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A one-loop, renormalized, non-Markovian equation of motion for the average order parameter of
the time-dependent, scalar, nonconserved Landau-Ginzburg model in the critical region is present-
ed. A new time-dependent length scale, a coherence length of critical-like Auctuations, is defined

via a memory-dependent dynamic match condition. Two coupled equations for the new length scale
and the average order parameter are numerically solved for instantaneous quenches into the unsta-

ble region of the phase diagram. The instantaneous free energy that governs the dynamics is not

equal to the adiabatic free energy, and the new length scale increases rapidly in regions of negative
instantaneous susceptibility. For quenches at zero external field through the critical temperature
the structure factor decomposes into two independent parts at intermediate and late times. The
late-time contribution is approximately given by a mean-field, critical structure factor. Both contri-
butions admit scaling forms, albeit with different scaling lengths.

I. INTRODUCTION

The time evolution of systems quenched from an ini-
tially disordered state into the unstable region of the
phase diagram has received considerable attention in the
last few years. ' Most of the recent work is based on
Monte Carlo simulations and focuses on the growth of
domains of the ordered phase and the scaling properties
of the structure factor under critical quenches, i.e.,
quenches at zero external field through the critical tem-
perature. Concurrently, continuum phenomenological
theories' have been used to study the dynamics of sys-
tems quenched anywhere in the unstable region, thereby
investigating the importance of pseudospinodals for the
time evolution of the order parameter and eventual decay
to the final equilibrium state. This work follows the
latter approach and considers fluctuation corrections to
mean-field dynamics for systems with nonconserved or-
der parameter that are quenched into the unstable region.

Mean-field dynamics show that metastable states have
infinite lifetimes and that a well-defined spinodal curve is
the ultimate limit of metastability. More sophisticated
theories, however, distinguish two decay mechanisms.
According to classical nucleation theory metastable
states have finite lifetimes and decay via finite-amplitude,
localized fiuctuations (which are viewed as droplets of the
new phase), whereas unstable states decay via small-
amplitude, long-wavelength fluctuations, in a process
that for systems with conserved order parameter is called
spinodal decomposition.

Cluster-dynamics studies and computer simulations
have shown, however, that systems with short-range in-
teractions do not have a well-defined spinodal curve and
that the distinction between the two decay mechanisms is
not as sharp as envisioned by mean-field theory. As a
consequence, the free energy that governs the dynamic

evolution of the order parameter is assumed to be ill
defined, even though it has a well-defined infinite-time
limit (which determines the final equilibrium state). Sys-
tems with long-range forces are accurately described by
mean-field theories and appear to have well-defined spino-
dals. '

Analytical approaches to the dynamics of unstable
states usually start from linear or nonlinear Langevin
equations and consider fluctuation corrections either by
the renormalization-group transformation" or by deriv-
ing a hierarchy of equations for correlations functions,
which are then approximately truncated. Langer et al. '

presented one of the first treatments of spinodal decom-
position based on the latter approach, using an ad hoc
factorization scheme to decouple the hierarchy of equa-
tions. Their work was criticized and extended to a non-
conserved order parameter system by Billotet and
Binder, ' who argued that two length scales are necessary
for a proper description of the dynamics, the thermal
correlation length and the average domain size of the nu-
cleating phase, although their calculation only gave one
dominant scale. These results are qualitatively similar to
those of Kawasaki et al. , ' who performed a resummation
of the perturbation expansion, without assuming a bimo-
dal form for the distribution function. The calculation of
Ref. 14 produces a bimodal distribution for quenches at
zero external field, but the derivation requires that fluc-
tuations with magnitude larger than the mean-field equi-
librium value vanish. More recently, Mazenko et al. ' in-
troduced a renormalization-group analysis that incorpo-
rates two lengths scales, and they developed a
comprehensive theory for growth kinetics with primary
emphasis, however, on critical quenches.

Many of the earlier works ' do not include couplings
to thermal fluctuations nonperturbatively. A key aspect
of these calculations is a bimodal order-parameter distri-
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bution which, at least for quenches in the absence of a
symmetry-breaking external field, becomes strongly
peaked around the possible equilibrium values of the
order-parameter. Clearly, the bimodal nature of the
order-parameter fluctuations will be unimportant if the
distance between the two equilibrium states becomes
comparable to the magnitude of thermal fluctuations, i.e.,
as the critical point region is approached. Of course,
even in the vicinity of the critical point some observables
will develop bimodal distributions, e.g., the distribution
of the integrated order parameter for a domain of size L
should be bimodal, even near critical point, if L )&g,
where j is the thermal correlation length. In addition,
the presence of a symmetry-breaking field, in or out of
the critical-point region, will affect the degree to which
the fluctuations have bimodal character.

In a previous paper, ' henceforth referred to as I, we
presented a quasistatic, one-loop analysis of the metasta-
ble region and considered the scaling form of the equa-
tion of state for a scalar P Landau-Ginzburg free energy
in the metastable region. The results should describe the
behavior of the system in the metastable region of the
phase diagram for times less than the nucleation time. '

Here we consider the dynamical version of I in the criti-
cal region; we shall not, however, explicitly consider
droplet fluctuations, which cause metastable states to de-
cay. Thus our calculation is restricted to quenches into
the unstable region near the critical point, and, among
other things, we defer the study of decay of metastable
states to future work.

In I we proposed a modification of the Rudnick-
Nelson' equation of state that resulted in an equation of
state valid in the whole metastable region. Moreover, the
introduction of a second length scale, p, the scale param-
eter, independent of the correlation length, g (defined as

, where y is the susceptibility) was found to be
necessary. The scale parameter was found to diverge
along a new line of P fixed points in the thermodynamic
phase diagram, the universal spinodal, that was always in
the unstable region of the phase diagram (y & 0).'

