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The nonzero-temperature electrostatic screening of a point charge embedded in an insulator is an-
alyzed in a model study based on the two-band version of the Thomas-Fermi (TF) theory. The form
for the screened potential at large distance from the impurity is obtained in terms of quadratures.
This asymptotic expression is then evaluated in closed analytic form in the limit of low temperature.
Numerical solution of the exact (nonlinear) TF equation is also carried out. Numerical results are
given for the spatial dielectric function (equivalent to the potential) showing its dependence on dis-
tance from the impurity, temperature, impurity charge strength, and band gap. Results here for
nonzero temperature are compared with results for zero temperature obtained earlier within the
same TF framework.

I. INTRODUCTION

We present results of an application of the two-band
generalization of the Thomas-Fermi (TF) method in a
model study of the electrostatic screening response of a
pure insulator and/or semiconductor to an embedded
point charge at nonzero temperature. The two-band TF
generalization was earlier examined by Brooks and Her-
ring' and Dingle in the context of screening of a point
charge in extrinsic semiconductors with carriers in both
bands. This approach is also used in the now standard
analysis of the p-n junction. More recently the method
was applied to the present problem but at zero tempera-
ture by the author. ' (Here the mathematical analysis is
somewhat different than at nonzero temperature. ) The
basic idea of this generalized TF method is to determine
the function giving the charge density p in terms of the
electrostatic potential p (a main step in TF theory) using
a local band structure having two parabolic bands
separated by a gap (appropriate for an insulator) rather
than using the usual single parabolic local band.

The two-band TF approach leads to a nonlinear
differential equation for y (the TF equation) which is gen-
erally only numerically solvable. Working within the in-
trinsic case of interest here, we first consider the TF
equation when linearized in y (e.g., for large distance
from the impurity); the basic form of y can then be found
in terms of quadratures. With the additional assumption
of temperature T low compared to the gap and valence
bandwidth we find a closed analytic form for the general
solution for y. We then present numerical results for the
original exact (nonlinear) TF equation, focusing on the
spatial dielectric function e(r) (equivalent to the poten-
tial) for arbitrary distance r from the impurity.

A number of studies of free-carrier screening of a
charged point impurity in an insulator and/or semicon-
ductor at nonzero T have been reported: Among the ear-
liest are those of both Brooks and Herring' and Dingle

(as noted) and also of Mansfield who all used a linearized
TF approach in analyzing this problem in extrinsic semi-
conductors. (Mansfield considered carriers in only one
band. ) The screened potential in these approaches was
found to be of the Yukawa form. More recent studies go-
ing beyond, but often based on, these earlier works have
been carried out: The effect on the screening due to spa-
tial variation of the valence-electron dielectric response
has been considered within the linearized TF approach
by Csavinszky and within a nonzero T nonlocal linear
response theory by Resta. Nonlinear screening effects
(i.e., going beyond the linearized TF approach of Refs. 1,
2, and 6) were examined by Csavinszky and Adawi'
(both keeping terms up to quadratic in the potential). A
variational treatment allowing, in principle, for account
of terms of all orders in the potential was developed by
Csavinszky. " Nonlinear studies including a dispersive
valence-electron dielectric response have been carried out
by Brownstein' (variational) and Meyer' (numerical).
(Both of these works note and incorporate improvements
made subsequent to the underlying study of Ref. 7.) The
effect of polarization of the screening cloud by an outside
electron was considered within linear response by Taki-
moto. '" Hall' then considered the form of the potential
starting with Takimoto's work and using an extended
mathematical analysis. Another approach to the screen-
ing response, pursued by Stern, ' Agarwal and Singh, '

and Patterson and Lehoczky' centers on the determina-
tion of the screening length in a Yukawa form potential
by the use of the Friedel sum rule (phase shifts are ana-
lyzed in a low-order Born approximation). For a recent,
more complete review of activity in the above overall
area see Chattopadhyay and Queisser. '

