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A Monte Carlo version of the coherent-anomaly method has been used to determine critical prop-
erties of a two-dimensional Ising ferromagnet with nearest- and next-nearest-neighbor interactions
and of a series of two-dimensional lattice-gas systems of particles interacting via 6-12 Lennard-Jones
potential. It has demonstrated that the method leads to quite accurate determination of critical
temperature but is less successful when used to determine the values of critical exponents y and v.

I. INTRODUCTION

Recently, Suzuki and his co-workers' proposed a
new theoretical approach for determining critical proper-
ties of lattice systems, the so-called coherent-anomaly
method (CAM). This approach unifies the mean-field
theory with the Fisher scaling concept. The strategy
used by Suzuki and his co-workers is opposite to that uti-
lized in the renormalization-group (RG) method. ' " In
the RG method one eliminates the short-range fluctua-
tions and obtains the renormalized long-range fluctuation
effects recursively, using various approximate
schemes. "' ' On the other hand, CAM takes into ac-
count the long-range effects first; it introduces a self-
consistent field to express the effects of long-range corre-
1ations, and then it treats the short-range fluctuations ex-
plicitly. CAM is done by constructing a series of clusters
of increasing size and evaluating the cluster properties
explicitly. Then, the "true" critical point for the infinite
system is obtained by extrapolating the results to the
cluster of infinite size. The hitherto-published results'
demonstrated that CAM gives quite satisfactory results
for both static and dynamic critical phenomena. Of
course, as the cluster size increases the amount of numer-
ical calculations involved also rapidly increases. Numeri-
cal diSculties have also limited applications of CAM to
systems with the nearest-neighbor interactions only. A
possible way around these computational diSculties has
been proposed by Katori and Suzuki in the form of a
Monte Carlo version of CAM (MCCAM). These authors
have successfully applied MCCAM to the three-
dimensional Ising ferromagnet.

In this work we present the application of CAM to
two-dimensional (2D) lattice systems involving further-
neighbor interactions. In particular, we consider two
series of lattice systems. The first series consists of an Is-
ing ferromagnet with nearest- and next-nearest-neighbor
interactions on a square lattice. Here we consider the
effects on the critical properties of the model that result
from the changes in the ratio of coupling constants for

the nearest- and the next-nearest-neighbor interactions.
A primary aim of this series of calculations was to deter-
mine the effects of the next-nearest-neighbor interactions
on the convergence of MCCAM by comparison of the re-
sults with other estimations. '

The second series of systems considered in this work
consists of 2D lattice-gas systems of Lennard-Jones parti-
cles located on a square lattice. By changing the relative
size of adsorbed particles and the surface lattice we can
study the effect of dimensional incompatibility on critical
properties. From both experimental' and theoreti-
cal ' studies of adsorption of gases on crystalline
solids it is known that the critical temperature reaches a
maximum for the dimensional incompatibility close to
zero. Taking into account that theoretical calculations of
these effects have been based on a rather simple mean-
field model the results obtained must be treated with
reserve. Here, we present preliminary results obtained
for model systems on a square lattice, but in the future we
intend to consider systems resembling experimentally
studied' monolayer films of argon, krypton, and
methane on lamellar halides of the general formula
MeX~.

j. he paper is organized as follows. In the next section
we define the lattice-gas model considered here and intro-
duce basic notation. Then, Sec. III presents basic ideas of
CAM and MCCAM. In Sec. IV we describe briefly the
simulation method. Finally, in Sec. V we present the re-
sults and final conclusions.

II. THE LATTICE-GAS MODELS

In this work we consider a two-dimensional lattice gas
on a square lattice, described by the Hamiltonian

A —pX= g P„n, n, —pgn, +W,
(i,j )

where n, is the occupation variable assigned to each site
and n; = I (0) when the site i is filled (empty), tt),J is the en-

ergy of interaction between the particles located on sites i
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n, =(1—s, )/2 (2)

we can transform the Hamiltonian (1) into the Hamiltoni-
an for the Ising model

&=—g J;~s, sj H—g s;+W",
(ij ) i

and j, p is the chemical potential in the system of X parti-
cles, and W is a constant irrelevant to the problems con-
sidered here. Now, setting
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where

and

J;, = —
p,j/4 (4)

FIG. 1. An example of a cluster Q(L) with the boundary re-
gion involving interactions up to the fourth-nearest neighbors.