The scale parameter, characterizes regions of space
where the fluctuations are like those found at the critical
point and where, as at the critical point, nonlinear in-
teractions cannot be treated via naive perturbation
theory. (The renormalization group is assumed to effect
the required resummations. ) The domains characterized
by the scale parameter will be isotropic on the average,
and therefore the reader might be tempted to conclude
that they are the droplets, or clusters often discussed in
the theories of spinodal decomposition or ordering and
nucleation. On the other hand, the scale parameter will
also characterize the width of the interface of the
domains, and this will be large. Thus, unlike the theory
far from the critical point, here the domains or droplets
will have diffuse interfaces, at least for times that are
much longer than those found elsewhere.

The primary motivation for this work was an investiga-
tion of the significance of the universal spinodal and the
scale parameter for the time evolution, phase separation,
and eventual decay of unstable states to the final equilib-
rium state. We consider a scalar, time-dependent

Landau-Ginzburg model for a system with nonconserved
order parameter (model A in critical dynamics ). This
model has been used to study the statics and dynamics of
order-disorder transitions in binary alloys, e.g. , Cu3Au al-
loys. In Sec. II we define the model and derive a func-
tional integral representation of the Martin-Siggia-Rose
(MSR) functional. ' The perturbative treatment of the
MSR functional follows closely the analysis of renormal-
ized critical dynamics by Bausch et al. In particular, a
perturbative expression for the equation of motion of the
average order parameter is derived by treating critical
fluctuations in the field-theoretic renormalization-group
approach. Divergent quantities are regularized by di-
mensional regularization and e ' poles, where e—=4 —d
and d is the spatial dimension, are eliminated by minimal
subtraction. The resulting one-loop renormalized equa-
tion of motion is nonlocal in time (i.e., non-Markovian).

Section III, where the perturbative expression is made
consistent with the renormalization-group equation and
canonical dimensional analysis, contains a discussion of
the renormalization-group equation. A dynamic match
condition, which generalizes the static match condition
presented in I, is proposed, and a set of coupled
differential equations for the average order parameter and
the scale parameter are derived. The two coupled equa-
tions are solved numerically for a series of instantaneous
external field and temperature quenches and the results
are presented in Sec. IV.

Unlike mean-field treatments, when the quadratic cou-
pling constant in the free energy is sufFiciently large, we
find that the relaxation of the order parameter is non-
monotonic due to coupling to the memory-dependent
scale parameter. We explain this effect in terms of in-
stantaneous free-energy surfaces, and present some sim-
ple scaling relations in Sec. IV A.

For critical quenches we compute the one-loop struc-
ture factor and find three time regimes. The early time
behavior is similar to that seen in mean-field treatments;
in particular, if the quadratic coupling constant is
suSciently small, then exponentia1 growth is observed.
At intermediate and late times the structure factor is
written as the sum of two terms, both of which admit
scaling forms with different scaling lengths. The charac-
teristic length for the intermediate time component does
not grow diffusively, and is simply related to the growth
of the scale parameter. At late times the structure factor
is well approximated by a mean-field structure factor for
a quench from an effective initial temperature to the criti-
cal temperature. In particular, diffusive growth is ob-
served and the structure factor decays are q as q ~ ~.
Finally, Sec. V contains a discussion of our results.

II. DYNAMICAL MODEL A

A. NIartin-Siggia-Rose functional

We model the dynamical evolution of the noncon-
served order parameter and the ensuing phase separation
by a nonlinear Langevin equation:

(2.la)



4696 YANNIS DROSSINOS AND DAVID RONIS

(0(r, t)) =0, (2.1b}

and

( 0(r, t)8(r', t') ) =2A5(r —r')5(t t'),— (2.1c}

where we have chosen units such that kz T, =1. The free
energy, PF, is chosen to be a coarse-grained Landau-
Ginzburg free energy,

(2. 1d)

where 4(r, t) is a space- and time-dependent one-
component order parameter, k is a kinetic Onsager
coefficient, and 8(r, t) is a white-noise, Gaussian random
source, which satisfies

The preceding equations define the time-dependent
Landau-Ginzburg model for a nonconserved order pa-
rameter, which is dynamical model A according to the
classification of Hohenberg and Halperin.

The average over the random source in Eq. (2.1a) can
be performed by expressing the solution of the stochastic
differential equation in terms of a functional integral.
The resulting expression is the Martin-Siggia-Rose gen-
erating functional, ' and is in a form appropriate for the
field-theoretic renormalization-group treatment of criti-
cal fluctuations. The derivation of the MSR functional
and the subtleties associated with the discretization of the
Eq. (2.1a) have been discussed extensively in the litera-
ture. They will not be reproduced here; instead, follow-
ing Jensen, we obtain

:-[h,h] o- fD[+]D[t]exp ~ i f dr dt 4 8,++A. 513F —8 +A(h 4+h 4'} (2.2)

where the angular brackets denote the average over the random noise, and an unimportant normalization constant is
dropped.

Since the random noise appears linearly in the eS'ective Lagrangian, Eq. (2.2), the Gaussian average is easily per-
formed to obtain

:-[h,h]& fD[@]D[4']exp i f drdt 4 8,@+A( V+—r)%'+A, + ,+—ikey +A(h@+h4) (2.3)

Note that in Eq. (2.3) h adds linearly to the restoring force 513F/5ql, thereby becoming the physical external field,
whereas h lacks any obvious physical interpretation.

