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Hidden symmetries in the one-dimensional antiferromagnetic Heisenberg model
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Nontrivial conservation laws of the antiferromagnetic Heisenberg (AFH) model for periodic rings
are used for an efFicient computation of the energy eigenstates in the SPQ sector, a sector with zero
total spin and momentum. The appearance of twofold-degenerate eigenvalues is consequence of
conserved operators, which are antisymmetric under reflection.

I. INTRODUCTION

Antiferromagnetic ordering in two-dimensional planes
has been observed in La2Cu04, ' which is one of the new
high- T, superconductors. It has been suggested that
for undoped materials such a behavior can be described
by the two-dimensional antiferromagnetic Heisenberg
(AFH) model. This is one of the most simple but non-
trivial quantum statistical models, whose thermodynami-
cal properties are of principal interest in any case.

An exact computation of the ground state of the AFH
model has been performed first for small lattices (up to 16
sites) by Oitma and Betts. Using a modified Lanczos al-
gorithm, the authors of Ref. 5 were able to enlarge the
size of the lattice to 24 sites. These results confirm anti-
ferromagnetic ordering in the ground state. Low-lying
energy eigenvalues have been computed for larger sys-
tems (up to 64 sites) employing Monte Carlo techniques.
Of course, these results carry statistical errors.

For a systematic study of the AFH model, it would be
desirable to know the distribution of the energy eigenval-
ues, their degeneracies, and their dependence on the
number of lattice sites. In particular, degenerate energy
eigenvalues might help to find the "hidden" symmetries
of the model. So far, nothing is known about hidden con-
servation laws of the AFH model in two and more dimen-
sions. A whole family of conservation laws was shown to
exist for the one-dimensional XYZ model by Baxter.
This important result could be generalized to a wide class
of one-dimensional quantum systems by means of the
quantum inverse-scattering method. A new type of con-
servation law that does not follow from this method has
recently been discovered in the one-dimensional Hubbard
model. In this paper we want to demonstrate how to use
nontrivial conservation laws for an efficient computation
of the AFH energy eigenstates.

In Sec. II, we review the "obvious" conservation laws
of the AFH model, which hold in any dimension, as there
are conservation of the total spin S, the momentum P,
and the reflection symmetry R. It is convenient to divide
the Hilbert space of the energy eigenstates into sectors la-
beled by the quantum numbers s, s3, and p for S, S3, and

P, respectively. The ground state is supposed to be in the

II. THE OBVIOUS SYMMETRIES
IN THE AFH MODEL

The isotropic AFH Hamiltonian is defined by

H= —,
' g (x,y) .

(x,y)

The sum extends over the spin- —,'-coupling operators,

(x,y) =(cr(x)tr(y) ), (2.2)

between nearest-neighbor points (x,y ). For periodic

SPO sector of states with zero total spin and zero respec-
tive m momentum. In this paper, we will be concerned
only with this sector.

In Sec. III, we present the explicit form of the higher
conservation laws, ' as they can be found in the one-
dimensional AFH model with periodic boundary condi-
tions. Most important for the construction of the SPO
sector are operators that commute with the Hamiltonian
but anticommute with the reflection operator R. Such
operators allow for a further separation of the SPO sector
into two subsectors, which we denote by SP01 and SP02:
SP01 contains only nondegenerate energy eigenstates,
which are symmetric under the reflection operator R.
SP02 contains twofold-degenerate energy eigenstates.
One of these states is symmetric, the other one is an-
tisymmetric under R. The SP02 sector appears first for
periodic rings with N =12 sites.

In 1938, Hulthen" had already computed the eigenval-
ue spectrum of the SP0 sector for rings when
%=4,6, 8, 10. If he had gone one step further to N=12,
he would have found the degeneracy of reflection sym-
metric and antisymmetric states —a first hint of the ex-
istence of higher conservation laws.

In Sec. IV, we construct an appropriate basis for total-
spin-zero states, following a procedure first introduced by
Hulthen. " We describe how the AFH Hamiltonian and
the conserved operators act on these states.

