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Spiral phases and time-reversal-violating resonating-valence-bond states of doped antiferromagnets
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The phase diagram of the t-t'-J model is investigated arith use of a slave-fermion mean-field ap-
proach. States with spiral antiferromagnetic order are found to be stable for small t/J and hole

concentration b. For larger t/J and b, corresponding more closely to the physical parameter
values of the oxide superconductor, a flux phase exhibiting a uniform chiral order is found to be
more stable than the spiral states. This state breaks parity and time-reversal symmetry.

The normal state of the high-temperature oxide super-
conductors exhibits a number of anomalous properties
which suggest that it is not an ordinary Fermi liquid. ' In
view of the fact that undoped La2CuQ4 is an antiferro-
magnetic insulator, it is of considerable interest to under-
stand how the ground state evolves as a function of dop-
ing.

Much of the theoretical effort has focussed on the
large-U Hubbard model or the t Jmod-e1. 2 Two different
mean-field approaches have evolved, and the connection
between these two mean-field approaches has been dis-
cussed in the context of the Heisenberg model at half-
filling. 3 In the slave-boson mean-field approach, the
ground state for large doping is a uniform resonating-
valence-bond (RVB) state with a spinon Fermi surface
obeying Luttinger's theorem. The low-temperature phase
where the holes Bose condense is a strongly correlated
Fermi liquid with antiferromagnetic correlations. Close
to half-filling, the stable state of this mean-field theory is
the s+id or flux phase with point Fermi surfaces. The
slave-fermion approach, on the other hand naturally gives
an ordered Neel state at half-filling, which evolves into
spiral antiferromagnetic states at small doping. At
larger doping and for moderate t/J, a ferromagnetic
phase with the physics of the Nagaoka state was found. 7

In this paper, we numerically investigate the phase dia-
gram of the t-t'-J models in the slave fermion formalism,
and show that at large b (doping parameter) and t a new
RVB state is favored over both the spiral phases and the
ferromagnetic states. This state has a nonzero flux in a
sense to be defined below and has a uniform chiral order
parameter and consequently violates parity and time-
reversal symmetries. There seems to be an exact parallel
between the slave-fermion and slave-boson approaches in
that a state with no flux in one corresponds to a state with
flux in the other.

The t-t'-J model is a generalization of the t-J model of

a doped antiferromagnet constrained to the subspace with
no double occupancy.
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where the electron operators c; have been written as
c; ftb;, with use of slave fermions to enforce the no-
double-occupancy constraint. 7 s It is known, from studies
of a hole hopping in a quantum antiferromagnet, that
quantum fluctuations allow a hole to hop coherently on
the same sublattice in a Neel state. The t-t'-J model is a
renormalized model which takes into account this same
sublattice hopping process by including a term Pt, c;~~, .
The slave-fermion mean-field theory of this model has
been described in detail in Ref. 8. In that work the
mean-field phase diagram of this model was investigated
in the region of small doping, by performing an expansion
in b, and it was shown that the ground state is a spiral an-
tiferromagnet. Here we present a numerical calculation
of the complete phase diagram. The order parameters of
the mean-field theory are
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The order parameters are taken to be translationally in-
variant. The various states considered away from half-
filling are listed in Table I. We first consider states with
D„D, which is known to be the global minimum of this
mean-field theory at half-filling. 6 Different physical
states away from half-filling can be distinguished by the
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gauge-invariant quantities P„- „- =—D„- QP„- Q„-. The
different spiral states are distinguished by P~„-s The
spiral (1,1) has Q„with p, +p» symmetry and P~„-

P;; P„-„-; the spiral (1,0) has Q„with p„symmetry
and P; „- 0 and the interesting double-spiral state has Q„
with p, +ip» symmetry and P~„- iP-; iP„.„.. The
phase diagram is obtained by minimizing the free energy
with respect to the order parameters. We work at a small
but finite temperature where there is an exponentially
small gap and the condensate characterizing long-range
antiferromagnetic orders 7 does not appear. One still has
to be careful in dealing with the k-space regions where the
gap is exponentially small.

The phase diagram in the t t' Jspac-e f-or the states hav-

ing uniform D„with s symmetry are shown in Fig. l. At
t' 0, the spiral (1,1) state appears infinitesimally away
from half-filling and remains the ground state until a fer-
romagnetic phase with Q„WO but D„O comes in at large
b and t. For larger t' and small b, the (1,0) spiral is more
stable than the (1,1) and finally for large enough t' the
Neel state becomes most stable. The double spiral is nev-
er the global minimum, even though it is very close in en-
ergy where the (1,0) state is stable. This is in agreement
with the analytical results of Ref. 8, which were obtained

TABLE I. List of the symmetries of the various states that
were investigated. The last two were always found to be higher
in energy than the flux state.

Dz Dy Das/D —
aa Qz Qy Qaa/Q —

as

in the small 8 limit. For larger 8 and t, the numerical cal-
culations show that the system goes directly from the
(1,1) spiral to the Neel state without any intervening
(1,0) state. The energies of the (1,1) and (1,0) are very
close in this region. In Fig. 2 we show the dependence of
D and Q on b for t/J 5 and two different values of t'. It
is clear that a finite t' inhibits the growth of the spiral or-
der parameter Q.

The most interesting numerical results appeared when
we looked at the large doping region and included in our
investigation the flux states of Table I.