As in static critical phenomena the quantity of interest is the Legendre transform of —ln[:-(h, h )], i.e., the generat-
ing functional of one-particle irreducible diagrams, defined by

r [ ( + ), ( ql ) ]—= ln [:-(h, h—) ]+i 1,f d r dt ( h ( 4 ) +h ( t ) }. (2.4)

Vertex functions, namely correlation functions and response functions, are obtained by functional differentiation,

(+)=0, (4 ) =0

in particular, an equation of motion for the average order parameter is implicitly given by

.5r[(e), (q )]
5(4(r, t)) (~)=o

(2.5a)

(2.5b)

B. Renormalized perturbation expansion

Here we consider quenches into the ordered phase that are spatially uniform on the average, with average order pa-
rameter m (t). The motion for m (t) is determined by writing the fluctuating space- and time-dependent order parame-
ter as

'Pq(t) =(2') 5(q)m (t)+5mq(t), (2.6)

where, in addition, fluctuations were decomposed into their spatial Fourier components. The generating functional, I,
becomes

I [(qj), ( t)]=—i f dt(4'o(t)[B, m (t)+Am (t)[r(t)+ —,'um (t)]] ) —i ln fD5mq(t)D4 (t)e (2.7a)

where the zero-loop or tree Lagrangian is
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iLo=i f 0 (t)(It) +A[q +r(t)+6um (t)]I5m q(t)+iA'p q(t)),
(2m. )

and the interaction terms are

igu dt, dq, dq
iLi —= 4, (t, )m (t)5m, (t, )5m, , (t, )

(2 )21 q) q2

iPu dt i dq&d qzd q3+ 4, (t, )5ttt, (t, )5m, (t, )5m. . .(t, ).
3f

(2.7b)

(2.7c)

The quadratic Lagrangian, iLO, defines the following nonzero propagators:

(5m, (t)4, (t')) =i(2~)d5(q+q')G,'"(t, t')

=(2~) 5(q+q')8(t t'—)exp A
—f dt&[q +r(t, )+ ,'um—(t,)]

(Ct,(t)5m, .(t') ) =i(2n )d5(q+q')G,"'t(t, t')
I

=(2n)d5(q+q')8(t' —t)exp Af,dt~[q +r(t, )+ ,'um—(t&)]
t

and

(5mq(t)5mq (t') ) =(2n ) 5(q+q')Sq i(t, t') =(2n') 5(q+q')2Af , dt "Gq (t, t")Gq (t', t"),

(2.8a)

(2.8b)

(2.8c)

where the superscripts "0" and "f" denote averages in
the zeroth-order theory and Hermitian conjugation, re-
spectively.

Vertex functions are calculated in a loop expansion.
As is well known, fluctuation corrections to the mean-
field expressions introduce ir divergences for d &4. In
particular, the diagram in Fig. 1(a), which contributes to
the equation of motion of m (t), and the diagrams in Fig.
1(b), which contribute to the vertex function I"",
diverge for d &4. We shall regularize the theory by di-

(2tt )" 3Qg
Q = u~ 1+

26'
(2.9a)

mensional regularization about d=4 and eliminate e
(@=4—d) poles in minimal subtraction.

Terms that diverge as A, where A is an upper momen-
tum cutoff, are subtracted by additively shifting the bare
temperature. The e ' are eliminated by multiplicatively
renormalizing bare parameters (renormalized quantities
are denoted by subscripts "R")according to23

and

1+
26

(2.9b)

with

Qg =K Qg, (2.9c)

FIG. l. (a) One-loop diagram for the equation of motion.
The solid line is a dressed correlation function line, and the
dashed line corresponds to a factor of ( m (t) ). (b) One-loop dia-
grams for I "".The cubic vertices correspond to factors of
u ( m ( t) ), and the line segment corresponds to a dressed propa-
gator.

where ~ is a quantity with dimension of inverse length
that was introduced in the process of dimensional regu-
larization. Since the coupling constant was redefined to
absorb various angular factors [Sd=2~" 1(d/2) ' is
the area of a d-dimensional sphere], m and h shall also be
rescaled by a factor of Sd (2') . Moreover, to one-
loop order there is no wave-function renormalization
{m =mz), and the Onsager kinetic coe%cient does not re-
normalize {A,=A,z ).

The one-loop equation of motion is obtained by
evaluating the diagram in Fig. 1(a). The e poles, which
arise from short-time behavior, are eliminated upon re-
placing bare by renormalized quantities according to Eqs.
(2.9) in an e expansion. The resulting one-loop renormal-
ized equation of motion for the average order parameter
becomes
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(},m(t)+Am(t)(rR+ ,'u—Rm (t) —
—,'uR Ix(t)[q, (t)+y]+q~(t)I + O(e ))=Ah(t), (2. 10a)

with

q, (t) =2k.f ds ln(2A1( s)x (t —s)exp —2A. f ds, x (t —s, )
0 0

and

e/2 s
.

1 dq (t)
qz(t) =—f (2kt( s }'~ [x (t —s) —x (t}]exp —2A, f ds&x (t —

s& ) + O(e),
0 S 0

' '
. 2A, dt

(2.10b)

(2.10c)

where the tree, renormalized inverse susceptibility is
defined to be

x (t) =~R+ —,'uR m (t), (2. 10d)

III. RENORMALIZATION-GROUP EQUATION
AND MATCH CONDITION

The renormalized quantities presented in the preceding
section depend on the parameter K introduced in the di-
mensional regularization of divergent one-loop integrals.
The requirement that the bare theory be invariant with
respect to changes of K leads to the renormalization-

and y is Euler's constant. In deriving Eq. (2.10a), repeat-
ed integrations by parts were used to separate the one-
loop term into two parts: a term that for a time-
independent state reproduces the one-loop contribution
to the equilibrium equation of state, q, (t), and a term
that is intrinsically time dependent, qz(t), and vanishes
for a time-independent state. Moreover, the former term
was e expanded to eliminate the e ' poles, whereas the
latter was not. Since static renormalizations, which
multiply terms local in time, suffice to make the equation
of motion finite, it is not necessary to e expand the second
term (for a more complete discussion see Appendix A).
The renormalized equation of motion differs from that re-
ported in Ref. 22(c) because the subtractions differ.