In Secs. V and VI we diagonalize the AFH Hamiltoni-
an in the SP01 and SP02 sectors, respectively.

In Sec. VII, we present the expectation values of the
spin-spin correlators for the lower eigenstates of the AFH
Hamiltonian.
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boundary conditions, H is invariant under translations,
rotations, and reflections on the lattice. Moreover, the
total spin,

where

S, (x, ) S, (xk)T, . . . , , (3.5)

S=QS(x), [H, S]=0, (2.3)
Ta . a tlo a a

1 k 1 k
(3.6)

is conserved as well. H, S,S3 and the momentum opera-
tors P as generators of the translations can be diagonal-
ized simultanuously. The corresponding set of eigen-
states is labeled by

A derivation of these conservation laws is found in the
Appendix.

The operator 62 is related to the total spin S . The
operator 63,

IE&s~s3~pi~) (2.4) G, =i E(x ],xp, x 3 ), (3.7)

where A. stands for further possible degeneracies.
For a periodic ring with an even-number X of sites the

reflection operator R,

xl &x2 Cx3

looks like a nonlocal version of F3 [Eq. (3.1)].
F3 and G3 anticommute with the reflection operator R:

R S(N+1 —x )R =S(x), x =1,2, . . . , N, (2.5) [R, F, j= [R, G3)=0 . (3.8)

commutes with H, S, and S3, but anticommutes with P:

[R,H]=[R,S]=0, [R,P j =0 . (2.6)

III. HIDDEN SYMMETRIES IN THE
ONE-DIMENSIONAL AFH MODEL

It was first observed by Baxter, that the traces of the
transfer matrix T]v(A, ) in the one-dimensional XYZ model
commute for different values of the spectral parameter A, .
Expanding the logarithm of T]v(A, ) around A, =i /2 yields
"local" conservation laws, ' where only neighboring
spins are coupled. In case of the one-dimensional AFH
model, the lowest terms have the following form:

F3=+ e(x,x+ l,x+2), (3.1)

F„=g[(x,x +3)(x + l, x +2)

Therefore, the reflection operator transforms states with
momentum p into states with momentum —p. The ener-

gy eigenvalues corresponding to these states are degen-
erate. In the subspace of states with momentum p =O, m,

we can diagonalize the reflection operator R as well:

R IF. , s, s3, . . . ,p =O, rr, r, A)=r IE,s, s, 3, . . . , p

(2.7)

This property of F3 and 63 leads to certain degeneracies
of energy eigenvalues. To see this, let us consider the
zero-momentum eigenstates of H and R:

IE,s, s3,p=O, r) . (3.9)

The commutation and anticommutation rules of F3 ( G3 )

allow for two possibilities.
(a) F3 (G3) transforms reAection-symmetric eigenstates

(r = 1) of H into antisymmetric states (r = —1) and vice
versa. The corresponding eigenvalues of H are degen-
erate.

(b) F3 (G3) annihilates reliection-symmetric (antisym-
metric) eigenstates of H. Of course in this case there is
no degeneracy of eigenvalues due to reflection symmetry.

The ground state of the Heisenberg Hamiltonian is

supposed to have zero total spin, zero (n) momentum,
and to be symmetric (antisymmetric) under reflection for
N=4n, n=1, 2, 3, . . . (N=2n, n=1, 3,5, . . . ). If a
zero-momentum state, as the ground state, is nondegen-
erate, it will be annihilated by the operators F3 and 63.

This property allows us to separate the SPO sector of
the zero-spin and zero-momentum states into the subsec-
tors SP01 and SP02 of nondegenerate and twofold-
degenerate energy eigenstates. It will play an important
role in our approach for constructing the ground state of
the AFH Hamiltonian.

e( ],x~,x3x)=e,b, S,(x] )Sb(x2)S, (x3) . (3.3)

—(x,x +2)(x + l, x +3)—(x,x+2)] . (3.2)

In the definition of F4 and F3, we introduced the ab-
breviations (2.2) and

IV. SPIN-ZERO STATES

In this section, we will construct an appropriate basis
in the sector with zero total spin S=O." This construc-
tion can be performed on hypercubical lattices in any di-
mension.