We should note that the above nonzero-T point-
charge-screening studies (as well as those referred to in
Ref. 19) predominantly focus on the extrinsic case, most
often where there are carriers in only one band, and gen-
erally do not directly carry over to the intrinsic case.
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On the other hand, these studies could be adapted to and
are in any event relevant to this latter case. As noted, the
present work is concerned with screening by free carriers
in the intrinsic case. Again, we furthermore use a numer-
ical treatment of the exact (i.e., fully nonlinear) TF equa-
tion. The screening is analyzed at arbitrary temperature.
The treatment here, also of the linearized TF theory, is
compared to the linearized TF study of Dingle (case of
carriers in both bands) which, though primarily focusing
on extrinsic effects in the screening, also implicitly in-
cludes (but does not discuss) the intrinsic case. We note
that Stern' obtains essentially the same result as Dingle,
though from outside the TF framework (see above); again
the intrinsic case is implicitly included but not discussed.

The paper is organized as follows: Section II presents
details of the overaH model. Section III gives an extend-
ed discussion of the two-band generalization of the TF
method. Next the nonzero-temperature TF equation is
derived and the general form for g for small y is ana-
lyzed. The low-T 1imiting form of this small g solution
for y is then developed. Section IV discusses the numeri-
cal procedure for solving the TF equation. Numerical re-
sults for e(r) are then presented in Sec. V. We discuss the
effect on e(r) of varying the temperature, the impurity
charge strength, and the energy gap. Finally Sec. VI con-
tains a conclusion.

tively (the factor 2 again is due to spin degeneracy).
We assume that the local band structure is shifted "rig-

idly" in energy depending on the local value of the poten-
tial g(r): This potential is assumed constant for each
small local region of the system and is nominally assumed
to vary slowly from region to region. (This is the usual
slow variation assumption of TF theory. ) For very large
distances, far removed from the electron-density pertur-
bation near the impurity, the local band structure is
essentially r independent. We then take the zero of ener-

gy E to be at the maximum of the asymptotic local
valence band. Note that here y(r) is determined by the
charge density which, in turn, depends on y(r), i.e., g(r)
is self-consistent in this sense.

As we approach a positive impurity, the potential will
be nonzero and increasingly positive and thus the local
band structure "sweeps" downward in energy (see Fig. 2).
Now the Fermi level p is determined by the asymptotic
band structure: For T approaching zero p tends to Es /2.
At nonzero temperature, electron occupation of the
asymptotic conduction band along with electron de-
pletion of the asymptotic valence band occurs. Except at
low temperatures the Fermi level deviates appreciably
from the gap midpoint energy E /2. Now, as the local
band structure sweeps downward in energy in moving to-

II.MODEL

The insulator is modeled in a simple way: We have a
local band structure varying with position and consisting
of two parabolic bands separated by a direct energy gap
E~ (see Fig. l). The valence band has width B while the
conduction band has infinite width. The electron
effective masses of conduction and valence bands are
denoted by m, and m„respectively (note m„(0). Each
Bloch state in each of the above bands can accommodate
two electrons (spin up, spin down) and is thus at least
doubly degenerate. We allow for additional degeneracy
d, and d, in Bloch states in conduction and valence
bands, respectively. Thus, the overall degeneracies of
conduction and valence bands are 2d, and 2d„respec-
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FIG. 1. Form of band structure in insulator model: both
valence and conduction bands are parabolic. The valence band
has width B and the conduction band has infinite width.

FlG. 2. Qualitative behavior of local band structure near (a)
positive and (b) negative impurity at nonzero temperature. As
distance to impurity increases, the local upper valence-band
edge tends to E =0. Fermi level p is set by asymptotic local
band structure and temperature. The shading (absence of shad-

ing) in the local conduction {valence) band give a schematic in-
dication of roughly where the electron (hole) occupation is ap-
preciable at a nonzero temperature.
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ward the positive impurity, the electron occupation of the
local conduction and valence bands increases. This is
most clear very near the impurity where the band edges
are much lower than the level of p. For T~O indeed all
states in the local bands are filled up to the level p=E /2
as seen earlier. ' For close proximity to the impurity this
level will, in fact, pass somewhere through the local con-
duction band.