It is worth noting that the one-loop correction intro-
duces a memory term making the equation of motion
non-Markovian; the significance of the memory term for
various quenches will be discussed in Sec. IV. Further-
more, even though the expansion was carried out about a
spatially uniform state, m(t}, the one-loop term includes
the integrated contributions of Auctuations of arbitrary
wave vectors. For a time-independent state, note that the
right-hand side of Eq. (2.10a) reduces to the usual per-
turbative expression for the equation of state. A similar
calculation for the one-loop renormalized response func-
tion, with m (t) =0, is given in Appendix B.

Finally, note that the units for the problem were
chosen such that the coefficient of the ~V %~ in the free
energy, cf. Eq. (2.1d), was —,'. As is usually the case, and
as will be shown in the next section, the units in the re-
normalized theory are all scaled by K. If the true range of
the interaction is increased, K will decrease; this has the
effect of reducing uR, cf. Eq. (2.9c), thereby making the
nonlinear fluctuation terms less important and the calcu-
lation more mean-field-like.

group equation for the renormalized vertex functions,
I""({r,t I, ; [r', t'I, ). . As is well known, the
renormalization-group equation determines the scaling
properties of the vertex functions under length scale
transformations. Specifically, the renormalization-group
equation for the instantaneous external field h expressed
in terms of dimensionless variables ig =Tg K

mz =mz K '+', A,„:—A,z K, and uz becomes

+P1 +P„+P,,
(}uR 5

5 5

5mR

Xh[uR, AR, t(, t;VR(r', t'), m„(r', t )]=0

(3.1)

where the one-loop Wilson functions are

Qg
P„=l( = uR(e 1uR ),

(}I(
(3.2a)

BVR
p, =—1( = iR (t)(2 ——

—,'uR ),
BK

(3.2b)

BplR
p —= 1( = —mR(t)[1 —(e/2)],

BK
(3.2c)

P„—= 1( =2XR,
BK

(3.2d)

()ln(Zq, )

OK
(3.2e)

Qg
U(1() = uR 1(' 1+ (a' —1)

Q
(3.3a)

Z+ is the wave function renormalization (which is one to
one-loop order), and e denotes integration over space
and time. [Note that since the renormalization-group
equation was derived by requiring that the bare theory be
independent of changes in 1(, the derivatives in Eqs. (3.2)
are taken keeping bare quantities fixed. ]

The renormalization-group equation, by incorporating
information about anomalous dimensions, imposes con-
straints on the functional dependence of the vertex func-
tions on their arguments. Namely, a vertex function ex-
actly solves the renormalization-group equation when ex-
pressed in terms of the constants of motion arising from
the characteristic equations associated with Eqs.
(3.1)—(3.2). The exact solutions of these equations are

' —1
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Qg
T(a.) =r„(t)lr 1+ (I~' —1)

—1/3

(3.3b)

M(~) =m~(t)a'' (3.3c)

and

A(~) —=Xii~ (3.3d)

where u*—:2e/3 is the value of the coupling constant at
the nontrivial fixed point.

Therefore, a vertex function becomes consistent with
the renormalization-group equation (and it is written in a

form appropriate for the study of crossover effects) by
writing it in terms of the functions defined by Eqs. (3.3)
and by e expanding the difference. In addition, naive di-
mensional analysis must be satisfied, i.e., vertex functions
must transform according to their canonical dimensions
under a length scale transformation a~vp. [Note that
by expressing mz and A,z in terms of the corresponding
dirnensionless variables, naive dimensional analysis is
trivially satisfied upon solving the renorrnalization-group
equation, cf. Eqs. (3.3c) and (3.3d)].

In particular, upon rescaling the equation of motion
for m (t) by a time-dependent p(t), the one-loop, cross-
over form of the equation of motion becomes

p' 'i (t)d, m(r)=A(t)p ' (r)h(t) M(r—)A(t)[T(t)+ ,'U(t)—M (t)]

+ ,'M(t)U-(t) [A(r)X(t)[Q, (t)+y]+Q, (t)I + 0(e'),

with

Qi(t)=—2f dsln[2A(t)s]A(t s)X(t ——s)exp 2 f—ds, A(t —s, )X(t —s, )
0 0

and

(3.4a)

(3.4b)

Q2(t)=[2A(t)]'~ f s' [A(t s)X(t s—) A(t)X—(t)—]exp 2f—ds, A{t —s, )X(t —s~) (3.4c)

where

X(r) = T(r)+ ,' U(r—)M2(r), — (3.4d)

and 3 —e/2 is the canonical dimension of h. To simplify
notation the explicit vp dependence of the constants of
motion, Eqs. (3.3), was dropped. In addition, note that
the logarithm in Eq. (3.4b) provides the necessary
1n[zp(t)] terms to convert the perturbative expression, cf.
Eqs. (2.10), into crossover form. Moreover, as discussed
in Ref. 22(c), the derivative term does not act on the scale
parameter. The memory term, however, is scaled by
p(t —s); since it arises from the time convolution of two
propagators [cf. Fig. 1(a)], a time-local rescaling of the
propagators results in the nonlocal rescaling shown in
Eqs. (3.4b) and (3.4c).

As in static critical phenomena, the scale parameter is
linked to average thermodynamic variables by the match
condition, which for dynamic phenomena may be time
dependent. In effect, the match condition resums the
perturbation series and may be used to eliminate logarith-
mic singularities that are generated by the e expansion.
Previously, " it was specified by imposing a time-
dependent generalization of the match condition used by
Brezin et al. by requiring that M (t)=1. This match
condition, however, becomes meaningless for m =0, and
its static version does not exponentiate the explicit loga-
rithmic singularity in the equation of state.

