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Ground-state properties of the S 2 Heisenberg antiferromagnet on a triangular lattice
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We study the S 2 Heisenberg antiferromagnet on a triangular lattice with both nearest-
neighbor (J~) and next-to-nearest-neighbor (Jq) couplings. We have performed a spin-wave
analysis around the classical ground state. At large (J2/Ji) the Neel state is destabilized and the
system exhibits the "order from disorder" phenomenon with a threefold-degenerate ground state
that spontaneously breaks the lattice rotational invariance. These results are in agreement with a
Lanczos study of a 12-site lattice. For even larger values of Jz/Ji the spin-wave calculation shows
the existence of a second transition to an incommensurate spiral. Thus, the previously suggested
existence of chiral order in this model should be reanalyzed.

The discovery of the remarkable magnetic properties of
high-T, superconductors has led to a reexamination of an-
tiferromagnetic quantum spin systems mainly in two di-
mensions. The crucial issue is the nature of the ground
state. Anderson' conjectured that a fully disordered
resonating-valence-bond (RVB) state may be the ground
state of the Heisenberg model in two dimensions. Howev-
er, the spin- 2 square-lattice Heisenberg antiferromagnet
has been studied by several techniques and there is now
convincing evidence that it has a Neel-ordered ground
state. Even in the presence of a next-to-nearest-neighbor
frustrating interaction numerical results suggest that no
RVB state is required to describe its properties. In
different regions of parameter space the best candidates
for describing the low-energy behavior of the model are
ordered states. Another prominent model candidate' for
having novel ground states is the triangular Heisenberg
antiferromagnet in the case of spin- 2 . With only
nearest-neighbor couplings, it has been studied by varia-
tional wave functions, exact diagonalization of small clus-
ters, and semiclassical calculations. All these results point
to a Neel-ordered ground state4 with a staggered magneti-
zation reduced from the classical value 0.5 to about 0.24
(although this result is not as firm as in the case of the
square lattice). Then, although for a classical Ising model
the triangular lattice is clearly frustrated, for a Heisen-
berg model it presents 120' Neel order. It is thus desir-
able to introduce frustration in the triangular lattice
through next-nearest-neighbor interactions as was done
for the square lattice. It can be argued that since the tri-
angular lattice has a lattice magnetization more reduced
from its classical value than the square lattice, then its
Neel order may be destabilized more easily. It is also im-
portant to note that in addition to the RVB state there are
other exotic spin configurations which, in principle, are al-
lowed. For example, in the context of anyonic supercon-
ductivity it has been argued that a uniform order param-
eter g; &S; (S,.+;xS,.+„-)) which breaks parity (reflex-
ions) and time-reversal acquires a nonzero vacuum expec-
tation value. On the square lattice, numerical studies of
frustrated Heisenberg models have shown no evidence of
such a spin order. However, it has been proposed that
this phenomenon occurs in the case of the triangular lat-

S; ucos(Q R;)+vsin(g R;). (2)

In this formula u and v are two orthogonal unit vectors,
R; is the position of site i in real space. The wave vector

Q has to minimize J(k), the Fourier transform of the ex-
change coupling,

J(k) g J;J cos[k (R; —R )] . (3)

In our case, we have

J(k) cos(k, )+2cos cos
2 2

3k„kyv 3+a cos(k» J3)+2 cos cos
2

(4)
where we set Ji 1. We have obtained the various mini-
ma of the function J(k) inside the first Brillouin zone of

tice when one considers next-to-nearest-neighbor ex-
change interactions, i.e., for the Hamiltonian:

H Ji+S; SJ+aJi g S; Sk,
NN NNN

with NN denoting the sum over nearest-neighbor pairs of
sites, NNN over next-to-nearest neighbors, S; are quan-
tum spins, and a J2/Ji.

In this paper, we investigate the ground-state properties
of (1) using the spin-wave approach. We find that the
Neel state is stable up to a critical coupling a, = 8.
Beyond this value, the classical ground state has a con-
tinuous degeneracy which is lifted by the spin-wave
corrections to the energy. This is the "order from disor-
der" phenomenon also found on the square lattice. 2 Here
we find three degenerate states in the quantum problem.
Beyond another critical coupling a,'=1, an incommensu-
rate spiral becomes the lowest-energy state. We then
compare these results with an ab initio Lanczos study and
discuss the possible existence of chiral order.

Te perform the spin-wave study we first need to know
the lowest-energy classical spin configurations of the
Hamiltonian (1) as a function of the parameter a. The
classical ground state is known to be of the form
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parametrized by an angle 8 and are shown in Fig. 2. One
also has to add the configurations obtained from those of
Fig. 2 by any discrete lattice symmetry operation (when
different). Their energy is E2(a) —

3 (1+a) indepen-
dent of e.