As we approach a negative impurity, the local band
structure now "sweeps" upward in energy since the po-
tential is now increasingly negative for decreasing r (see
Fig. 2}. The effect of moving closer to the impurity is to
ultimately reduce electron occupation in both local con-
duction and valence bands. This follows since the local
bands are becoming higher in energy relative to the fixed
Fermi level as r ~0. The depletion of electrons is analo-
gous to the type encountered in the zero-temperature
analysis. There valence-band depletion begins when the
"sweeping" valence-band maximum first crosses the Fer-
mi level at Eg/2, ; the conduction band remains empty.
We lastly note that our model incorporates a positive,
uniform, and fixed background charge density which pre-
cisely cancels the uniform asymptotic charge density of
the electrons.

III. THOMAS-FERMI ANALYSIS

We first present an explication of the two-band TF gen-
eralization (see above). In the two-band TF analysis, we
will be concerned with electron occupation of both local
bands as described and ultimately with the potential q(r)
[or equivalently the spatial dielectric function e(r)]. As
noted we will nominally make the slow potential varia-
tion assumption of TF. We will then, for semiquantita-
tive purposes, apply the TF results to the rapid density
variation region in the near vicinity of the impurity. This
is generally done in the TF analysis of, e.g., the standard
problem of a point charge in a metal.

The two-band generalized TF equation for y(r), as
with the usual TF equation, is Poisson's equation with
the total charge density written explicitly as a function of
the potential

n„(r) =n0+5n„(r), (3)

where 5n, ( r ) is the corresponding local change in

valence-band electron density from the filled value n0.
Note 5n„(r) is necessarily negative.

Now the total charge density p for rWO, including con-
duction band, valence band, and background contribu-
tions is

p(r)= —e[5n, (r)+n„(r) —n0] (rAO) . (4)

where Ze is the impurity charge (with e being the magni-
tude of the electron charge and with Z either positive or
negative}.

The total charge density which enters Eq. (1) is taken
here as an external charge density, associated with the
impurity, background, and electrons in the local valence
and conduction bands. Thus, in this initial, semiquantita-
tive model study we choose not to include in our main
calculation the effect of dielectric polarization. Rather,
we focus here on local band filling and nonzero-T effects.
We do, however, discuss below the modification of our
results (for some aspects quantitatively) upon inclusion of
this dielectric polarization effect. Further examination of
the inclusion of this effect via the use of a spatially vary-
ing dielectric constant is being considered.

We thus begin to develop the two-band generalized TF
equation by considering the relation between the
conduction- and valence-band electron densities and the
potential. We first establish the value of the Fermi ener-

gy p. Now the electron charge density for the valence
band for r~~ and T=O is denoted by —en0. This
charge density arises purely from the filled local valence
band (with the conduction band empty). Thus, na is the
number of local valence-band states per unit volume.
The charge density of the uniform background is then
+en0. Now, as T increases or for finite r, the local con-
duction band will have acquired some occupation while
the local valence band will be depleted to some extent. In
general, we denote the density of electrons in the local
conduction band at distance r (and at arbitrary 1) by
5n, (r). We denote the density of electrons in the local
valence band at distance r (and at arbitrary 1) by n„(r)
We then have

7 p= —4mp(y) . (1)
Using Eq. (3) in Eq. (4) we then get

Now in the two-band TF case the determination of the
function p[p(r)] is based not only on the principle of con-
stancy of the chemical potential (for a system in difFusive
equilibrium), as with the usual TF theory, but also (as
noted) on the use of a two-band local band structure for
the electrons. The function p[g(r)] has two contribu-
tions (one from each band), each involving integration of
a local Fermi factor {incorporating the potential) times
the single-particle density of states for the (parabolic)
band involved.

We note that here the boundary conditions on q&(r) are
given by

p, (c, )de
5n, (r) =

E e@ — v[~]—el+1 (6a)

p(r)= —e[5n, (r)+5n, (r)], r%0 .

Note that 5n, (r)W —5n, (r) in general. This is due to the
fact that the local bands shift relative to the fixed chemi-
cal potential as r varies.