In a static calculation, a more appropriate match con-
dition is obtained by requiring that the one-loop terms in
the equation of motion do not introduce logarithmic
singularities close to the critical point, thereby ensuring

that the perturbation series remain valid. This argument
was initially used by Rudnick and Nelson' in the deriva-
tion of the equation of state in the critical region. In par-
ticular, logarithmic singularities in the equation of state
were exponentiated uniformly by linking the scale param-
eter to the tree inverse susceptibility via

+ q=~q+2 ™
q

(3.5a)

where the subscript "eq" denotes equilibrium values.
In the dynamic theory, cf. Eq. (3.4a), there are no ex-

plicit logarithmic singularities. It is easy to show, howev-
er, that they are obtained from Q~ (t)+y in the static lim-
it. Therefore, a possible time-dependent generalization of
the static Rudnick-Nelson match condition, which for a
time-independent state reduces to Eq. (3.5a), is

Q, (t)+@=0, (3.5b)

and Q, (t) was defined by Eq. (3.4b). [Another time-
dependent match condition X(t)=l cannot be used in
the unstable region where the susceptibility is negative. ]

As discussed in I, the Rudnick-Nelson equation of
state exhibits unphysical behavior inside the coexistence
curve. For that reason an e-dependent modification of
Eq. (3.5a) was proposed. Specifically, it was suggested
that the tree inverse susceptibility in the match condition
be replaced by a naively exponentiated, approximate
form of the one-loop inverse susceptibility.

The corresponding time-dependent generalization of
the new match condition becomes Eq. (3.5b), where X(t)
is replaced by
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—[P(t ]—1 /2]/2
a+ U(r }T'(r}

a+ U(r )T'(r)
a+ U(t)

—3[P( t ) —1/2]/2

(3.6a)

and P(t ) is a crossover form of the order-parameter criti-
cal exponent

(3.6b)

The real part of the equation of state obtained in Ref. 16
is recovered in the static limit when the match condition,
cf. Eq. (3.5b), with the aforementioned modification, cf.
Eq. (3.6), are used in Eq. (3.7).

The time-dependent match condition makes the scale

parameter history dependent, and it ensures that Eq.
(3.5b) coupled to Eqs. (3.6) have real, nonperturbative
solutions even for instantaneous quenches into the unsta-
ble region. Roughly speaking, the time integrals will
have contributions from the entire time interval during
which the susceptibility is negative; the convergence of
the integrals is ensured by starting the quench from a
stable region. Moreover, as in the static case, the match
condition introduces a second length scale, independent
of the correlation length g, which, in a static calculation,
diverges along a line of P critical points, which we call
the universal spinodal (assuming that the system could be
forced to remain there). '

For some quenches, a computationally more efficient
form of Eqs. (3.4}—(3.6) is obtained by differentiating the
match condition, Eq. (3.5), with respect to time to get a
set of two coupled integrodifferential equations for the
average order parameter and the scale parameter,

p' ' (r)B,m (t) =A(t)p 'i h(r) —M(t)A(r)[T(r)+ —,
' U(t)M (t)]

+-,' U(r)M(r)[2A(t)]' ' f s'"[A(r s)X—&(r —s) —A(t)X&(t)]

Xexp —2f ds, A(t —s, )X&(t —s, ) + O(e ), (3.7a)

and

=f [A(t s)X&(t ——s) —A(t)X&(t)]exp —2f ds, A(t — s)X&(t —s, ) + O(e), (3.7b)

where the O(e) corrections arise from replacing X by X&
in Eq. (3.5b). Note that the equation of motion of the
scale parameter is solved for any time-independent m, ~,
and ~p', the initial condition, however, forces time-
independent solutions to satisfy X&(ap)=1. For some
quenches, our numerical solution to this integrodif-
ferential equation is not very stable, and the original ex-
pression, cf. Eq. (3.5b), is solved instead. As before, Eqs.
(3.7a) and (3.7b) reduce to the static equation of state
presented in I for time-independent states. The numeri-
cal solution of Eqs. (3.7) is presented in the next section,
with a=1 in the match condition. Finally, as was men-
tioned in the preceding section, if the range of the in-
teraction is increased, uz decreases and the parts of U(t),
etc., with anomalous dimension drop out; hence, the scale
parameter drops out of the calculation and mean-field
theory results are obtained.

IV. RESULTS

A. Instantaneous external-field and temperature quenches

Figure 2(a) shows the time evolution of the order pa-
rameter for a system with u/u*=0. 10 under instantane-
ous external-field quenches close to the pseudospinodal;
the corresponding variation of the scale parameter is
presented in Fig. 2(b). Note that for quenches into the

unstable region the system reaches the final equilibrium
state, whereas for quenches into the metastable region the
system remains trapped in the local minimum. As men-
tioned in the Introduction, this is a consequence of our
neglecting fluctuations which lead to nucleation (e.g.,
droplets} and cause metastable states to decay.

For quenches into the unstable region the time-
dependence of the scale parameter —which is a coher-
ence length of critical-like Auctuations —is noteworthy:
initially it follows the changing order parameter until the
system reaches the universal spinodal region, whereupon
it starts increasing rapidly. It attains its equilibrium
value by decreasing abruptly when the system leaves the
universal spinodal region. The rapid changes of the scale
parameter are triggered by changes in m (r) and arise be-
cause the instantaneous modified susceptibility X& is neg-
ative, cf. Eq. (3.7b).