H=(p —
—,
' g P;, )/2 .

j(w&)
(5)

We consider the following two choices of the parameters
J, . The first set of systems is defined by assuming that
the interaction range does not exceed the next-nearest-
neighbor distance, i.e.,

JNN, i and j are the nearest neighbors

J;j= JNNN, i and j are the next-nearest neighbors

0, otherwise

(6)

and both JNN and JNNN are assumed to be positive (fer-
romagnetic regime).

The second choice of the parameters J; results from
the assumption that the interaction between a pair of par-
ticles is modeled by the (6-12) Lennard-Jones potential,
1.e.,

P,, =—P( l r, —r, ~
) =P(r,, ) =4m[(0 /r, , )" (o—/r, , )']—. (7)

Now, setting the cutoff distance, R,„, at av'5, where a
is the surface-lattice constant, i.e., restricting the range of
interactions to the fourth-nearest neighbors, we have

—
P; l4, for rJ~R

J, =
0, otherwise .

In this work we confine the range of variation of 0. by as-
suming that the nearest-neighbor interaction is nonrepul-
sive, i.e., we keep 0. a.

the properties of macroscopic systems. The first step in
CAM is to define the cluster. Let us consider the spin so
(or a particle located on a lattice site labeled by "0")and
draw a circle of radius I with so located in the center.
All spins encompassed by this circle form a cluster Q(L).
Next, we define the boundary region of the cluster Q(L ),
BQ(L), by assigning any given spin to M(L) if there is at
least one spin outside the cluster Q(L) interacting with
this given spin. Of course, the size and width of the
boundary region of the cluster depends on the assumed
form of the Hamiltonian. Then, we split the Hamiltonian
for the cluster (which includes the effects due to local
self-consistent fields located outside of the cluster) as fol-
lows:

%(L)=&(Q(L)) Hg s,——g JI g skzk (s ),
i E Q(L) I k 680(L)

where

A(Q(L)) = —g JI Sl S~

(ij )& EQ(L)
(10)

In the above, we have replaced J; by JI, assuming that i
and j are the lth nearest neighbors, whereas zk is the
number l-type bonds connecting the kth spin belonging
to M, (L) with the outer spin [not belonging to Q(L)] (see
Fig. 1).

It was demonstrated by Suzuki that in order to deter-
mine the critical temperature for any cluster fl(l) one
must calculate the following "feedback" function (FBF):

III. THE COHERENT-ANOMALY METHOD

Inasmuch as detailed presentation of CAM was given
in a series of papers by Suzuki and his co-workers, ' we
shall confine ourselves to the discussion of its main
points. The basic idea of CAM is to consider a series of
molecular clusters of increasing size (or a series of ap-
proximations), to evaluate the cluster properties exactly,
assuming that the spins located at the cluster boundary
are subject to the local self-consistent fields (mean fields)
exerted by outer spins (not belonging to the considered
cluster), and then to extrapolate the results to the infinite
cluster. In this way one can extract information about

No.

TABLE I. Molecular clusters used in this work.

1.50
2.50
3.90
4.90
5.60
6.90
7.99
8.99

10.99

Nl

9
21
45
69
97

145
193
249
373
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JNN NN9(L', T)= g zk &sask }T Q(L, )

B k ~30(L)

where &. . . , . . . }z n~L~ denotes the average over the
cluster, given by

&X}T,n(L. )

=TrX exp[ —P&{fL(L))]/Tr exp[ —P&(Q(L))],

where P= I/O+T, Tr is the usual trace operator and, in
the present case X —=sosk. Equation (11) is valid only for
systems with the first-nearest-neighbor interactions.