We first associate to each site x on the odd lattice L

[Gk,H]=[6k, S]=0 . (3.4)

Gk ]s constructed from the spin operators S,(x ) on an or-
dered set of sites on the ring x, & x2 4 x3 (xk .-

If we expand T]v(A, ) in a power series of A. we are led to a
set of nonlocal translation-invariant operators Gk, which
commute with the AFH Hamiltonian (2.1) and the total-
spin operator S [Eq. (2.3)]:

( —1) = —1 for xEL.
in a unique way a site y on the even lattice L+,

( —1)~=+1 for y&L+ .

Each of these one-to-one mappings,

M: x EL ~yEL+,

(4.1)

(4.2)

(4.3)
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defines a state of total spin zero,

X) X2 X3

3' i 3'2 3'3
(4.4)

if we couple the spins n(x), n(y) of all pairs x,y(x) to
zero,

[x,y]=1/&2[In(x)= l, n(y)= —1 &

—In(x)= —I,n(y)=1&] .

Anderson's resonating-valence-bond (RVB}state' is a su-

perposition of such states, where the pairing is restricted
to nearest-neighbor points (x,y &. On a ring with an
even number X of sites, there are just two states with
nearest-neighbor pairings:

[xl x2][yl y21 [xl yl ][ 2 y2] [xl y2][x2 yl l

(4.6)

To see, how the Heisenberg Hamiltonian acts, we start
with the operation of the spin-coupling operators (x,y}
[cf. Eq. (2.2)] on states with all spins quantized in z direc-
tion:

(x,y)I. . . , n(x), . . . , n(y), . . . &

=[ 1+2P(x y)]l n( x), . . . , n(y), . . . & .

(4.7}

P(x,y} interchanges spins n (x) and n (y) at sites x and y.
The operator,

] 3 5 o ~ ~ 3 5 ~ ~ ~

2 4 6 ' E 2 4

0(x,y) = 1 P(x,y—),
acts on the total-spin-zero state as follows:

(4.8)

The basis of spin-zero states, defined in Eq. (4.4), is not
orthogonal and linear independent.

Note, that two spin-zero couplings between the odd
sites x, ,x2 EL and the even sites y„y2 EL+ can be ex-
pressed in terms of the basis (4.4):

0(x,y)[x,y] =2[x,y],
(x1 y2)[x1 y1][x2 y2] [x1 y2][x2 yl]

(4.9)

The conserved quantities F3 and G3 on periodic rings
[Eqs. (3.1) and (3.6)] are built from operators of the type
(3.2). Their action on the spin-zero states is found to be

4«x& x2 x3)[xi yi][x2,y2][x3,y3]=[xi,y3][x2,x3]b»,y~] —[xi x~][x3,yi][y2 y3]

4«x, ,xz, x3)[x»xz][x3,y, ]——[x»x3][x,,y3] —[x»x3][xz,y3] .
(4.10)

V. THE SP01 SECTOR OF NONDEGENERATE SPIN
AND MOMENTUM-ZERO STATES

ample for such a state:

(5.2)
In this section we will diagonalize the AFH Hamiltoni-

an for periodic rings with X=4n sites in the SP01 sector.
The latter contains the ground state.

In terms of the nearest-neighbor operators 0(x,x +1),
defined in Eq. (4.8), the Hamiltonian reads

H= ,'(N 20), 0=—g—0(x,x+1) .
x =]

(5.1)

We start from an initial state
I
1 & with zero total spin and

zero momentum. This initial state is symmetric under
reflection and is annihilated by the operators F3 and 63
[Eq. (3.1) and (3.6)]. The one-dimensional analog of the
RVB state [the sum of the two states in Eq. (4.5)] is an ex-

Application of the operator 0 on the initial state Il &

creates a new state I2 &,

I2&= g P(x,x+2)il &,
x =2,4,

(5.3)

which is obtained from Il & by the permutations
P (x,x +2 ) of even sites.