When the scale parameter becomes large the zero- and
one-loop terms vanish; hence, the time evolution of the
order parameter simplifies, and the rate of change is pro-
portional to h (t), as is evident from the linear part in the
time evolution of the order parameter; cf. Figs. 2 and 3.
Indeed, once the scale parameter has become sufficiently
large, its role in the dynamics drops out, since the zero-
and one-loop terms vanish. This is fortunate, since when
the scale parameter is extremely large, its evolution
changes in a number of significant ways depending on the
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FIG. 2. (a) Time evolution of the order parameter under in-

stantaneous, isothermal, external-field quenches for u /u
=0.10, wI= —0.50, and h;=1.00. The ratios of the external
field to the static spinodal field, h *—=h /h, ~, are 0.93, 1.09, 1.16,
1.35, and 1.94, reading from top to bottom. (b) The correspond-
ing variation of the logarithm of the scale parameter p(t) which
increases as the spinodal is approached from the unstable re-
gion.

choice of match condition and on the details of the e ex-
pansion.

Similar behavior is observed for u/u'=1. 0, as shown
in Figs. 3(a) and 3(b). Note, however, that the decay of
the order parameter is nonmonotonic; there is a small
loop in m (t) before it reaches its final equilibrium value.
This behavior, in contrast with that of mean-field theory
(which is monotonic), is a consequence of the non-
Markovian character of the equation of motion.
Specifically, the order parameter remains in local equilib-
rium with the instantaneous free-energy surface, which,
however, differs from the quasistatic surface because of
p(t) Since the. instantaneous free energy depends on the
nonequilibriurn scale parameter, which is larger than its
quasistatic value, it is easy to show that m(t) scales
as [p(r ) /p ] ' " in the critical region, whereeq
v-(2 —e/3) ' is the usual correlation-length exponent
in equilibrium. The loop disappears upon replotting the—e/3data given in Fig. 3(a) as a function of m (t)p (t).

The significance of the scale parameter and its effect on
the apparent pseudospinodal can be examined by consid-
ering combined external-field and temperature quenches.

16 ~ ~

Since the quasistatic equation of state is cubic in m, the

FIG. 3. (a) and (b) panels are as in Fig. 2 for u/u =1.00.
The reduced external fields, h, are 0.73, 1.10, 1.22, 1.83, and
3.66, reading from top to bottom. Note that the late-time decay
of the order parameter becomes monotonic upon replotting the
data as a function of m (t)p ' (t).

analysis of the regions of attraction of the metastable and
absolute free-energy minima is similar to the mean-field
analysis. The equation of motion may be written as

c}, (mt) cc —[m (t) —m+(p(t))][m (t) —mo(p(t))]

X [m (t) —m (p(t))]. (4.1)

where m mo ~ m+, and where factors of ~p that arise
from canonical dimensional analysis were canceled. The
three roots will be real for final temperature, ~f, below
the critical temperature and for final external field, h, wil'.1

be less than zero but greater than the value at the pseu-
dospinodal.

In the mean-field approximation, the roots do not
change in time and the evolution is governed solely by
the final-state free-energy surface. Consequently, states
with initial magnetization m, )mo rnonotonically ap-
proach the metastable minimum, and states with m; (mo
decay to the absolute minimum, m

In the present calculation the external parameters h

nd ~ are assumed to change instantaneously, but the
order and scale parameters do not. Thus, the free energy
that governs the initial dynamics is determined by h, ~f,
and the initial scale parameter p, . The new bifurcation
point, mo(p; ), becomes a function of the initial scale pa-
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rameter and is displaced with respect to the bifurcation
point obtained from the adiabatic free-energy surface,
mo(p, q) (where p, is the scale parameter at the pseudos-
pinodal).

For quenches from the critical isotherm at u =u* it
can be shown that the shift of the bifurcation point is re-
lated to the ratio p;/p, &, if the ratio is less than one, then
the region of initial attraction to the metastable minimum
increases and vice versa. Since p is a measure of the
strength of fluctuations, a smaller value of p implies that
the system has smaller amplitude fluctuations than those
in a quasistatic quench and hence, initially, appears
somewhat more stable.

For the quenches from the critical isotherm, the ratio
of the scale parameters is always less than one; i.e., the
coherence length of fluctuations at the unstable root is
greater than the coherence length at the initial state.
Hence, as is confirmed by our numerical work, the region
of initial values of the magnetization that are attracted to
the metastable minimum is larger than the region pre-
dicted from a naive analysis of the static one-loop free en-
ergy.

In addition, memory effects become important as the
system evolves. Their effect is more pronounced under
quenches where the initial magnetization is close to the
bifurcation point mo. We show such a quench in Figs.

sl
4(a) and 4(b). Initially the order parameter has positia posi ive
s ope and tends towards the metastable minimum, as a
quasistatic analysis would predict. During the quench,
however, changes of the nonequilibrium scale parameter
significantly modify the free energy and the order param-
eter decays to the final true equilibrium state. Henceence, un-

er some quenches, even though the initial dynamics m
e descnbed by a suitably chosen quasistatic free energy,

the full-time evolution is not.
In summary, we see that in the critical region, the dy-

namics can be qualitatively different than that predicted
by mean-field theory. Memory effects, at least in as much
as they determine the scale parameter, become impor-
tant. Nonetheless, analyses based upon quasistatic free-
energy surfaces evaluated at the instantaneous scale pa-
rameter can be used to predict qualitative features of ei-
ther the initial- or final-stage dynamics.