In the present case of a Hamiltonian involving interac-
tions between further neighbors, the feedback function
P(L, T) takes the following form:

where

Ck X~kJl
I

(14)

Determination of the cluster critical temperature, T, (L),
is based on the following equality:

9'(L, T,(L))=1.0 .

T, (L)
Xp —X{T(L)) (Jl =

NN)

Another quantity that must be evaluated in order to
obtain information concerning critical properties of mac-
roscopic systems is the classical susceptibility (yo).
Above the cluster critical temperature, T, (L), the follow-
ing relation holds:

1
P(L, T)= g Ck &sask }T Q(I).

k eBQ(L)
(13) where

g(T, (L))= i EQ(L)J)
kBT 1 a

Ck T &~o~k }T,n&L)
B kevin(L) T=T (L)

(17)

a
&T

& sask }T, nti. i

B

1

kTB
&sask }T„(L)g JI g s;sj —g Jl&sosk g si~j }

(ij ) CQ(L) I (i~ ) en(I)

It can be readily demonstrated that the temperature derivative of the two-spin correlation function in Eq. (17) is
represented by the four-spin correlation function, and in the present case we have

2

1.5-

~

~ ~

~L =1.5 (NL=9)

~

~L=3.9 (VL=t5)

~

~

L=10.99 (N„=3&3)

2.e 3.0 3.2 3.0 2.5 2.7 2.9 2. L5 2.50 2.55

FIG. 2. Examples of temperature dependence of the function 9'(L, T) for a two-dimensional Ising ferromagnet with the first-
nearest-neighbor interactions: (a) L = 1.5 (NL =9), (b) L =3.9 (NL =45), and (c) L = 10.99 (NL = 3'73).
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TABLE II. Comparison of CAM and MCCAM results for a two-dimensional Ising ferromagnet.

Cluster
No.

T, (L)
Ref. 3

3.125 273
2.914 789
2.747 712
2.678 912
2.631 034
2.575 244

T, (L)
This work

3.125-+0.030
2.915+ 0.027
2.748+ 0.018
2.679+0.014
2.630+0.010
2.575+ 0.010
2.540+ 0.008
2.516+0.006
2.480+ 0.006

y(T, (L ))
Ref. 3

0.403 176 1

0.479 064 2
0.584 701 3
0.644048
0.696 316 8

0.778 271 8

y(T, (L ))
This work

0.402+-0.005
0.481 +0.008
0.587+0.008
0.644+ 0.004
0.709+0.012
0.782+ 0.023
0.845+ 0.024
0.902+0.021
0.962+0.055

From CAM it follows that'

(19)

where T,' is the critical temperature of the macroscopic
system, and the following scaling relations hold: T, (L)= T,'+a, X (22)

pseudocircular clusters, since there always is a certain in-
terval of L giving the same number of spins (or particles)
in the cluster XL. It is more accurate to replace the rela-
tion (20) by

and

T, (L)= T,'+aL (20)
where we have used the fact that

T,(L)=T,'+bg(T, (L))r (21)
L ~ ~1/2 (23)

where v and y are the usual critical exponents associated
with the correlation length and susceptibility critical be-
havior, respectively. We note, however, that L is not the
best measure of the cluster size in the present case of

The relations (21) and (22) can be used to extract the
value of T,* as well as to estimate the values of the criti-
cal exponents y and v.

IV. MONTE CARLO PROCEDURES

-0.1-

lJ

tx -02-
CD

C)

-0.3-

-0.4-

In this work we have used a standard importance-
sampling Monte Carlo method in grand ensemble.
First, the cluster of desired size was generated with the
random starting configuration of its spins. Then, the sys-
tern was equilibrated using 3000—5000 Monte Carlo steps
per spin (MCS's). After equilibration, the next
10000—15000 MCS's were used to calculate averages.
Only in a close vicinity of the cluster critical point
[V(L, T) close to 1.0] longer runs were used with up to
40000 MCS's. Each datum point was repeated five times
using different starting configurations (achieved by
changing the random-number-generator seed). Finally,
mean values for each datum point were calculated. In
this work we have used a series of nine clusters of size
and number of spins given in Table I.