At nonzero T we then have the well-known forms for
the quantities 5n, (r) and 5n„(r) in the presence of an
electrostatic potential.

lim rp(r) =Ze,
r~0

(2a) (6b)

lim y(r)=0,r~ oo
(2b)

Here p=—1/k&T where k~ is Boltzmann's constant, and
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d
p, (s)=

27T2

2m

fi

the (parabolic) band single-particle density of states per
unit volume p, and p, are given by

3/2

(s —E )', s&E~, (7a)

and Eqs. (6) (with y=O) in Eq. (5) we obtain the equation
which determines p:

f p, (s)dE 0 p. (e)dE

Eg eP' "'+1 —& eP'" '+1
d

p, (e)=
2772

3/2
» 1/2

( —s) —B ~c.~0 . (7b)
The determination of p is generally carried out numeri-
cally. At very low temperatures ()t3E &)1, PB &)1) we
find the analytic result for p:

Note the minus sign in Eq. (6b) since 5n„ is always a de-
creasing change in density as discussed above. Note that
the location of the zero of the energy e is at the shifted,
i.e., local valence-band maximum.

We now determine the Fermi energy by letting r ~ ~
which implies [Eq. (2b}] q&(r)~0 in Eqs. (6). At infinity
the total charge density p vanishes as noted. Using this

d„p= —,'Eg+ 2k&T ln + —,'ln
C

m„/

(PE »1, 13B)&1) . (9)

We use Eqs. (6) and (7) in Eq. (5) to find the net charge
density for r WO as a function of tp( r):

p(r) =p(y(r) )

&Ze
2/3

(e —E )'i de 0 ( e) de—d m'" ' +d (
—m )'"

ep[E —ey(r) —p]+1» p[p —E+ey(r)]+1
g e

(r%0) . (10)

Upon using Eq. (10) in Poisson's equation, Eq. (1), we find

(e Ee)'~ d—E
V' (eq)(r)) =c

E P[E—eq)(r) —P]+ 1

0 ( e))/2de
C

eP(P —e+eqr(r)]+ 1
' r 0,

where

p(r)
etp(r) =

r

and using

2 g 1 dp
r dr2

(14)

2d, e 2m,
Cq

= (12a)

2d, e —2m,
3/2

Cv (12b)

The impurity contribution to the charge density, which is
-5 (r), is not evident in Eq. (11) because of the restric-
tion r%0. Its eff'ect comes into the solution of Eq. (11)
via the boundary condition Eq. (2a). Equation (11) is
then the two-band generalized TF equation for tp(r) for
the above insulator model at nonzero T. Introducing
p(r) defined via

we then have the TF equation for p (r):26

1 d p(r) (E E)' de-
Cc

e P[c—P( r) /r —P]+ 1

( —E))"dE

~ eP[v-.+I (.)/.]+1' (15)

In general, this equation must be solved numerically.
We can, however, obtain the solution for p (r) for the case
of small p/r in terms of quadratures. This corresponds
here to the large-r regime. We begin by expanding the
right-hand side of Eq. (15) in powers of p/r. Keeping
terms to first order in p/r we are led to the following:

1 d'p(r) - (E —E, } « o ( e)'"de-=ce C»dr Eg ep' "'+1 —& ep'~ "+1

p „(e—E )'~ de 0 ( —E))»dE p(r)+ —c, +c, r&0.
4 '

~e cosh [p(s —p)/2] ' —s cosh [p(E —)u)/2]
(16)

Now the first two terms in the right-hand side of Eq. (16) precisely cancel by the condition defining the Fermi level p
[see Eq. (8)]. We then define the constant K as the square root of the coefficient in the term linear in p/r on the right-
hand side of Eq. (16):
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]/2
pl» „(s—E )' ds o ( —s)'»deK= c, +c,

~g cosh c—p 2 -B cosh c.—p 2
(17)

Then Eq. (16) becomes

d p(r) z p—K p(r)=0, —~0,
r2

which has the following general solution:

p(r)= Ae "+A'e

(18)