B. Instantaneous critical quenches

The pnmary quantity of interest for critical quenches
is the equal-time structure factor. For a nonconserved

40

(b)

ClO

b

10

10 15 20

FIG. 4. (a) and I,
'b) panels are as in Fig. 2. The order parame-

ter initially has positive slope, as the preceding quasistatic
analysis based on p, (t) would predict, but the solution of the
full, one-loop, dynamical equation of motion shows that the or-
der parameter decays to the final equilibrium state. The param-
eters of the quench are u/u*=1. 00, r, =0.00, = —0.50,~ y 7 I ~ 7 Tf e

h, =1.00, and hf = —0.075.

order parameter, its second moment, or, alternatively, the
maximum of q Sz(t), has been identified with the inverse
average domain size. ' To one-loop order, the structure
factor is given by

S (t, r') =2AJdr, G, ,(r, r, )G, (r', t, ). (4.2)

Substituting the renormalized, one-loop, crossover form
of the Green's function [cf. Eq. (B3)], we obtain the
equal-time structure factor

S r =2k, exp( —2Aq t) dt~exp 2Aq t&
—2 J dt2[A(t2)T(tz) —

—,'U(t2)gz(t2)]
I

(4.3a)

where Q2(t) was defined by Eq. (3.4c), with T(t) replac-
ing X(t) Furthermor. e, it is evident from Eqs. (4.2) and
(83) that the structure factor satisfies the differential
equation

d, S (r)= —2[Aq +A(r)T(r) —
—,'U(r)Q2(r)]S (r)+2k. .

(4.3b)

Under critical quenches the scale parameter increases
without bound; its time dependence under a series of
quenches from a noncritical initial state is shown in Fig.
5. The growth law for the scale parameter does not satis-
fy a simple scaling law. Under instantaneous quenches
close to the critical point, however, it is easy to show that
Eq. (3.7b) becomes
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The current calculation exhibits only the three time
domains already discussed; a last time region, one not
seen here, should correspond to interfacial growth. In
critical quenches, this should have diffusive dynamics and
satisfy the Debye-Porod law; i.e., the structure factor
should decay as q

V. DISCUSSION AND CONCLUSIONS

We have presented a one-loop, renormalized, non-
Markovian equation of motion for the average order pa-
rameter of a time-dependent Landau-Ginzburg model
with nonconserved order parameter (model A of the criti-
cal dynamics ) and numerically solved it for various
quenches into the unstable region.

A second length scale, the scale parameter, introduced
by a dynamic generalization of our previously presented
match condition, ' was found to influence the dynamics
in a nuinber of important ways (e.g. , nonmonotonic
order-parameter relaxation, diffusive critical dynamics,
etc.).

The scale parameter is a measure of the volume where
nonlinear interactions, similar to those found at the criti-
cal point, are large. When the scale parameter is large,
the system behaves as if it were at the critical tempera-
ture, with zero magnetization, in the presence of an exter-
nal field [cf. Sec. IV(A)]. The scale parameter does not
respond instantaneously to the changes in temperature,
field, and magnetization, and this is responsible for the
relaxation being nonmonotonic, the effect becoming more
pronounced the more the scale parameter's evolution lags
behind that of the order parameter. Moreover, the extent
of these effects is determined by the size of the coupling
constant and by the ratio of the scale parameter to its
value on the adiabatic free-energy surface, and many of
the scaling laws and qualitative features of the present
calculation can be deduced by considering a mean-field
free-energy surface evaluated at the appropriate (e.g., ini-
tial) value of the scale parameter.

The universal spinodal region, which is bounded by the
lines along which the scale parameter diverges in a static
calculation, is a region of dramatic increase of the scale
parameter. The scale parameter can become extremely
large in noncritical quenches. In this case, its growth law
is nontrivial, and the higher-order terms in e are likely to
be important. Fortunately, once the scale parameter is
suSciently large, it effectively drops out of the calcula-
tion.

The free-energy surface that approximately governs the
dynamics depends on the scale parameter. Under various
quenches —which involve abrupt changes of external
variables or of the scale parameter —the appropriate in-
stantaneous free-energy surface was found to difFer from
the adiabatic free-energy surface evaluated at the instan-
taneous thermodynamic variables. Unlike previous cal-
culations, where the time evolution is governed by a
coarse-grained free energy dependent on an arbitrary
coarse-graining length, ' ' ' our free energy depends on
the scale parameter, which is determined self-consistently
by a memory-dependent match condition.

For instantaneous quenches the scale parameter initial-

ly responds slowly; the initial time evolution is governed
by a modified free energy that depends on the final tem-
perature and field and the initial scale parameter. Thus,
the region of attraction of the metastable state becomes
diffuse and dependent on the initial state of the system
and quench rate.

For critical quenches we find three distinct time re-
gions: (1) short times, where mean-field dynamics is ap-
proximately valid and (2) intermediate times, where the
structure factor develops a second component that has a
scaling form. This corresponds to regions with a charac-
teristic size that scales as [~p(t)] ' (which does not
seem to correspond to a siinple power law in time).
Moreover, this component of the structure factor does
not continue to grow, and at long times it disappears. Fi-
nally, (3) at late times the divergent scale parameter
forces the zero- and one-loop terms to vanish, the system
appears critical, and the structure factor is approximately
given by the mean-field structure factor for a quench
from an efFective initial temperature to the critical tem-
perature.

Some of our results are similar to those obtained by
other groups although they were obtained without intro-
ducing any special decompositions of the order pararne-
ter or of the reduced distribution functions; the introduc-
tion of the memory-dependent scale parameter seems to
be suScient. It must be stressed that the physical pro-
cesses considered here are different than those considered
before. In much of the earlier work, the bimodal charac-
ter of the order-parameter fluctuations plays a key role,
whereas in this work, this character was not included ex-
plicitly. What was included were fluctuation processes
characteristic of the critical point. As was discussed in
the Introduction, this should be reasonable near T„even
for critical quenches, for sum. ciently short times. Of
course, results specific to having a strongly birnodal dis-
tribution will not be obtained, and, in particular, naive
mean-field results are obtained for d )4.