A graphic representation of these states, known in the
literature as "valence-bond graphs, "' is quite instructive.
We connect each pair of even-odd sites with a spin-zero
coupling using a straight line. Then the initial state (5.2)
only contains nearest-neighbor spin-zero couplings, as
shown in Fig. 1(a). The second state (5.3) can be seen
in Fig. 1(b). It contains one new "spin-coupling

3 4 5 6 7 8
1 2 3

'1 2 3 4 1' 2 3 4 S 6 1 2 3 4 S 6

'l 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

FIG. 1. Graphical representation of spin-zero couplings in
the three states of Eq. {5.4) for N =8.

FIG. 2. Spin-zero couplings, as they appear in the new states
generated by successive application of the operator 0 on the ini-
tial state (5.2).
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TABLE I. Energy eigenvalues (divided by the number of sites Ã) in the SP01 sector for a periodic
ring with X=16. The corresponding eigenstates are nondegenerate and symmetric under the reAection
operator R.
—0.892 787 0
—0.698 9113
—0.601 780 5
—0.570 723 5
—0.496 243 7
—0.486 390 6
—0.439 402 8

—0.427 478 9
—0.351 035 7
—0.347 946 1

—0.292 474 5
—0.281 5944
—0.233 353 3
—0.211 379 4

—0.188 502 I
—0.181 594 6
—0.132 980 8
—0.129 844 6
—0.108 335 0
—0.080 928 9
—0.061 323 3

—0.032 405 0
0.008 665 6
0.009 1934
0.027 506 8

0.092 624 6
0.109061 3

0.119779 8

0.124 9102

0.209 418 2
0.216 838 3
0.246 919 1

0.327 402 7
0.360 702 9
0.394 393 0

1 3 5 7
12&= 4 2 6 8

+translations, (5.4)

1 3 5 7
13&= 4 2 8 6 +trailslations .

Following the rules of Eq. (4.9), the action of 0 on these
three states is found to be

o1 1 & =812&+12&,

ol2& =811&+812&+213&,

ol3 & =41»+212&+413& .

(5.5)

Eigenvalues and right-handed eigenstates of 0 in the
SP01 sector turn out to be

olx& =six&,

I i
= 11.3022,

I
k i &

= 11 & +0.36312 & +0.09913&,

A,2=5.45222 lx2&=11&—0. 18912&—0.2613&,

X3=3.245 59, I
A,, &

= 11 & + 1.82612 &
—4.8413 & .

(5.6)

According to Eq. (5.1), the largest eigenvalue A, is related

configuration. "
We now proceed and apply 0 successively to 12& and

all new states. In this way more and more complicated
coupling configurations are created. Some of them are
shown in Fig. 2.

For illustration, let us consider a ring with eight sites,
which has been treated already by Hulthen. " In this
case, there are only three linear-independent states,
which span the SP01 sector:

1 3 5 7 1 3 5 7

2 4 6 8 8 2 4 6

to the ground-state energy per site:

Eo/8=1/2(1 —1/4A, i)= —0.912775 . (5.7)

11, r = —1)

Note, that the corresponding ground-state vector is not a
pure RVB-like state with only nearest-neighbor spin-zero
couplings. The more complicated spin-zero-coupling
configurations, as they appear in the states 12& and 13&

[cf. Figs. 1(a)—1(c)],contribute as well.
In Table I, we present the energy eigenvalues of the