(19)

where A and A' are constants. Naturally on physical
grounds we keep only the decaying solution. Thus,

p(r) = Ae —+0, (20)

or
—Kr

lp(r)= A r~00
r

(21)

where A =A/e.
We briefly note the modification of the large-r solution

for y on the inclusion of the dielectric polarization
effects. As implied in Ref. 22, at large r, p (r) would satis-
fy a modified Eq. (18) now with a factor of the static
dielectric constant Kp multiplying the first term on the
left-hand side. This gives, for the modified potential y„

—K)r
e

lpi(r)= Al, r oo,
r

where A, is a constant, and where

KK ]
& /2

~

K0

(22)

(23)

Note that A
&

will manifest the r-dependent polarization
effects occurring at smaller r.

The result for K, [Eq. (23)] derived for the intrinsic
case in the linearized approximation is nearly the same as
the results implied in the work of Dingle (for the extrin-
sic case with carriers in both bands) and of Stern. ' [For
Dingle see his I/R —his Eq. (23)—using his Eq. (24) and
take the intrinsic limit; for Stern see his 1/L —his Eq.
(6)—and determine his relative Fermi energies Ef, accord-
ing to the level of the intrinsic chemical potential defined
via our Eq. (8).] Our result for K, differs from theirs in
that we treat the finite-valence-bandwidth case whereas
they set 8 = Oo. Further, Dingle does not include arbi-
trary degeneracy factors (present in c, and c„here), he
sets d, =d„=l. [Note that Dingle and Stern use the
linearized (from a TF viewpoint) solution for all r and
thus determine A, =Ze/lro (Z =1 in Dingle) from their
r ~0 boundary condition. ]

Thus, the asymptotic behavior of q is of the "Yukawa"
form with a basic inverse r times exponential decay. This
metallic, long-range perfect screening form contrasts
with results found earlier using the same TF analysis but
at zero temperature. ' There we found the asymptotic

(25)

Next the second term Iz in K from Eq. (17) is con-
sidered:

Up 0 (
—e)' dc

4 —e cosh [P(s—p, )/2]
0 &/2 f3(E E /2)=cp J (

—e)'»e ' ds, pE »1 .—B
(26)

Upon replacing the integration limit Bby —oo (i.e., us--

ing pB »1) and changing variables to v = —ps, the in-
tegral in Eq. (26) is seen to be —I ( —', ) also. We find

~U —P& /2I,=,e ', PE»1, PB»1 .
pl » (27)

Using Eqs. (25) and (27) in Eq. (17) we have the leading
low-temperature form for K:

form y-1/r, i.e., a nonmetallic, long-range imperfect
screening form. Thus, there is a major qualitative
difference between the T =0 and TWO forms of the po-
tential. Note in Eq. (21) that the temperature dependence
and the band-structure parameter dependence (i.e.,
dependence on E, B, m„m„, d„and d„) of the asymp-
totic potential comes in through K and A.

We naturally expect that at temperatures very 1ow
compared to the gap, the decay length K ' in Eq. (21)
will be very large compared to a typical metallic case, i.e.,
the system is then trying to behave as the T =0 insulator.
For temperatures comparable to the gap, however, K
may be relatively small in many cases (see Sec. V). It is,
in fact, to be expected that the qualitative distinction be-
tween insulator and metal with respect to long-range
screening will disappear at nonzero temperature. Indeed,
in the insulator, a Debye-like shielding effect occurs at
low temperatures involving the low density gas of
thermally excited electrons and holes which is in the clas-
sical regime. This will give rise to long-range perfect
screening independent of local band-shift effects.