At least one feature of the present calculation, like
many of its predecessors, ' is disturbing, namely, the ab-
sence of the q

'"+" tail from the high-q, long-time form
of the structure factor. Such a dependence is characteris-
tic of scattering from sharp interfaces. To be sure, q
dependence is seen in the intermediate-time component;
however, to some extent this results from the manner in
which this component is defined (q is the next term in
an expansion in q ) and will not depend strongly on the
spatial dimensionality (e.g. , by including two-loop correc-
tions associated with the exponent g). Thus the correct d
dependence would not be obtained even if we considered
the theory only for intermediate times, e.g., for times
where the intermediate-time component is growing and
where the scale parameter is not too large.

What seems most likely is that the present theories do
not adequately describe the mechanism whereby inter-
faces sharpen. As expected, the long-time motion is
diffusive, and has an algebraically (here, linearly) growing
intensity. On the other hand, the interfaces should be
diffuse near the critical point; hence, the domains must be
much larger, and the corresponding times much longer,
before Porod's law should be observed. In this case, we
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expect that there should be a well-defined separation of
timescales between the latest time observed here and that
which gives Porod's law behavior.

Since the evolution of the instantaneous free-energy
surface, as determined by the scale parameter, can lag
behind the adiabatic one, the relaxation of the order pa-
rameter becomes nonmonatonic, in sharp contrast with
mean-field theory. If observed experimentally, this
should provide confirmation of the theory. For the effect
to be observed, it is necessary that the scale parameter
becomes large and that the effective nonlinear coupling
constant be large enough; in general, this should happen
near the critical point. Similarly, the specific predictions
for critical quenches (cf. Sec. IVB) should be relatively
easy to verify.

In a future work, we plan to extend our treatment of
droplet fluctuations to the dynamic regime, thereby in-
corporating nucleation and droplets into the present cal-
culation.
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APPENDIX A: NUMERICAL SOLUTION
OF THE EQUATION OF MOTION

The derivation of the perturbative expression for the
equation of tnotion, Eqs. (2.10},was based on the ansatz
that the intrinsically dynamic term, qz(t) defined by Eq.
(2.10c), should not be e expanded because it does not gen-
erate e ' poles. Since the static renormalization con-
stants (which multiply terms local in time) renormalize
the dynamic equation of motion to one-loop order, the
e ' poles are canceled by terms that do not vanish for
time-independent states, i.e., q, (t). Thus, the E expansion
of q2(t} is not necessary to cancel e ' poles. The kind of
resummation implied by our ansatz, where some @-

dependent terms are not expanded, has been used previ-
ously, most notably in the analysis of the X-vector model
equation of state and in the calculation of the droplet
free energy. '

Furthermore, the ansatz was suggested by the numeri-
cal solution of the e-expanded equation of motion, narne-

ly by the solution of Eq. (3.7b) coupled to

+ —,
' U(t)M(t) ~ ] + 0 (e ).

(Al)

FIG. 11. (a) The solid curve is the solution of the tree order-
parameter equation of motion, written in crossover form, and
the dashed curve the solution of the one-loop equation of
motion without exponentiating the s' term. Note that the
latter curve exhibits unphysical behavior and that the system
gets trapped in a metastable state that is not a solution of the
static one-loop free energy, h & h,~. The quench parameters are
~= —0.50, u/u =0.10, and h/h, ~=1.29; (b) the logarithm of
the scale parameter for the two equations discussed in (a).

We found that, for a class of quenches close to the
pseudospinodal, the one-loop term dominates the zero-
loop terms resulting in unexpected behavior of the order
parameter. In Fig. 11 we show the time evolution of the
order and scale parameters, as determined from the
zero-loop equation of motion (solid line) and from the full
one-loop equation of motion (dashed line). It is seen that
the effect of the one-loop term is significant and cannot be
treated perturbatively. We believe that this is an artifact
of our approximation, i.e., of the e expansion, which
disappears when the ansatz is used, see Fig. 3.

Similar behavior was observed for the time-dependent
generalization of the Nelson-Rudnick condition, Eq.
(3.5b), and in a perturbative solution of the coupled equa-
tions. In the latter case we found that the perturbation
was too large, indicating a breakdown of the expansion.

An alternative approach is to eliminate the one-loop
terms by including them in the match condition. It is
easily seen, however, that this is problematic because the
scale parameter will diverge in regions where the suscep-
tibility changes sign.
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APPENDIX B:RESPONSE FUNCTION
FOR CRITICAL QUENCHES

The equation of motion of the propagator is written as

d, G (t, t )= i—f dt'I""(t, t')G (t', t ), (Bl)
'o

where to is the time of the perturbation and I &'" the ap-

propriate vertex function. [The factor of i arises from the
definition of the vertex functions, cf. Eq. (2.5a).] The
one-loop diagrams that contribute to the vertex function
are shown in Fig. 1(b); for m(t)=0 the second one van-
ishes and the first one is trivially related to the diagram in
the equation of motion. Hence, the renormalized, one-
loop expression of (81) becomes

i I dt'I," "(t,t')G9(t', t, )=A[q'+r(t)]G, (t, t, )
—

—,'Aa„ fx(t)[q, (t)+y]+q, (t) jG, (t, t, ),
fo

(82)

where q, (t) and q2(t) were defined by Eqs. (2.10b) and (2.10c), respectively [with T(t) replacing X(t)], and y is Euler's
constant. As in the derivation of the equation of motion for the average order parameter, q2(t) has not been e expanded
(see Appendix A).

The equation for the response function is written in crossover form by performing the same steps as in the equation of
motion for the order parameter. Use of the match condition, Eq. (3.6), yields

d, G (t, to) = [Aq'—+A(t)T(r) ,' U(—t)Q—,(t)]G (t, to)+5(t tc), —

where Q2(t) is defined by Eq. (3.4c), where as before T(t) replaces X(t)

(83)
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