AFH Hamiltonian in the SP01 sector for a periodic ring
with %=16 sites. They are obtained by diagonalizing a
matrix of dimension D(SP01), which is just the dimen-
sion of the SP01 sector. It is quite instructive to see how
D(SP01) increases with the number of sites N, which can
be seen from Table II. This number tells us what effort is
needed to compute the ground state for large rings. For
comparison, we also quote the dimension D(SP02) of the
second sector of twofold-degenerate energy eigenstates
with zero total spin and momentum, which will be inves-
tigated in the next section. As explained at the end of
Sec. III, one of these states is symmetric, the other one
antisymmetric under the reflection operator R. There-
fore, D(SP02) is just twice the number of states with zero
spin and momentum, which are antisymmetric under R,
whereas D(SP01) is the difference of the numbers of sym-
metric and antisymmetric states. We get these numbers
by simply counting the R symmetric and antisymmetric
valence-bond graphs (cf. Fig. 1 for N =8 and Fig. 3 for
N =12). Note, that for large N, D(SP02) increases ap-
proximately as O(2 ), whereas the increase of D(SP01)
seems to be much slower:

D(SP01)=o(2 ) .

Previous computations of the ground state' were per-

TABLE II. The dimensions of the sectors SP01 and SP02
and the number of states with zero momentum and zero total
spin in the z direction for periodic rings with %=8, . . . , 24.
The numbers marked with an asterix were computed by means
of the approximate formula of Ref. 14.

1 2 3 4 5 6

l2, r= -1&

7 8 9 10 11 12 7 8 9 10 11 12

8 12 16 20
1 2 3 0 5 6 7 8 9 10 '11 12 7 8 9 10 11 12

D (SP01)
D (SP02)
D(s3 =0, p =0)

10

44

35
60

415

126
728

4620*

462
8252

56 366
FIG. 3. Spin-zero couplings in the r= —1 states (6.1) for

X= 12.
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formed in the space of states with zero total spin in the z
direction and zero momentum. The dimension of this
space is given in the fourth line of Table II.

Finally, it should be mentioned that the sectors with
zero total spin, but nonvanishing momentum, can be
treated in a completely analogous way. The only
difference is that we start from an initial state, which
is a momentum eigenstate with p =2~n /N,
n =0, 1,2, . . . , N —1.

VI. THE SP02 SECTOR OF DEGENERATE SPIN
AND MOMENTUM-ZERO STATES

For periodic rings with N=4n sites, states with zero
momentum and total spin, which are antisymmetric un-
der the reflection operator R [Eq. (2.5)], appear first for
N = 12. In this case, we have two such states, which look
in the graphic representation of the preceding section as
shown in Fig. 3:

1 3 5 7 9 11 1 3 5 7 9 11

2 4 10 8 12 6 2 4 8 12 10 +translations,

1 3 5 7 9 11 1 3 5 7 9 11

6 4 2 10 8 12 6 4 2 8 12 10 +translations.

The action of the operator 0 [Eq. (5.1)] on these states is found to be

O~ l, r = —1& =8i 1,r = —1 &+ ~2, r = —1 &,

0~2, r = —1& =2~1, r = —1& +5~2, r = —1& .

Eigenvalues and eigenvectors of 0 in this two-dimensional subspace turn out to be

o x&=x~x&,

Ai= 1/2(13+&17), ~A i &
=

i 1,r = —1&+—„(&17—3)~2, r = —1 &,

~2=-,'(13—&17), I~2&=11,r= —1& —
—,
' &(» +3l)2, r= —1& .

(6.1)

(6.2)

(6.3)

The operator F3 transforms these eigenstates of the AFH
Hamiltonian into states

I

states in the sectors SP01 and SP02. The expectation
values of the spin-spin correlators,

I~i, r= —1&~l~„r=l&, j=1,2, (6.4) C(x)= g S&(y)S3(p+x) (7.1)

which are symmetric under the reQection operator R.
This means that the energy eigenvalues,

E, =6—
A, (6.5)

are twofold degenerate, one eigenstate is symmetric and
the other one antisymmetric. In Table III we present the
energy eigenvalues in the SP02 sector for a periodic ring
with 16 sites. The connection (6.4) between symmetric
and antisymmetric eigenstates has been verified explicitly.

y=1

in the lower-energy eigenstates are of special interest.
In Fig. 4, we compare the correlators in the lowest-

and highest-energy eigenstates of the SP01 and SP02 sec-
tors. Note, that the correlators for degenerate energy
eigenstates are identical for separations x =2. This
feature is not yet understood. For states with zero total
spin, there exists an obvious sum rule for spin-spin corre-
lators, which has been checked explicitly.