The bandwidth of the holes is expected to be Qt =bt in
the large b regime bt & J; this will dominate the band-
width =J of a single-hole hopping in a Neel background.
For this reason the t t' J-m-odel is not very meaningful,
and we therefore looked at the pure t Jm-odel in this re-
gion. At half-filling, where only D„WO, there are two
saddle-points of the mean-field equations: (i) the uniform
phase with D„D and (ii) the flux phase (s+id phase of
Ref. 6) with D» iDz a The flux phase is higher in energy
at half-filling. It also has a very different condensate wave
function. It is known that in the uniform phase a conden-
sate appears for spin S & 0.19 which signifies long-ranged
Neel order. This condensate is described by (bg „)1)

Jnp, (bt' „)1) gnat which gives a spin-up-spin-down
ordering, and corresponds to the gap going to zero at
k (0,0) in our reduced Brillouin zone [which is shifted
by (tr/2, tr/2) from the original Brillouin zonej. A conden-
sate also appears in the flux phase but only for S & 0.4,
and in this case the gap goes to zero at k (0,0) and
(O, tr). In the flux state the condensate can be described
only by going to a doubled real-space unit cell. The order
parameter D is, however, defined within the smaller unit
cell and there are no solutions to the mean-field equations
which are consistent with the chosen symmetry of D and
the condensate. Our attitude at this point is to treat the
flux phase as a state with a finite gap, since it would be so
even for a static distribution of 20% holes which brings S
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FIG. 1. Phase diagram of the t-t'-J model in the t-i' plane
(tl =t/J), t2= t'/J)—, in the sp—ace of uniform D„states (a) for
b 0.05, (b) for b 0.10.

FIG. 2. Variation of the order parameters D and Q with the
hole concentration b. (a) shows variation in D for t2 0 (solid
line) and t2 0.5 (dashed line). (b) shows variation of Q for
the same two values of t 2.
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down to 0.4. For a finite hopping amplitude t, and a
nonzero value of Q„, this is expected to occur for even
smaller 8 A. study of the temperature dependence of the
correlation length also shows a much more dramatic de-
crease with increasing temperature for the flux phase than
the uniform phase.

The disordered flux state, with no condensate, at half-
filling can be described by a variational wave function

I+&aexp Z b"
~satb -~at -blttbatkt IO)

When projected onto the constrained subspace this be-
comes a finite-range RVB wave function' with singlets
between sites on opposite sublattices and with a phase e'
associated with these singlets, where 8 is the angle the
bond makes with the x axis. This is in contrast to the s-
wave state D„D where there are no phases associated
with the singlets.

Away from half-filling we investigate a state with flux
in D„, and a Q„with p„+p» symmetry (the other states
listed in Table I are higher in energy), such that

P,-„--=D:Q.D, Q,'-t IDI2IQI'=iP„-, „-,

P- -= —P-- (2)

This is a state with a uniform chiral order parameter
[ImP~„- 4S(S," (SP+„xS|+»)))," in contrast to the
double-spiral state obtained with s-wave D„, which has a
staggered chiral order parameter. This follows from the
observation that D„ transforms to —D„and Q„ trans-
forms to Q„on changing the sublattice. This flux state
would therefore seem to be disordered for any finite Q
since it is diScult to reconcile condensation with a
nonzero chiral order parameter. The spinon dispersion in
this flux state is

tpk- =&(it+ IMMI)' —
I

-' JDkl'I '"
with

Dk 2D (cosk„+i cosk» )
and

Mk =( —,
' JQ+2tF)(sink„+sink») .

The minima in the dispersion occur at (0,0) and (0,z) and
its permutations when Q 0 and shifts to (kp, kp) and

(kp, z —kp) with increasing Q, where kp is proportional to
Q. This state therefore has point zeroes unlike the
double-spiral state which has a ring of zeroes. Viewed in

terms of a wave function for spins, a phase e' (propor-
tional to the bond angle) appears in the same sublattice
singlets in the double spiral, whereas they appear in the
opposite sublattice singlets in the flux phase.

In our numerical investigation, we found that the flux

phase becomes stable when t and 8 are beyond a critical
value. The phase boundary between the spiral (1,1) and
the flux phase is shown in Fig. 3. It is interesting to com-
pare this to the phase diagram obtained in the slave-boson
picture where the no-flux phase appears in the same re-
gion where we find a flux phase. In this region of the t-8

0
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FIG. 3. Phase diagram in the t-8 plane showing the region of
stability of the flux phase (see text). The phase is seen to be
stable in the region of interest to high-temperature superconduc-
tivity.
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phase space the order parameters D and Q are nearly
equal and smaller than 2tF, which therefore dominates
the spinor dispersion relation. The minima of the spinon
dispersion shift to k =(tr/2, tt/2) in the reduced Brillouin
zone.

The region of stability of the flux phase is precisely the
region of interest in the study of the oxide superconduc-
tors (t/J-5, 8=0.1).

The occurrence of a phase with a uniform ehiral order
parameter and a flux in blab in the region of physical pa-
rameter values is extremely intriguing. The phases associ-
ated with the valence bonds allows for the possibility of a
transmutation of the statistics of the elementary excita-
tions, the spinons and holons. ' ' As discussed in Ref. 12,
the nominal statistics of the exeitations can be altered by
the binding of vortices, and under certain circumstances
this process lowers the energy of the excitations. Such an
effect might produce a state more like a Fermi liquid as in
the slave-boson approach. Alternatively, the existence of
a nonvanishing chiral order parameter could lead to the
appearance of excitations with fractional statistics"
These possibilities are currently being investigated.

In conclusion, we have mapped out the phase diagram
of the t t'-J model-and shown that same sublattice hop-
ping favors the Neel state. More importantly we have
shown that in the region of interest to the high-tem-
perature superconductors, a state with a uniform chiral
order parameter and no long-range spin order, becomes
more stable than the incommensurate spiral antiferro-
magnetic states found at small b. The appearance of this
flux phase eliminated the large ferromagnetic region of
the phase diagram.
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