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Haldane-gap modes in the S = 1 antiferromagnetic chain compound CsNiC13
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For the antiferromagnetically coupled integer-spin Ni'+ chains of CsNiC13 the Haldane gap is

found by neutron scattering to be a singlet-to-triplet spin excitation. It has a 2m periodicity in

momentum space with a dispersion relation that falls to a value of order twice the gap energy as
Q~2tt When . the coupled Ni + chains undergo the transition to three-dimensional order, a set of
longitudinal modes is found to occur that are not present in conventional theory where the excita-
tions are transverse spin waves. Our calculations of the intensities show that near the ordering wave

vector ( 3 3 1) the new modes agree with the field theory of ANeck but not with spin-wave theory.

At larger interchain wave vectors both field theory and spin-wave theory break down.

The mass gap predicted by Haldane' for integer-spin
Heisenberg antiferromagnetic (HAFM) chains was first
observed in CsNiC1&, a quasi-one-dimensional (quasi-1D)
material with chains of Ni + (S= 1) ions. Due to weak
interchain interactions, a 3D long-range order develops
at T&=4.4 K in which the Ni + magnetic moments are
canted within a plane containing the hexagonal c axis.
Since the orbital angular momentum of Ni + is

quenched, the superexchange interaction between Ni +

ions is predominantly isotropic and can be represented by
the following Hamiltonian:

0 =2J g S, S;+,+J' g S, S +D g (S,')

where D is negative and small. The strengths J and J' of
the nearest-neighbor intrachain and interchain interac-
tions deduced from the spin-wave frequencies of the 3D
phase are antiferromagnetic with the values 0.345 and
0.006 THz, respectively. The last term arises from an-
isotropy in the local crystal fields: it is weak because it
influences the orbitally nondegenerate ground state only
via the spin-orbit coupling to excited states. Direct
determination of D from the spin-flop magnetic field
gives a small easy-axis anisotropy where ~D~ (0.0026
THz. Inelastic neutron-scattering measurements by Mor-
ra et al. in the 3D phase (T&4.4 K) showed a Gold-
stone mode and a gap mode near the ordering wave vec-
tor ( —,', —,', 1} where the interion phase factor between
nearest Ni + ions is m. (AFM zone center). They showed
that the gap mode could be reproduced by linear spin-
wave theory only if a very large anisotropy D = —0.013
THz (finite-D model) was phenomenologically introduced

in (1}. It was suggested that this unusual size of ~D~ was a
reflection of Haldane gap effects in the 3D phase rather
than the true anisotropy. For the spin spectrum in the
1D phase (T))5 K) a simple model of weakly coupled
chains, each with an intrinsic 1D gap of 0.32 THz, was
found to account well for the residual 3D dispersion
present above the Neel point. It was then argued that the
energy gap of 0.32 THz for isolated chains must be the
Haldane gap because it was much too large to be ex-
plained by even the large phenomenological ~D~.

The ad hoc approach of Morra et al. of course does
not describe how the Haldane-gap mode of the 1D phase
is connected with the modes of the 3D phase. Since the
gap in the 1D phase arises from a many-body quantum
effect that embodies quite different physics and energy
scale than the weak interchain interaction, we generally
expect the gap to persist in the 3D phase. The need for
such a theory became very clear when it was subsequent-
ly shown ' that describing all the modes in the 3D phase
by the finite-D model gave a wrong polarization for the
gap at ( —,', —,', 1).

