temperature T~(H) may be quite different
from our clean-limit approximation. In addition, we note
that T~(H) may be reduced further if v& —,

' [see Eq.
(6)]. Thus, we expect more significant finite-size effects
in the XYcritical regime, where v= —,

' . '

Finally, we note that the anisotropic, continuous 2D-
melting phenomenon is much more significant in high-
temperature supercondcutors than in conventional type-II
superconductors. As shown in Eqs. (6) and (7), the mag-
nitude of the deviation of T~(H) from H, 2(T) is

~rs:x+TH/I, . Consequently, the values of hH in
high-temperature superconductors are generally 1-2 or-
ders of magnitude greater than those in conventional su-
perconductors, due to higher transition temperatures,
higher upper critical fields, and larger x values in the
former case.

In summary, we have shown that large thermal fluctua-
tions and finite-size effects of high-temperature supercon-
ductors may result in an anisotropic, the continuous two-
dimensional vortex-solid melting below the mean-field
H, 2(T). The onset temperature Tv (H) of the continuous
2D melting is sensitive to the sample thickness (I, ) and
other material parameters, such as T,o, v, a., and H, z(0).
In the limit of 2 H, 2«H & H, 2(T) and for given materi-
al properties, T~(H) coincides with the mean-field upper
critical field [H,2(Tsr) l if I, ~; T~(H) decreases with
decreasing sample thickness l„and approaches the two-
dimensional melting temperature Tzn(H) if I,« A.
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