We now consider the leading order low-temperature
form of K. We assuine pE »1 and pB » 1 and consid-
er first the term I, in K from Eq. (17):

cP „(s Eg )' ds—
4 ~g cosh2 c—p 2

=c,p J (e —E )' 'e ' de (pEg »1) . (24)
E

We have used p~E /2 in this limit. With a change of
variable v =p(s —E ) we see that the integral in Eq. (24)
is -I ( —', ) =m' /2. We find
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(ec+eu ) —Ii& &&K=, , e ', PE&))1, PB ))1 . (28)

Again, the effect of including dielectric polarization
effects here would be to divide the right-hand side of Eq.
(28) by ~0 . Thus, for T~0, K~0 as expected and we
tend to recover the large-r p(r) 1—/r behavior for in-
creasingly larger r. The now weaker exponential decay
factor in y will, of course, be apparent for r » I(:

We consider the formal behavior of tp for T~ ~ (this
is academic as the band structure will change at melting
at finite I). For T~ ~ the valence band may be ignored
and we have a limiting classical free-electron gas for
which e~"~0. Equation (17) then gives K~O in this
limit. Thus, y then has such a large decay length I(:
that for practical purposes it varies for large r (but
r «K ') as —1/r. In fact, it should be given by
y=Ze/r for the whole range r «K '. This follows
physically as the screening cloud vanishes as T~ o.

IV. SOLUTION OF THE TF EQUATION

We discuss the numerical procedure for solving the TF
equation for p (r), Eq. (1S). As noted above, we first solve
for the Fermi level p for the given band structure and
temperature by examining the large-r region [see Eq. (8)
and discussion thereof]. We then consider the form of
the large-r solution for p(r), Eq. (20); the constant K is
found using a direct numerical integration in Eq. (17).
The constant A is undetermined at this point. We next
return to the full form of the TF equation (15) for arbi-
trary r. To avoid undue computation time evaluating in-
tegrals in solving Eq. (15) numerically, we initially devel-
op a spline fit for the right-hand side of Eq. (15) for a
wide range ofp/r.

We then start integrating Eq. (1S) outward from the
origin using the boundary value

p (0)=Ze (29)

which follows from the small-r form for y [Eq. (2a)]. We
integrate out with a guess for the initial slope such that
plr decreases for increasing r We then . choose a trial,
"large" value of r which we denote by r, . At this r we
inquire whether the logarithmic derivative of the numeri-
cally integrated form, L„agrees with the logarithmic
derivative of the analytic large-r form of p [Eq. (20)], Lz.
This latter form is given by

L = —E. (30)

We try to attain a match by varying the initial slope of
the numerical solution until we thus satisfy

L)= —E, r=r (31)

[Our condition for a match was agreement in Eq. (31) to
within one part in —10 ).]

If we do find an initial slope giving a solution p jr
whose L i satisfies Eq. (31), we then inquire as to whether
the value of p/r at r (from the numerical procedure) is
su%ciently small that the truncation to first order in p/r
in Eq. (16) is justified at the given r„[this would justify

V. RESULTS AND DISCUSSION

We present results for the spatial dielectric function,
e(r), defined here through

Ze
p(r) =

e(r)r

From Eq. (2a) we have

lim e(r}=1 .
r~o

(32)

(33)

In view of Eq. (21},which applies for small y (or large r)
and Eq. (32) we find

F(r)= e ", r~~,Ze
(34)

i.e., F(r) diverges exponentially for large r This sh.ows
metallic-like screening in the nonzero-T insulator for
large r. Note that for zero temperature (K =0) it was
earlier found in this TF model that F(r) =Eo for r larger
than some finite distance ro where eo is a constant '

Figure 3 presents results for e versus r for zero temper-
ature and for three temperatures of the order of the gap.
Parameter values for these plots are Z = + 1, E =0. 1 eV,
8 =1.0 eV, m, =1.0, m, = —1.0, d, =1.0, and d, =1.0.
The value for e is seen to go to unity as r ~D for all cases
[Eq. (33)]. For r~ ~ all curves tend to straight lines in
the semilog plot. The curve for T =0 saturates to a con-
stant value, @0=30, as r~ oo. The curves for TWO are
seen to be increasingly above the curve for T =0 with
larger T. The asymptotic "linear" behavior (in the semi-
log plot) of F(r} as r ~~. for TWO implies exponential

our use of Eq. (20) for r )r„] .To do this we check that
in Eq. (16) each of the two linear terms evaluated at
p(r) lr =p (r„)lr„ is small in magnitude compared to the
magnitude of the corresponding zeroth-order term. (As
noted, the two zeroth-order terms there cancel. ) If the
ratio of linear to zeroth-order terms is small (we use
—10 ) we are then most likely justified in using the
first-order truncated Eq. (16), rendering Eq. (20) valid. In
this case we have a solution for all r: for r (r we have
the numerical solution and for r & r„we have the analytic
form Eq. (20); at r =r„ the logarithmic derivatives are
continuous and the prefactor A in Eq. (20) ean be de-
duced from boundary matching of the numerical and an-
alytic forms for p at r =r„.