-0.7 -0.5 -0.1 0.1 TABLE III. The critical parameters for the 2D Ising model.

FIG. 3. Plots of log@(T,(L)) vs log[T, (L) T,*] [Eq. (21)]-
for the two-dimensional Ising ferromagnet with the nearest-
neighbor interactions obtained from CAM (Ref. 3) (open points)
and MCCAM (solid points) calculations.

T*
C

y

Exact value
Ref. 31

2.269. . .
1.75
1.0

CAM
Ref. 3

2.23+ 0.038
1.785+0.116

MCCAM
This work

2.245 + 0.036
1.683 +0.083
1.394+0.117
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2.7

2.4

2.1

1.5

4.0

1.2

0.9
-0.63 -0.53

I I I

-0.&3 -0.3& -0.23

(ag [rt (L) - r~"]
-0.13 -0.03 3.0

FIG. 4. The plot of log NL vs log[ T, (L ) T, ] (E—q. 22) for the
two-dimensional Ising ferromagnet with the nearest-neighbor
interactions obtained from MCCAM calculations.

2.0
0 0.1

t

0.2 0.3 0.5 0.6
t

0.7

V. RESULTS AND DISCUSSION

The first series of calculations have been performed for
a simple 2D Ising model with the nearest-neighbor in-
teractions only. The exact values of the critical tempera-
ture and the critical exponents for this model are well
known, ' ' and hence this model can be conveniently
used as a check for the method used here. In Fig. 2 we
present examples of the temperature behavior of FBF for
different cluster sizes. It is seen that as the cluster size in-
creases the slope of the FBF in the vicinity of the cluster
critical point increases also, so that T, (L) can be deter-
mined with high accuracy. In Table II we summarize the
values of T, (L) and g(T, (L)) obtained by us and by Ka-
tori and Suzuki with the help of analytic numerical
CAM. It should be noted that for all clusters the values
of T, (L) and g(T, (L)) obtained from CAM and
MCCAM are practically the same.

The use of the scaling relation (21) to our results leads
to quite an accurate value of the critical temperature but
the critical exponent y is a little lower than the exact
value (1.75) (see Fig. 3 and Table III). On the other hand,
the use of the scaling relation (22) with T; =2.245 (see
Fig. 4) leads to the value of the critical exponent v con-
siderably higher than the exact value (compare Table III).
Next, in Table IV we present the results obtained for the
model with nonzero second-nearest-neighbor interac-
tions. From earlier theoretical studies' ' it is known

FIG. 5. The critical temperature for the two-dimensional Is-
ing ferromagnet with the nearest- and next-nearest-neighbor in-
teractions as a function of R =JNNN/JNN calculated from Eq.
(24) (solid line) and obtained from MCCAM calculations
(points).

that the critical temperature for this model exhibits the
following dependence on R =

JNNN /JNN.

T, (R ) = T,(0)(1+&2R ), (24)

whereas the critical exponent should remain the same as
for a simple Ising model with the first-nearest-neighbor
interactions. In Fig. 5 we show a comparison of critical
temperatures obtained for different values of R with the
values predicted by the above relationship (24). It is seen
that MCCAM leads to quite satisfactory results. The
critical exponent y obtained with help of the scaling rela-
tion (21) shows rather systematic deviations towards a
lower-than-expected value of 1.75. Also, the values of v
derived from our results and the scaling relation (22)
show a systematic shift towards higher values than the
exact value v=1.0. The preceding results demonstrate
that addition of the second-nearest-neighbor interactions
does not affect the convergence of the method and gives
results consistent with results obtained for simple model

TABLE IV. Critical parameters for 20 Ising ferromagnet with the second-nearest-neighbor interac-
tions.