Until recently, theory' was only available for isolated
chains for which a triplet mass gap of magnitude
4=0.41(2J) was predicted by numerical simulations.
The first prediction related to spin-wave dispersion was
the first- and second-moment calculation of Arovas, Au-
erbach, and Haldane for an extended Heisenberg Hamil-
tonian that AfBeck et al. "had shown gave rise to the
valence-bond solid state. Although this exactly solvable
model predicts similar properties to those of the actual
Heisenberg model, namely, a triplet mass gap with 2m.

periodicity, its first moment, which rises monotonically
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as Q~O (or 2n }, has been shown to be in disagreement
with neutron-scattering data, which show a spin-wave
peak that falls as Q~2rr. More recently the spin-wave
dispersion of a N=32, S=1 chain was calculated by
Takahashi' by the projector Monte Carlo method. It
gave the magnitude of the gap 6=0.415(2J) at Q =m, in
agreement with previous numerical simulations, and a
gap of 2h at Q=O (or 2n. }. (The 2b, gap is seen also in
numerical calculations by Haldane ' ' for the model of
Affieck et al. "') However, the zone boundary (Q =m f2
or 3~f2) frequency calculated was 5.31J instead of 4J as
expected for a spin-1 AFM chain.

The only theory for the excitations in the 3D phase of
the Heisenberg model is the recent work of AfBeck"
based on a long-wavelength limit field-theory approach.
To calculate the effect of the 3D ordering on the spec-
trum, Aleck simplified the problem by mapping the
long-wavelength behavior given by the (1+1)-
dimensional quantum field theory of the isotropic (i.e.,
D=O) Heisenberg chain onto a classical Lagrangian con-
taining an explicit mass term. Even for an isolated 1D
chain this model predicts a gap of 2h as Q~O corre-
sponding to two-magnon excitations. In the 1D phase
the model gives rise, near Q =n, to a t.riplet gap mode
above the singlet ground state. One of the triplet
members corresponds to fluctuations in the length of the
field variable ~P~, i.e., to longitudinal fluctuations. In the
3D phase, near ( —,', —,', 1), the longitudinal mode persists as
a gap mode, while the two transverse modes become
Goldstone modes identical to the modes of linear theory.
Note that Affieck's longitudinal mode cannot be obtained
from any site-based model, since magnetic sites are as-
sumed to be occupied by fixed-

~
S

~
particles.

In this paper we report inelastic neutron-scattering re-
sults that demonstrate the predicted properties of the
Haldane gap in the 1D phase, i.e., its energy, triplet char-
acter, and 2m periodicity. In the 3D phase we have calcu-
lated the intensities from spin-wave theory and from the
recent field theory of ANeck. " Near the ordering wave
vector ( —,', —,', 1) only the intensity ratios given by the field

theory are shown to be in agreement with experiment.
Another new result is that the field-theory approach"
does not provide a satisfactory explanation of the 3D
phase magnons at wave vectors away from ( —,', —,', 1).
Constant-Q scans were performed on single crystals of
CsNiC13 with a triple-axis spectrometer at the National
Research Universal (NRU) reactor, Chalk River. All
measurements were carried out in the (hhl) zone and, for
polarized neutron scans, the sample was subjected to a
[110]vertical magnetic field (taken to be the y direction)
strong enough to produce a single-domain sample with
spins canted only in the xz plane. (Note that x, y, and z
form a Cartesian coordinate system, which, of course, is
different from the hexagonal unit cell. ) In this geometry
Affieck's longitudinal mode is always of (xz ) symmetry,
while the transverse modes can be of (xz) (fluctuation
within the canting plane) or (y ) (fluctuations out of the
canting plane) symmetry.

The highest-frequency mode near ( —,', —,', 1), i.e., the gap
mode, is shown in Fig. 1 to occur in the spin-flip (SF)
channel indicating that it is of (xz) symmetry. This
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FIG. 1. Constant-Q scan performed with polarized neutrons
near the 30 ordering wave vector ( 3 3,1). The predicted mag-

non frequencies (arrows) and relative intensities normalized to
the strongest mode {numbers) are from the spin-wave theory of
Morra et al. {Ref. 3) with a large anisotropy D (finite-D theory)
and the quantum field theory of AfBeck (Ref. 11). Note that the
highest-frequency mode at 0.26 THz appears in the spin-flip
(SF) channel consistent with the longitudinal mode (L:xz) pre-
diction of the field theory.

disagreement with the predicted (y ) symmetry of finite-
D theory was first observed by Steiner et al. in a polar-
ized neutron scan at (0.2767,0.2767, 1). The field theory'
predicts the gap mode to be a longitudinal fluctuation of
the correct (xz ) symmetry. The intensity ratio between
the two low-frequency Goldstone modes, I (y ):I(xz ), is
predicted to be 1:0.45 in the finite-D theory, whereas the
observed ratio is about 1:0.29, in agreement with the field
theory. Thus the highest-frequency mode is indeed a
member of the predicted new class of longitudinal spin
excitation s.