If, on the other hand, the first-order term in Eq. (16) is
too large for the initial guess r„, we repeat the whole pro-
cess but start with a suitable larger guess for r„. We con-
tinue iterating over r until we find a solution which
satisfies the logarithmic derivative continuity require-
ment and for which r„ is suSciently large to justify the
truncation in Eq. (16). We, thus, are doing a double
search: we vary the initial slope and r„until we satisfy
the boundary matching at r„and the criterion for trun-
cating the series in Eq. (16) to first order. We mention
that a similar alternative method involving inward in-
tegration of the TF equation was tried with no particular
advantage for the conditions of interest.
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FIG. 3. Spatial dielectric function vs position for several
temperatures. (Here Eg=0. 1 eV, B =1.0 eV, m, =~m„~=1.0
a.u. , d, =d, = 1.0. )

FIG. 4. Spatial dielectric function vs position for three tem-
peratures and showing for each temperature the effect of vary-
ing Z. (Here Eg=0. 1 eV, B =1.0 eV, m, =~m„~=1.0 au. ,
d, =d„= 1.0. )

growth in F(r) as anticipated in Eq. (34). Higher T leads
to more rapid exponential growth for large r. For the
moderate temperatures of interest this is due to the larger
number of free carriers at higher T which enhance the
metallic-like screening. We can also note that the explicit
form of K for low temperatures [Eq. (28)] shows that
when P decreases [while still keeping P very large as re-
quired by the underlying assumption for Eq. (28}], K
indeed increases. We observe that all three TAO curves
show a crossover from the T =0 behavior to the TAO be-
havior at —5 a.u. Note also that since K ~0 as P~O (as
discussed in Sec. III), the egr) curve will, for very high
temperatures, tend to revert to unity (i.e., zero screening).
This behavior is not evident in Fig. 3 as our temperatures
are moderate, keeping with our practical interests.

We qualitatively anticipate the result of including
dielectric polarization effects in calculating F(r) [We as-.
sume a spatially varying dielectric constant v(r) which
tends to ~o for r ~ ~ and to unity for r ~0 ]For large .r,
we have, replacing K by K, in Eq. (34) and using

K, =K/~o [Eq. (23)], that F(r) will increase less rapidly
with r as Kp increases. Further, we very roughly estimate
the crossover distance r, for F(r) in going from the small
r (quantum) to large r (thermally dominated} regime as
r, —1/E, . Thus, r, should increase for increasing bulk
dielectric constant Ko. For r &&r, we expect that dielec-
tric polarization will have a relatively small effect
[F(r)~1 as r~0].

Figure 4 shows the effect on e(r) of varying Z at
several temperatures. Band-structure parameter values
here are the same as for Fig. 3. Comparing curves in Fig.

4 at the same temperature shows that the effect of in-
creasing Z is to increase e(r}, a nonlinear effect. The
nonlinearity in |p with respect to Z is a consequence of
the nonlinearity of the TF equation. This behavior is evi-
dent in the results of Adawi. ' [He considers the extrin-
sic case (single-carrier band) with an approximate non-
linear TF analysis (see above). ] Other authors studying
the nonlinear TF equation for this problem have general-
ly set Z =1 at the outset making this behavior less ap-
parent in their results. This nonlinear behavior was also
seen (using the present TF model) for T=O, ' i.e., eo
(above) was found to be Z dependent.

We note that the larger-r exponentially growing por-
tions of the curves for the same temperature but different
Z have the same exponential growth factor K. [The Z in-
dependence of K is evident from Eq. (17).] We point out
that the nonlinear screening behavior seen here would, of
course, still be present if we include dielectric polariza-
tion effects.