(iii) When a& 1, the minima move away from the
boundary of the Brillouin zone and are on the lines con-
necting the origin to the middle of the faces such as point
C in Fig. l. In the case of point C, the wave vector is

Q2 (O, g») where

FIG. 1. The Brillouin zone of the triangular lattice with the
various minima of J(k) when a is varied. The small hexagon in-
side is the Brillouin zone for a Neel sublattice.

the triangular lattice as a is varied.
(i) When a & s, the minima are located at the corners

of the hexagonal Brillouin zone such as point A in Fig. l.
There are six such points. However, we should not consid-
er as distinct the points which are related by a reciprocal
lattice vector. We are thus left with only two points, say
A on Fig. 1, with coordinates Qp (4x/3, 0) and —

Qp,
but it is easily seen in Eq. (2) that they are on the same
orbit of the broken 0(3) group of spatial rotations. There
is thus a unique ground state which is the Neel state with
120' structure (not counting the rotational degeneracy).
The energy of this state is E~(a) a

(ii) For —,
' & a(1, the minima of J(k) occur now at

the centers of the faces such as point 8 in Fig. 1. These
wave vectors have the peculiarity that they are half of a
reciprocal lattice vector. For example, point 8 has

Q~ (0, 2x/K3) and thus half the length of the vector
joining the origin with the next zone along the k» axis.
This situation has been analyzed by Villain. s Although
the spiral configuration given by Eq. (1) always corre-
sponds to the minimum of the energy, it can happen that
there are states not of this form degenerate with it. This is
the case when the wave vector of the spiral is a peculiar
rational fractions of a reciprocal lattice vector. In our
case one has indeed a continuum of classical states with
the same energy as the spiral with vector Q&. They can be

I

1 1
cos Q» 2 2 2a

The complete picture, of course, has sixfold symmetry.
The previous relation with the reciprocal lattice vectors is
lost so no new degeneracy occurs. Since Q and —Q are in
the same orbit we deduce that there are three states in this
phase. Their energy is E3(a) —

2 a —1/6a. They are
incommensurate spirals for a generic a.

When a becomes very large, the vectors are approach-
ing points such as D in Fig. 1. These are the corners of the
Brillouin zone for the Neel sublattices of the triangular
lattice. This fact has a very simple interpretation: For
a ~, the three sublattices are essentially decoupled and
it is energetically favorable to put them in the 120' Neel
configuration. In this situation the nearest-neighbor term
in the energy does not contribute anymore and one has an
energy which is E (a) ——,

' a. This spin configuration
is below the continuum found in (ii) as soon as a & 2. But
the spiral is always lower in energy as soon as 1/a is
nonzero, as seen in Fig. 3. Such states are only ap-
proached asymptotically when a goes to infinity. They are
irrelevant for any finite a. The various energies are plot-
ted in Fig. 3.

Let us now describe the semiclassical analysis of Hamil-
tonian (1) using as a starting point the ground states
found above. We have performed a spin-wave expansion
using the standard Holstein-Primakov formalism. 9 We
have retained the first nontrivial quantum corrections, i.e.,
first order in the 1/S expansion. If we study a spin
configuration which can be written as a spiral, such as Eq.
(2), the energy per site computed in the spin-wave approx-
imation takes a compact form:

Ep 3S(S+1)J(gp)+3S Z 1[J(k) J(Qp)][J(Qp+k)+ J(gp k) —2J(g )]]'
2N k

The staggered magnetization is given by

(S') ~Sy —— g [1 —tanh (28$)]
1 1

2 2Nk
where

A k
~(k)+J(k) —J(gp) '

and

&(k) 4 [J(gp+k)+ J(gp —k)l —
—,
' J(k), (9)

where N is the number of sites. Phases (i) and (iii) are
readily treated by the use of these formulas with gp the

1/8 & J2fJ) &1

FIG. 2. The degenerate classical ground states when
a J2/J~ is between —,

' and 1.
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FIG. 3. Classical energy of the ground state vs a. The spiral
is always lower in energy when a & 1.