The finite-D theory predicts three magnon branches of
significant spectral weight at frequencies 0.3298, 0.4493,
and 0.5181 THz for the wave vector of Fig. 2. The
lowest-frequency mode is a (z ) mode and, hence, cannot
be seen at (001) but ought to be seen near (111). Yet no
strong scattering is observed near (111) at the expected
frequency in Fig. 2(a). Subsequent polarization analysis
of the peak, carried out with relaxed resolution in order
to maximize neutron intensity [Fig. 2(b)], showed it con-
sisted of non-spin-flip (NSF) scattering and SF scattering
both centered at 0.44 THz and with intensity ratio of
I(y ):I(xz)=2:1. This observation is in clear disagree-
ment with the field theory, which predicts two transverse
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FIG. 2. Constant-g scan in the 3D phase at (0.9,0.9,0.97); (a) high-resolution unpolarized scan and (b) low-resolution scan with po-
larized neutrons. The arrows are the magnon frequencies predicted by spin-wave theory with large anisotropy (Ref. 3) (finite-D

theory) and by quantum field theory (Ref. 11).

modes and one longitudinal mode near (111). The pre-
dicted ratio of the two transverse frequencies, &2, is a
general result for a triangular lattice in the limit of an iso-
tropic HAFM Hamiltonian. It is therefore hard to ex-
plain the observations in Fig. 2 without invoking interac-
tion between spin waves or some overdamping near (111),
but current theory does not predict such behavior.

The polarized neutron scans shown in Fig. 3 were car-
ried out in the 3D phase (1.4 K) and in the 1D phase (7.6
K) but at the same position in Q space. Since Q is almost
along z at (0.2,0.2, 1) the in-plane transverse fiuctuations
observed are mostly of (x ) symmetry. The equal inten-
sities in the SF and NSF channels at 7.6 K [Fig. 3(b)]
then suggest that (Si'Si') =(S"S"). Similar polarized
neutron scans made by Steiner et al. in higher zones fur-
ther suggest (S'S') =(Si'S ) =(S"S"),i.e., the excita-
tion is unpolarized. From this observation we can con-
clude that the Haldane gap is a triplet above a singlet
ground state. The singlet follows because it has been
shown earlier ' that there is no quasielastic scattering.
The triplet excited state is then deduced from the fact
that the excitation is unpolarized. The triplet symmetry
is a further sign that we are dealing with a system with a
Haldane gap. It cannot occur within spin-wave theory
for a S= 1 system. In the 3D phase [Fig. 3(a)] the agree-
ment for the (y ) mode frequency (NSF channel) predict-
ed by field theory' is very good, while the broad peak
seen in the SF channel is consistent with the superposi-
tion of the four (xz) modes. We therefore find that the
quantum field theory is in agreement with the observed
spectra if the comparison is made near the ordering wave
vector but not all (001).

In the 1D phase of an integer-spin HAFM chain the
periodicity of the gap mode in Q space (i.e., along Q, in

CsNiC1&) is expected to be 2m, since the translational
symmetry of the chain remains unbroken. The 2m

periodicity is seen in numerical calculations by
Takahashi, ' which give the energy gap at the nuclear
zone center (Q, =2ir) 2b„where b„the energy gap at the
magnetic zone center (Q, =n), is 0.415(2J). The field

theory, " valid for small q, vectors near Q, =ir and 2m,

also predicts that the excitations at 2m are two-magnon
processes with a frequency 25.