Figure 5 shows the effect on F(r) due to variation of the
gap at three different temperatures. The band-structure
parameter values here (other than E ) are the same as in

Fig. 3. In addition, we now consider a negative impurity
with Z = —1. At T =0 the effect of increasing the gap is
to decrease c(r), i.e., to decrease the screening effect.
This was discussed for the present model earlier. ' Basi-
cally as the gap increases we must be closer to the nega-
tive impurity in order for the local valence band to have
crossed the gap having swept upward in energy upon
moving in from infinite distance. This means that the
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screening cloud is smaller. This "band-shift" effect, as
we vary E at T =0, should carry over to some degree at
nonzero temperature (see Fig. 2 for the negative impurity
case). In addition (at TAO), for a larger gap the thermal-
ly induced occupation in the local conduction band and
depletion in the local valence band will diminish. Thus,
as the gap increases the thermal contribution to the
screening will decrease, leaving an overall screening
response nearer the T =0 form. Thus, including "band-
shifting" and thermal effects, we see that a decrease in
the screening response for an increase in gap should be
present at nonzero temperature (as seen in the results).
Notice also from the larger-r exponential regions of the
curves, that the K values are different in all TAO cases.
This follows from the E and T dependence of K [Eq.
(17)]. The effect of increasing gap leading to e(r) being
"closer" to the T=O form is particularly evident in the
two T =500 K curves, one at E =0. 1 eV, the other at
E =0.5 eV. The higher-temperature curves at T =2000
K show less of a difference for the same two gaps. This is
due to the now increasing importance of the thermal
screening relative to the above-mentioned local "band-
shifting" effect and to less sensitivity of this thermal
screening (at the higher temperature) to the gap increase.

FIG. 5. Spatial dielectric function vs position for three tern-

peratures and showing for each temperature the effect of vary-

ing E . (Here B = 1.0 eV, m, =
~ m, ~

= 1.0 au. , d, =d„=1.0. )

We have presented an application of the two-band gen-
eralization of the Thomas-Fermi method to electrostatic
screening of a point charge in pure insulators and/or
semiconductors at nonzero temperatures. As noted, the
basic two-band TF approach (within a linearized frame-
work) was utilized earlier by Brooks and Herring' and by
Dingle in studies of screening of a point charge in a
semiconductor (focusing on the extrinsic case; see Sec. I).
More recently, this approach was used by the author for
the present problem but at zero temperature. '

A main focus in the present study has been on the
effect on the screening response of the excess external
charge in the local conduction and valence bands due to
the presence of the impurity, background, and remaining
electrons in the system. In this initial model study we do
not include in the main calculation the effect of dielectric
polarization. We do, however, discuss (in some cases
quantitatively) some implications of this effect.

We observed that the original fully nonlinear nonzero-
temperature TF equation obtained, though not generally
soluble in closed form, did admit to an approximate form
for the general solution for q for the case of small y cor-
responding to the outer tail region. This was a Yukawa
form which evidenced complete metallic screening. In
the strictly zero-temperature case we earlier found, using
the same TF approach, incomplete nonmetallic screen-
ing. The falloff constant K in the exponential of the TAO
small q form was, in general, found to be given in terms
of two "Fermi-type" integrals. However, it was evalu-
ated exactly for the case of low temperature. Our results
for the spatial dielectric function F(r) (found by numeri-
cal solution of the full TF equation) showed several quali-
tatively reasonable features. For the moderate range of T
considered, F(r) increased as T increased. We considered
the effect on e(r) of varying Z and E at nonzero temper-
ature: In varying Z we found a nonlinear screening
response (a consequence of the nonlinearity of the TF
equation). Increasing Eg led to a decrease in the screen-
ing response as a result of local "band-shifting" effects
and a decrease in the thermal excitations. Future work
being considered on insulator and/or semiconductor
screening response within this model will further examine
dielectric polarization effects (as noted) and will examine
the effect of exchange.
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