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Kosterlitz-Thouless mechanism of two-dimensional superconductivity
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The possibility of a nonzero T, superconducting phase transition in a purely two-dimensional

system is discussed. We present a parity-invariant model that exhibits perfect diamagnetism and

superconductivity due to the fact that the electromagnetic UE(1) group is realized in the
Kosterlitz-Thouless (KT) mode in the vacuum. The superconducting phase transition is of the

KT type, and the transition temperature is calculated through the parameters of the model. The
connection with the anyon superconductivity mechanism is discussed.

The conventional explanation of superconductivity
phenomenon is based on the spontaneous breakdown of
the continuous UE(l ) symmetry of electric charge. ' Most
of the CuO high-T, superconductors, however, have a
highly anisotropic, almost two-dimensional structure.
Hohenberg, Mermin and Wagner, and Coleman proved
that in purely two-dimensional (2D) systems the critical
temperature of a phase transition that involves spontane-
ous breaking of continuous symmetry is strictly zero.
Therefore, to get T, of order 100 K one has to introduce a
weak interplane coupling. This strategy underlies most
theories of high-T, superconductivity.

There exists, however, the possibility of a nonzero T,
phase transition in two dimensions (with zero interplane
coupling) via the Kosterlitz-Thouless (KT) mechanism.
There is a growing body of experimental data that points
to the KT nature of the superconducting phase transition
in CuO materials. In such transitions no continuous
symmetry is broken (the Mermin-Wagner-Coleman theo-
rem does not apply) and the conventional explanation of
superconductivity cannot be exploited. On closer inspec-
tion it becomes clear that the essential feature of spon-
taneous breaking of the UE (1) symmetry, necessary to ex-
plain perfect diamagnetism, is the appearance of a mass-
less Nambu-Goldstone (NG) boson. ' After coupling to
electromagnetism this boson "mixes" with the photon and
generates the photon's mass via the Anderson-Higgs
mechanism.

The KT phase is associated with a different type of
UE(l ) symmetry realization. The symmetry is not broken
but the vacuum is nevertheless not a singlet. As a result, a
massless mode (which we shall call a KT boson) appears.
It has quantum numbers identical to those of the NG bo-
son. This massless mode can produce equally well perfect
diamagnetism (the Meissner effect).

In this Brief Report we construct a class of 2D models
exhibiting the above mechanism for superconductivity.
They are based on our previous observation that in some
(2+1)-dimensional theories of QED3 type, global sym-
metries are realized in the KT mode. Abelian gauge
theories with several fermion species arise as a continuum
limit of microscopic Hubbard-type models which en-
courages us to consider this class of theories as possibly
relevant to high-T, superconductivity.

For the sake of simplicity we concentrate on Lorentz-
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This expression is valid to all orders in perturbation
theory.

The symmetry, ho~ever, is not broken spontaneously
since all symmetry-violating amplitudes vanish. As a
consequence, there appears a pole at zero momentum in

invariant theories although all the arguments go through
in the nonrelativistic case. Let us consider the following
simple Lagrangian (not coupled yet to electromagnetic
field):

Ln i7l(i II rrt z—i ) tlt gS„V7—y„zs Vt —,
' G„—„.

Here y„a 1,2 is a doublet of two-component complex
(Dirac) spinors. The matrix z3 diag(1, —1) acts on the
flavor index a. S„is a vector field and G„„=B„S,—8+„is
its field strength.

The Lagrangian Eq. (1) for any value of m is invariant
under parity, global Uz(1) transformations, and local
U(1) gauge transformation y(x) ~ exp[igX(x) zs] lit(x),S„S„—tl„A, , which we shall call chiral rotation. The
corresponding Noether currents are J„yy„y and
I„ i7ly„z3iit The fie.ld tir, (not very far from the phase-
transition region) describes fermionic excitations. The
field S„should be thought of as describing a bosonic exci-
tation which arises from interactions on the microscopic
level.

The Hubbard-Stratonovich field a„ is usually intro-
duced in the mean-field treatment of the Hubbard-
Heisenberg model. However, it cannot be identified with
our S„. First, the gauge invariance associated with a„ is
present only in the strong coupling limit of the Hubbard
model at half-filling. Second, a„couples to electromag-
netic current J„yy„y, whereas S„couples to the chiral
current I„V7y„zstir Third, a„ is. a compact variable un-
like S„.

