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Gap states in dilute-magnetic-alloy superconductors: A quantum Monte Carlo study
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Using a combination of quantum Monte Carlo simulation, perturbation theory, and maximum-

entropy analytic continuation, we calculate the density of states for a dilute-magnetic-alloy super-
conductor. We 6nd that the peak location of the gap states moves more quickly with increasing
Kondo temperature than predicted by Zittartz etal. , and that the integrated intensity of the gap
states is in extreme qualitative disagreement with that prediction.

It is well known that magnetic impurities can have a
profound effect on the properties of superconductors.
They can severely reduce T„change the specific-heat
jump, and even result in states within the superconducting
gap. When the impurities have a strong antiferromagnet-
ic coupling with the superconducting host, these gap states
have a peaked structure. This effect was described for
classical-spin impurities by Shiba, and for quantum
Kondo-type impurities by Zittartz, Bringer, and Miiller-
Hartmann (ZBM). Experimentally, this structure can
be seen in measurements of the differential conductance
from tunneling experiments into dilute magnetic super-
conducting alloys. Such structure is also seen when tun-
neling into normal dilute magnetic alloys which are prox-
imity coupled to a pure superconducting material such as
lead.

Using a self-consistent Monte Carlo method, in con-
junction with a method of analytic continuation, we are
able to calculate the superconducting density of states of a
dilute magnetic superconducting alloy. This approach has
the advantage of treating the impurity exactly, and thus is
more accurate than previous theories. In Fig. 1, we
demonstrate the temperature dependence of the location
of the states in the superconducting gap, and in Fig. 2 we
show that a gap can appear in the impurity spectral func-
tion of an impurity embedded in a superconducting host.

Many theoretical attempts have been made to try to un-
derstand the gap states of dilute-magnetic-alloy supercon-
ductors, of which we will mention a few. Abrikosov and
Qorkov, s using a second-order Born approximation ap-
propriate in the weak-coupling limit, found that magnetic
impurities could fill in the superconduction gap. However,
they found no discernible structure of the states within the
gap. Shiba, using a classical impurity model, found that
the states could have structure. However, in this approxi-
mation the location of the states within the gap is temper-
ature independent. ZBM (Ref. 2) treat the impurity with
the Nagaoka-Suhl approximation, and the interaction be-
tween the impurity and the superconducting host with a
self-consistent t-matrix approximation. They And that the
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where T, is the superconducting transition temperature,
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FIG. 1. Superconducting density of states for various values
of Tg when T 0 05, Av 2 8, cvv 0 75, c c/(2n)
xiii(0)T, &-0.1, and T, = T,v 0.2. N(rv) is normalized by the
density of states at the Fermi surface of the normal metallic host
iV(0). The arrow in each plot is the location of the gap states as
predicted by Zittartz et al. [Eq. (1)]. Note that for large T» the
ZBM result disagrees with our result. Also, in contradiction to
that predicted by ZBM, the integrated intensity of the gap
states increases monotonically with T&/T, v.

peak location of the gap states is given approximately by
Xo,
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FIG. 2. The spectral function of the impurity site in a normal
host (solid line) and in a superconducting host (dashed line)
when T,o 0.2, Tg 0.014, c 0.1, and T 0.05. A (co)

—(1/z) ImGd(co+i8) where Gd is the impurity single-
particle Green's function. A gap opens in the spectral function
of an impurity embedded in a dilute-magnetic-alloy supercon-
ductor when Tg && T,o.

and S is the spin. In the ZBM theory both the shape and
location of the gap states are entirely symmetric in

In(T, /Tx). This symmetry is broken in the theory of
Matsuura which is an approximate interpolation scheme
between the ZBM result at high temperatures (T)Tx)
and a Fermi-liquid theory at low temperatures (T & Tx).
However, to our knowledge only the pole location yo was
calculated with this theory, not the superconducting densi-
ty of states. In any case, a more fundamental approach is
desirable.

We use a combination of quantum Monte Carlo and
perturbation theory to obtain the host and impurity
Matsubara Green's functions. These are analytically con-
tinued to real frequencies using the maximum-entropy
method.