Figure 4 shows the 1D phase gap mode frequency and
full width at half maximum (FWHM) measured at
(0.19,0.19,7)) points. The basal plane components of 0.19
were particularly chosen because the Fourier transform
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FIG. 3. Polarized neutron constant-Q scans in 3D phase (a)
and 1D phase (b) at (0.2,0.2, 1). In the 1D phase, scattering in-

tensities in non-spin-Hip (NSF) and spin-flip (SF) channels are
identical indicating that the gap mode is unpolarized.



of interchain coupling vanishes identically at such wave
vectors [i.e., J'(Q„Qb)=0] giving a neutron response
similar to that of an isolated chain. Measurements in the
nuclear zone (Q, ) 1.5m) were actually carried out at
(0.5,0.5,g) positions in order to avoid low-frequency pho-
nons but have been renormalized' to Q, =Q„=O.19(2m.).
The observed frequencies in the nuclear zone are con-
sistently higher than the corresponding frequencies in the
magnetic zone even though they are the same within er-
rors. Although no data are shown beyond Q, = 1.8m. be-
cause of the decreasing intensity, our results can be inter-
preted as tending to a gap of 0.6+0.3 THz, i.e., centered
on 2A. The width of the gap mode is much wider in the
nuclear zone than in the magnetic zone (shaded area)
even if the change in the spectrometer resolution is taken
into account. This may indicate that the triplet degen-
eracy is partially lifted in the nuclear zone. Both the fre-
quency and the width show that the true periodicity of
the excitation is indeed 2m and not m. as in a system with
broken Neel symmetry.

The crosses in Fig. 4 are the result of projector Monte
Carlo calculation' with the predicted magnitude of the
gap b, =0.415(2J), which we associate with the measured
gap of 0.32 THz. This normalization of Takahashi's en-

ergy scale gives the predicted zone-boundary frequency
much higher than experiment (2.05 THz instead of 1.45
THz). The disagreement is probably caused by the fact
that the calculated dispersion in the ground state (T=O)
has been scaled to the Q, =m. frequency measured at 10
K. Since this frequency is expected to have renormalized
upward with temperature, " Takahashi's zone-boundary
frequency appears to be too high. In fact it lies at 5.31J,
33% above the 4J of linear theory, comparable to the
(m —2)/4 or 28%%uo enhancement for an S= 1 chain when
the interactions between spin waves are taken into ac-
count. ' Alternatively, if 5.31J is identified as the mea-
sured zone-boundary frequency we would predict an en-

ergy gap of only 0.23 THz. This may be considered as an
estimate of 6 at T=0, since the measured zone-boundary
frequency is independent of temperature to a very good
approximation (compare Fig. 4 with Ref. 3). We then
have the following estimates of the upward renormaliza-
tion of b, with temperature: b =0.23, 0.28 (Ref. 11), and
0.32 THz at T=O, -2, and —10 K, respectively. We
stress, however, that further neutron-scattering experi-
ments, perhaps a series of constant-Q scans at
(0.19,0.19,1) at various temperatures in the 1D phase, are
required to confirm this behavior of A.
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FIG. 4. Measured frequencies (circles) and FWHM (shaded
regions) of the mass gap in the 1D phase between the AFM zone
center (Q, =m) and the nuclear zone center (Q, =2rr). The bold
solid lines are the field theory of Ref. 11 with energy gap 5 at

Q, =rr and 2h at Q, =2rr The cro. sses are from Monte Carlo
calculation (Ref. 10) normalized to the observed Haldane-gap
frequency at Q, =rr.

We conclude from the neutron-scattering experiment
taken with available theories that (1) a Haldane gap is
confirmed in CsNiC13 and by implication in other S=1
antiferromagnetic chains, (2) the spin excitations in the
1D phase are of triplet symmetry and their periodicity is
2m, since no symmetry of the chain has been broken, (3)
the spin excitations of a set of coupled S= 1 chains below
their transition to 3D long-range order are composed not
only of the usual transverse spin waves, but also of a new
excitation in which the spin fluctuates in length, and (4)
current field theory" gives a good account of the excita-
tions near the ordering wave vector but fails for large
out-of-phase interchain excitations.
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