The main result of Ref. 7 in the context of the present
model is that the UE(1) symmetry is implemented in the
KT mode and the S„ field represents the corresponding
KT boson. This follows from the observation that quan-
turn effects generate a nonzero matrix element of J„be-
tween the vacuum and a state containing one quantum of
the transversal component of S„.
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the current-current correlator, indicating superconductivi-

ty

k„k,(TJ„(k)J,(-k))= g " '-g„, .
(4 )' k' (3)

The Y boson is a neutral parity doublet, whereas the X+.
are charged parity singlets, carrying electric charges 2
and —2, respectively. As the temperature increases
thermal fluctuations cause deconfinement of fermions.
Kosterlitz and Thouless showed that this confinement-
deconfinement phase transition occurs at the temperature

2
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This expression is valid when the fermions are infinitely
heavy. For finite mass the critical temperature is lower.
The first-order correction is

The vacuum is a singlet of both parity and chiral rota-
tions.

The exchange of massless S„quanta generates a long-
range logarithmic confining potential between fermions.
Importantly, S„couples to the chiral current rather than
to the electromagnetic one. Therefore all finite energy ex-
citations are chiral singlets, although they may carry elec-
tric charge. In particular, the spectrum does not contain
fermions. Obviously, there will be mesonic bound states
in the following channels:

(4)
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The photon acquires a parity-conserving (nontopological)
mass. This mechanism of photon mass generation will be
called the vector Anderson-Higgs mechanism. The field
S„also acquires mass p. In particular this means that
logarithmic potential is cut off on scales larger than I/p.
Although the KT phase transition is smeared out, the
qualitative behavior of the system below T, is still the
same.

The field F„, (p, v=0, 1,2) cannot describe the 8„
E„,E» components of the real 3D electromagnetic field for
several obvious reasons. The coupling e appearing in the
Lagrangian Eq. (7) has the dimension of the square root
of mass, while electric charge e is dimensionless. Also the
potential between two charges e* confined to the plane is
logarithmic rather than I/r. This unphysical coupling
would confine electric charges, thus neutralizing any
charge carriers.

A proper way to describe the coupling of the 3D elec-
tromagnetic field to charges and currents confined to a
plane is by the action

where p e*g/4z is the Chem-Simons topological
mass. ' Note the opposite signs of topological masses of
A+„and A -„. This is due to the fact that parity is not
spontaneously broken: A+ and A*— constitute a parity
doublet. The propagator of electromagnetic vector poten-
tial 8„*is

2
g (1 +e sam/g2)

8z S d xdt Xo+eA„J„F„, —FP v
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Integrating over fermions we obtain the effective La-
grangian for A„* and S„. The quadratic part contains the
mixing terms

where a is a positive constant of order unity.
Above this temperature there is a plasma of free chiral

charges in which S„excitations are screened. The zero-
momentum pole in the correlator of electric currents
disappears and the theory describes a normal metal.

Let us now couple the system to external electromag-
netic fields. To illustrate the basic mechanism of perfect
diamagnetism we consider first the standard coupling to
the two-dimensional electromagnetic potential A„,

Here F„, (p 0, 1,2) are 3D physical magnetic field 8,
and in-plane components of electric field E„,E». The La-
grangian Eq. (12) is derived in the following way. As-
suming that charges and currents are confined to the xy
plane at all times, one can find a unique solution of the 3D
Maxwell equations for E, (x,y, z), 8„(x,y, z), 8»(x,y, z)
as well as for E„, E», and 8, outside the plane. This is
then substituted into the 3D Maxwell action and the in-
tegration over the z coordinate is performed. One can
easily see that this action leads to a I/r potential in the
static case. The derivation of Eq. (12) is given else-
where. ' Now performing the steps that led from Eq. (8)
to Eq. (11)we obtain
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The following linear transformation

A+ = (A*+S), A' = (A* —S),
JZ J2

diagonalizes it,

[A4 A4 ] ~ F42 ~ F42

where p=e g /(4ir) is the physical photon mass. The
penetration depth is therefore

(14)
ag

where a is the fine-structure constant.
For the sake of simplicity we took in Eq. (12) the light

velocity and the velocity of the S„field waves to be equal.
This is of course not a realistic assumption but it does not
qualitatively change the picture. Restoring the velocities
v and c in the Lagrangian Eq. (12) we obtain
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where &-a&S2 a2S&, 4';= —(I/v)S;+a;Sv and 8 =a~22 —
a&A&, E; = —(I/c)A;+a Av. The penetration depth is

determined from the transversal part of the correlator of A;:

k;k) CEO
(w;w, &- plJ
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The penetration depth remains unchanged X 4trc/ag2
and independent of v as in the usual 3D metal supercon-
ductors.