We model the magnetic impurities with a symmetric
Anderson model in the limit of infinite metallic band-
width. This model is characterized by a hybridization
width I nN(0) V [where V is the hybridization matrix
element, and N(0) is the density of states at the Fermi
surface), an on-site repulsion U, and a Kondo temperature
Tg. In the limit U» I, a spin- 2 magnetic moment forms
on the impurity orbital. This moment couples antifer-
romagnetically to the conduction electrons with an ex-
change I —8I/xN(0)U. We choose our definition of
the Kondo temperature such that the Kondo resistivity at
T Tg is half its maximum value, p(Tx)/p(T=O)
This is consistent with how T~ is defined in the Nagaoka-
Suhl formalism used by ZBM. From a previous calcula-
tion we found that

Tx = 0.91(1+xI /2U) J2I U/@exp( —irU/81 )

when defined in this way.
We model the superconducting host with a Holstein

model in which the conduction electrons interact with Ein-
stein phonons with a coupling strength A,o, and frequency
coo, resulting in a transition temperature T,o of the pure
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FIG. 3. Feynman graphs used. A Nambu 2X2 matrix form
is used for all fermion Green's functions. The Eliashberg equa-
tions are represented in (a). The double solid line is the host
Green's function, the X represents the hybridization matrix ele-
ment V, c is the concentration of impurities, and the triple dot-
ted line is the fully dressed impurity propagator as determined
from the Monte Carlo simulation. The Monte Carlo simulation
requires as an input the impurity Green's function with U 0
(or equivalently, a constant Hiibbard-Stratonovich field
configuration). It is determined from the Dyson equation, (b).
The Monte Carlo simulation is then used to dress the double
dotted line to all orders is U, (c), producing the fully dressed im-

purity Green's function which is the triple dotted line.

system. This model is well described by the Eliashberg
eqautions.

We assume that a small finite concentration c of un-
correlated magnetic impurities are embedded in the super-
conducting host, but that the distance between the impuri-
ties is much smaller than the superconducting coherence
length. This we believe is the physically interesting limit
since, even at the 1% doping level, the impurities are tens
of angstroms apart, whereas typical superconducting
coherence lengths are thousands of angstroms. Thus, we
will assume that the superconducting order parameter is
spatially constant, and average over all possible spacial
configurations of the impurities. This step restores mo-
mentum conservation, and allows us to use a standard per-
turbation theory to describe the superconducting state. In
addition, in the dilute limit, the impurities are uncorrelat-
ed so that each impurity makes an independent contribu-
tion to the impurity diagrams. The net contribution is
simply cN times the contribution of a single impurity
(where N is the number of lattice sites), which is
equivalent to using an average I-matrix approximation in
the dilute limit.

We use a Nambu-Gorkov matrix representation for
both the host and impurity Green's functions. Within this
representation the Eliashberg equations are represented in
Fig. 3(a). Here, Z is the host self-energy, the double solid
line is the host Green's function, the cross represents the
hybridization matrix element V, and the triple dotted line
is the fully dressed impurity propagator as determined
from the Monte Carlo simulation. The Monte Carlo
simulation requires as an input the impurity Green s func-
tion with U 0 (or equivalently, the Green's function cor-
responding to a constant Hubbard-Stratonovich field
configuration), which is represented as the double dotted
line. It is determined from the Dyson equation [Fig.
3(b)]. The Monte Carlo algorithm of Hirsch and Fye is
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then used to dress the double dotted line to all orders is U
[Fig. 3(c)], producing the triple dotted line which is the
fully dressed impurity Green's function. The set of equa-
tions represented in Fig. 3 are iterated until convergence is
reached, usually less than four complete iterations.

The host and lattice Green's functions must then be
analytically continued to real frequencies in order to ob-
tain the density of states and the impurity spectral func-
tion. We use the maximum entropy method " to
analytically continue our data. Starting with a default
model (the solution to which the analysis will default in

the absence of any data), it finds the real frequency image
which has the most entropy and is in statistical agreement
with the data. For the density of states, our default model
is the density of states of the pure host superconductor,
and for the impurity spectral function it is the pertur-
bation-theory result of Horvatic, Sokcevic, and Zlatic. '

It should be noted that the resolution of our images (in
this case the superconducting density of states)
deteriorates rapidly with co. This is due to the rapidly de-
creasing sensitivity of the Monte Carlo data to change in

the density of states as ro increases. Therefore, whereas
we are able to make quantitative statements about the ap-
proximate location and integrated intensity of the struc-
ture (but not the detailed shape) of the gap, we are unable
to distinguish reliably features at frequencies above the
gap. More details about the maximum-entropy method of
analytic continuation, and its ability to propagate error,
will be discussed in a future publication. "