JNNN JNN 0.1

2.586+ 0.022
1.641+0.025
1.326+-0.053

0.3

3.235+ 0.018
1.601 +0.031
1.278+ 0.069

0.5

3.915+0.016
1.535+0.022
1.093 + 0.062

0.7

4.400+ 0.023
1.649+0.018
1.357+0.085
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TABLE V. Critical parameters for 2D lattice-gas systems of
Lennard-Jones particles of different relative size (o./a).

087

T,* ( =kq T, /e)o/a
0.77-

1.224+ 0. 113
1.308+0. 125
1.182+0. 173
1.212+0. 152
1.197-+0.210
1.304+0. 167
1.115+0. 125
1.010+0. 102
1.323+0.211

0.580+-0.011
0.650+ 0.015
0.735 +-0.018
0.795+0.019
0.820+ 0.010
0.815+0.006
0.780+0.016
0.655+0.014
0.390+0.013

1.623+0.090
1.771 +0.060
1.601+0. 160
1.611+0. 110
1.697+0. 120
1.747+ 0. 101
1.761+0.085
1.601+0.210
1.590+0.225

0.800
0.825
0.850
0.875
0.900
0.925
0.950
0.975
1.000

0.67-

\

\

l
1

l

I

0.47-

0.37. ,
-0.1

with nearest-neighbor interactions only.
Next, in Table V we present the results obtained for

2D lattice gas systems of Lennard-Jones particles with
different relative size o/a, ranging from 0.8 to 1.0. As
expected, critical temperatures exhibit behavior typical to
systems with different dimensional incompatibility,
here defined as

4

0.0

I
0.1

FIG. 6. The plot of critical temperatures of two-dimensional
Lennard-Jones lattice-gas systems vs dimensional incompatibili-
ty I [Eq. (25)].

I =(o. &2—a) ja . (25)

As it is seen in Fig. 6, T,* reaches maximum for I =0.03.
From experimental studies on adsorption of gases on
crystalline surfaces it follows that the critical tem-
perature in monolayer films reaches its maximum value
for IE(0.00,0.05). Thus, our results agree very well
with this experimental finding. The observed changes of
critical temperature with the ditnensional incompatibility
is, of course, caused by changes in the interaction ener-
gies between particle when o changes, and the location of
maximum for T, corresponds to the value of o. at which
the particles interact most strongly. In Fig. 7 we present
the dependence between the system critical temperature
and the parameter J,„defined by

the cluster size increases then the effects of statistical
fluctuations become more and more troublesome. In par-
ticular, in calculations of the susceptibility coeScients,
g(T, (L)), the accuracy drops considerably as L in-
creases. From our calculations it follows that for small
clusters (with L up to 6.9) the error is of the order of 1%
to 2%, whereas for large clusters (with L up to 10.99) this
error can be as high as 10%.

0.87

60'
0.SR
0.S25
0.850
O. S75
Q. 900

6 0. 925
7 0.950
8 0.975

9 1.000

Jsum =0'5 X Jlz
I

(26)
0.77-

where z' is the number of /th-nearest neighbors. We ob-
serve that only systems with o. =0.800 and 0.825, i.e.,
those with the most negative dimensional incompatibili-
ty, do not obey the expected linear behavior. The estima-
tions of critical exponents y and v (compare Table V)
were, in general, also not very successful. The exponent
y exhibits deviations towards mean-field value
( y M„= 1.0), though is some cases we have obtained
values quite close to the exact result. The exponent v
shows high positive deviations from the exact value
v= 1.0 (all LJ systems considered here belong to the same
universality class as the Ising ferromagnetic model).

Concluding, we can say that the MCCAM does not
seem to be as good as other methods used in studies of
critical phenomena, e.g., the finite-size scaling of conven-
tional Monte Carlo results, phenomenological scaling of
transfer-matrix results or renormalization-group method.
However, it requires considerably less computational
time than, say, the conventional Monte Carlo method, as

0.67-

0.57-

0.47-

9/

0.37
0.28

I

0.38 0.58
I

0.48 O.e8
)
Sum

FIG. 7. Critical temperatures of two-dimensional Lennard-
Jones lattice-gas systems as a function of the parameter J,„
[Eq. (26)].
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