The continuum model we discussed should be con-
sidered as a continuum limit of a microscopic theory.
Several of the key ingredients of the continuum model
presented above [Eq. (I)] are present in the conventional
description of superfluidity in He thin films. '3 In this sys-
tem the analog of S„is the third sound wave. It minimally
couples to the current of vortices in superPuid described
as singularities of the phase of a scalar order parameter.
This is analogous to our chiral current I„. The particle
number is analogous to the electric charge density Jo.
The obvious differences are that vortex variables were not
introduced explicitly and that the field y carries both
chiral charge I (vorticity) and electric charge J (particle
number), whereas in He vortices do not carry the particle
number charge.

Similar description applies also to thin superconducting
metal films. ' In this case the logarithmic potential binds
magnetic vortices and antivortices in pairs. The chiral
charge of Eq. (7) corresponds to the density of magnetic
vortices. This can be seen by calculating induced chiral
charge in an external magnetic field. It is given by'

e 2I„F„.
Again, contrary to the standard description, our "vor-
tices" are charged.

It is interesting to note that in the model of supercon-
ductivity we considered, the chiral charge Io is always in-
duced in the external magnetic field and therefore can be
identified with magnetic flux. Any immediate generaliza-
tion, like introducing several fermionic species, shares this
basic feature. This follows from the fact that the matrix
element of electric current (0~J„~S) in Eq. (2) and the in-
duced vacuum chiral current in the external magnetic
field are given by the same diagram. '

The mass term in the Lagrangian Eq. (1) need not be
put in by hand. Instead one can start with a four-fermion
interaction of the form (yr3y) . This term preserves the
discrete Z2 symmetry y~ y2 which is present in the lat-
tice models. Nonperturbatively four-Fermi terms are not
irrelevant in 2+1 dimensions. ' The mass is then gen-
erated dynamically via spontaneous breaking of the Z2
symmetry. Since the symmetry is discrete, the symmetry
restoring phase transition even in 2D occurs at 6nite tem-

I

perature. ' Another possibility is that the mass is generat-
ed dynamically due to the gauge interaction itself.
Analytical' and numerical'9 calculations suggest that for
sufficiently small number of flavors (N (8) parity con-
serving mass is generated dynamically.

Note that, in order to have the KT-type phase transition
into a superconducting state, two ingredients are generally
required. First, there should exist a zero mode to cause
perfect diamagnetism. Second, there should be logarith-
mic potential between "vortices. " In the model Eq. (1)
both arise naturally as a result of KT realization of the
UE (1) symmetry.

As the last point, we comment on the relation between
the KT mechanism and the anyon picture of superconduc-
tivity. '22 Anyons can be described by the coupling of a
fermion field to the so-called statistical gauge field a„.
The action of a„contains just the Chem-Simons term
(y/8x)e„„qaJ'„q. For integer values of statistical parame-
ter y n the current-current correlator acquires a pole at
zero momentum and anyon gas becomes a superconduc-
tor. In particular, the theory with n 2 describes semions.
In this case the theory has an SU(2) global symmetry,
which may mirror the SU(2) spin symmetry of the Hub-
bard model. In Ref. 7 we observed that, at the same value
of statistical parameter, the UE(1) symmetry is imple-
mented in the KT mode. This supports the conjecture of
Ref. 22 that an anyon superconductor does not possess an
order parameter. Note, however, the important phenome-
nological difference between Eq. (1) and an anyonic mod-
el of high T, . Our model conserves parity in all phases,
whereas the anyon mechanism leads to observable T- and
P-breaking eH'ects.

To conclude, we presented a KT model of two-dimen-
sional superconductivity leading to finite T,. The role of
an interplane coupling is just to shift by small amount the
values obtained in a 2D theory. It would be interesting to
verify our conclusions beyond perturbation theory (for ex-
ample by Monte Carlo simulation) and to construct a de-
tailed microscopic model leading to a theory of this type in
the continuum limit.

We are indebted to I. Affleck, D. Eliezer, G. Gat, J.
Rammer, G. W. Semenoff, P. Stamp, and N. Weiss for in-
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