Our results for the superconducting density of states are
shown in Fig. 1 for various Tg when T 0.05, T,o 0.2,
ko 2.8, F00 0.75, and c c/(2m) N(0)T, O 0.1. The
concentration of impurities is normalized in this way to be
consistent with ZBM. The gap states develop and move
toward the center of the gap as Tg/T, increases from zero
[Figs. 1(a) and 1(b)], have almost reached the center of
the gap when Tlr =0.5T, [Fig. 1(c)],and then move back
toward the center of the gap as Tg/T, increases further
[Figs. 1(d) and 1(e)]. Finally, when Tlr/T, becomes so
large that the impurity becomes nonmagnetic (U/I & x),
perturbation theory in U becomes exact and our results
agree with those of Kaiser ' (not shown). The arrow in

each plot is the location of the gap states as predicted by
ZBM [Eq. (1)]. This result roughly agrees with our cal-
culations in the limit T, & Tg [in Fig. 1(a), the integrated
intensity of the gap states was so small that locating the
peak is not possible within error bars], which is to be ex-
pected since their result is based upon the Nagaoka ap-
proximation. The Nagaoka approximation, a self-con-
sistent perturbation theory in J, is only correct in the
high-temperature limit. For T, & Tg, the states move as a
function of Tlr/T, much more quickly than predicted by
ZBM. This discrepancy is also seen in the tunneling ex-
perimental of Dumoulin et a/. They measure the tunnel-
ing conductance into normal dilute magnetic alloys prox-
imity coupled to a pure-lead superconducting host. Here,
Tz/T, can be adjusted by changing the type of magnetic
impurity, or the strength of the proximity coupling. They
find that the states move more quickly with increasing
Tg/T, than that predicted by ZBM. ' Nevertheless, Eq.
(1) does a good job of predicting the qualitative behavior

of the motion of the gap states with Tx/T, .
ZBM also predict that the shape and intensity of the

gap states should be symmetric in Tg/T, for the same c.
However, we find that for c 0.1 the integrated intensity
of states within the gap increases monotonically with

Tx/T, . From Figs. 1(a)-1(e), the integrated intensity of
the gap states increases roughly 5 times [0.015+ 0.004,
Fig. 1(a); 0.033+ 0.008, Fig. 1(b); 0.044+ 0.009, Fig.
1(c); 0.059+ 0.012, Fig. 1(d); 0.081+ 0.013, Fig. 1(e)].
Thus an experimental search for superconducting gap
states might be more fruitful in materials for which

Tx & T, . In fact, this increase in prominence of the gap
states with Tx/T, has also been seen experimentally.

We also analytically continued the impurity spectral
function A(co) for the impurity embedded in a supercon-
ducting host. As shown in Fig. 2, in a pure metallic host
(the solid line) A(ro) has a central co 0 peak, and a
high-frequency peak associated with charge transfer on
the impurity site. In a superconducting host (the dashed
line) the central peak can develop a gap. In a normal met-
al, the central peak signals the formation of a resonant
singlet of energy approximately Tz which screens the im-
purity moment. In a superconductor, all the electrons
within a gap frequency of the Fermi surface are paired
into Cooper singlets. Spin-flip scattering of such electrons
costs an energy of order of the gap energy; thus a gap
opens in A (co) if T~ && T, . As c increases (and the super-
conducting gap is reduced) or as T~ increases, the gap in

A (ro) disappears (not shown here). Thus the gap in A (r0)
is only seen in dilute limit when Tx « T, .

We note that this gap in the impurity spectrum could
have experimental ramifications for NMR measurements
of the nuclear relaxation rate I/T~ cKg"(co„)/ro„, where
g"(ro) is the dynamic susceptibility of the impurity, and
ro„ is the nuclear gyrofrequency. If a gap opened in

g"(ro)/ro, then 1/T ~
would be exponentially suppressed in

a superconductor. Unfortunately, whenever we found a
gap in g"(co), it was not statistically significant within the
propagated error. Hence we do not report results for
g"(ro).

In conclusion, using a combination of self-consistent
Monte Carlo, perturbation theory, and maximum-entropy
analytic continuation, we have demonstrated the tempera-
ture dependence of the impurity states within the super-
conducting gap. We find that the peak location of the gap
states is consistent with that predicted by ZBM when

Tx/T«1, but that the peak location moves more quickly
with increasing Tg/T, than that predicted by ZBM. We
also find that the integrated intensity of the gap states is
qualitatively different than that predicted by ZBM in that
it is temperature dependent, and increases monotonically
with Tx/T, . Both the rapid motion of the gap states with
Tg/T„and the temperature dependence of their integrat-
ed intensity are consistent with experimental observations.
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