+sin(y; —
y, )(S;S;—S;S,")+S(Sf). (10)

Here the angle p; is between a fiducial quantization axis
0, and the spin direction at site i At lowe.st order, the
sine term disappears and we find that the cosine is con-
stant along each of the three privileged directions of the
triangular lattice, this being true for both the NN and
NNN part of the Hamiltonian. Expressing the spin
operators in terms of Holstein-Primakov bosons leads to
lengthy expressions that will be published elsewhere. We
have numerically obtained the ground-state energy as a
function of cos(28). The zero-point fiuctuations of the
spin waves lift the degeneracy in 8 and we find that the
true minima are given by 8 0, x/2 (as well as Ir, 3Ir/2
which are redundant). Taking into account the lattice
discrete symmetry, we obtain three degenerate states that
are selected by the spin-waves. Looking at Fig. 2 and tak-
ing 8 0, one obtains a state which is made from rows of
spins ferromagnetically arranged in the horizontal direc-
tion but with 180' antiferromagnetic orientation in the
perpendicular direction. The two other states are ob-
tained by taking the ferromagnetic direction to be at 60'
or 120' with the horizontal. ' This is all what one gets
from the discrete symmetries.

This selection of states among a continuum is the "or-
der from disorder" phenomenon previously emphasized"
by Villain and Henley in the context of the square lattice
XY model and by Oguchi, Nishimore, and Taguchi in the
case of the fcc antiferromagnet. ' Quantum fiuctuations
select some special states as ground states out of an other-
wise infinitely degenerate manifold of classical states.
Equation (5) shows that the three incommensurate spiral
states of phase (iii) are obtained with continuity from the
three states of phase (ii). This suggests that the quantum

wave vector of the spiral. Phase (ii) requires a special
study since the configurations shown in Fig. 2 are, in gen-
eral, not of a spiral form. We have performed the spin-
wave expansion around an arbitrary configuration charac-
terized by an angle 8. The Hamiltonian has to be ex-
pressed in terms of spin operators each quantized in the
direction of the classical orientation of the spin:

H g JJ [cos(p; p, )(S;S—J'+ S,"SJ').

--p.5;~
LW
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FIG. 4. Lanczos energies of the first three states of our model
as a function of J2 (J-1) on a 12 site lattice. The degeneracy
due to the "order from disorder" phenomenon appears very
clearly.

transition that happens around a=1 is of second order.
This is to be contrasted with the transition for a = —, ,
which is due to a crossing of levels and thus presumably of
first order (unless there is a new nonclassical phase in be-
tween for small S). The staggered magnetization in the
spin-wave approximation also has been studied. We find
that the critical spin at which the magnetization vanishes
diverges at the two points a = —,

' and a =1, where the clas-
sical ground state changes. This is very close to what hap-
pens on the square lattice. ' ' There are thus two regions
of width =0.05 in J2 centered around these points where
the system is possibly disordered.

We have also analyzed the triangular lattice with J2&0
using a Lanczos method on a 12-site lattice. The reason
for using such a small lattice is that to respect the discrete
symmetries of the bulk limit only lattices with a special
number of sites N and geometry are allowed3 as it occurs
on the square lattice. In the present model, at large J2 the
system decouples into three sublattices; in addition, we
need N to a multiple of 3 to avoid spurious finite-size
effects. If we also require that the total spin is zero, then
we need N even. It can be shown that only N 12 satisfies
these requirements for lattices accessible with present day
computers. In Fig. 4 we show the ground-state energy of
this model as a function of J2 (JI 1). Also shown are
two excited states at J2 0 which become almost degen-
erate with the ground state for J2~ (0.1-0.2), in excel-
lent agreement with the spin-wave prediction. The three
states shown in Fig. 4 have zero momentum and they
differ in the quantum number under rotations of the lat-
tice in 120'.

What about chiral order in this model? Our study
shows that in the analysis of Baskaran two important
states that compete with the chiral state were not con-
sidered. These are the Neel-ordered state and the triply
degenerate states we found [phase (ii)l. The numerical
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results strongly suggest that phase (ii) is realized in the
S & model and thus the chiral state may exist only in a
narrow region near a, —8 . To analyze this possibility we

studied the square of the chiral order parameter as that
used on the square lattice. The order of magnitude of the
result is similar to that found for the square lattice (al-
though we observe a little enhancement precisely in the in-
termediate region a, ——,

' ). Then, although our numerical
results are not as robust as in the case of the square lat-
tice, we believe that the competition of other states is
strong enough to constrain the possible range of existence
of the chiral state to a narrow regin in parameter space.
More work is necessary to clarify if the chiral state is
stable in that narrow region (other ordered states may ex-
ist there, as happens on the square lattice).

From the previous analysis we conclude that the tri-
angular lattice with NNN interactions has a very rich
phase diagram including a Neel phase, a phase with spin-
wave selection of nontrivial ground states and a phase
with incommensurate long-range order. The spin-wave

approximation breaks down only in two narrow windows
centered at the points where the nature of the classical
ground state changes. These two regions may correspond
to new nonclassical ground states. This semiclassical pic-
ture is confirmed by our numerical study. Finally, we re-
mark that the existence of chiral order in this model needs
further revision.
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