VII. SPIN-SPIN CORRELATIONS IN THE SPO SECTOR

The approach outlined in Secs. V and VI provides us
with the complete information on all the energy eigen-

VIII. CONCLUSIONS AND PERSPECTIVES

In this paper we have presented a new approach for
computing the energy eigenstates of the one-dimensional

TABLE III. Energy eigenvalues (divided by the number of sites) in the SP02 sector for N = 16. The
corresponding eigenstates are twofold degenerate; one state is symmetric, and the other one antisym-
metric under R.
—0.456 719 1
—0.401 616 5
—0.395 658 1
—0.345 374 2
—0.277 012 1
—0.276 459 1

—0.239 107 9
—0.202 254 2
—0.189925 3
—0.151 483 6
—0.147 401 7
—0.135091 6

—0.129 040 3
—0.100098 3
—0.077 596 6
—0.059 064 4
—0.050 855 1
—0.037 049 5

—0.035 953 6
0.001 207 3
0.039 863 5

0.044 498 6
0.053 952 2
0.056 041 3

0.077 254 2
0.136470 6
0.164 919 8

0.220 455 9
0.220 589 5

0.317 508 1
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AFH model. So far, we have only exploited the sectors
SP01 and SP02 of nondegenerate and twofold-degenerate
energy eigenstates with zero total spin and momentum
for periodic rings with %=8, 12, and 16 sites. Extensions
to larger rings and to the total-spin-zero sectors with
nonvanishing momentum are straightforward.

Our approach is based on three ingredients: (1) the
"obvious" symmetries of Sec. II, (2) the hidden conserva-
tion laws (3.1) and (3.6) for the operators F3 and 63, and

(3) the fact, that zero-momentum states with spin-zero
couplings between nearest-neighbor sites ("RVB"-like
states) are annihilated by the conserved quantities F3 and

G3. It is just this property that reduces the dimension of
the SP01 sector.

The obvious conservation laws hold in two and more
dimensions as well. So far the approach is applicable in
these cases too. However, we do not yet know, whether
two-dimensional analogs of the conserved operators F3

C

v 0.4
0.20o

t'~ —0.2

C
l —0.4
~ -0.6

I I

3 4 5 6
distance in lattice units

(a)

o 0.6
0.4
0.2Qr

t

o 0
0
C
'c —0.2I —0.4
C
a —0.6-

0
I I I I

3 4 5 6
distance in lattice units

o 0.6
0.4
0.2

Qo 0
C'~ -0.2
V) -0 4C
Nt:L —0.6

I l I I

3 4 5 6

distance in lattice units

(c)

06
a 0.4

0.2
Oo
t'~ —cj.2
I 0
~ -O.6

I I

3 4 5 6

distance in lattice units

(d)

FIG. 4, Spin-spin correlators vs distance in lattice units in the lowest- and highest-energy eigenstates of the SPOl and SP02 sec-
tors. Open and solid squares in parts (c) and (d) denote correlators in R-symmetric and -antisymmetric states, respectively.
E/N = —0.892 787, 0.394 393, —0.456 719, and 0.317 508 for (a), (b), (c), and (d), respectively.
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and 63 do exist. One can attack this problem analytical-
ly (searching for conserved quantities by trial and error)
and numerically by computing the energy-eigenvalue
spectrum on small systems with high precision and look-
ing for "nontrivial" degeneracies. The system should not
be too small, since de gener acies might appear only
beyond a certain size. Indeed, that is what happened for
periodic rings with N =4n sites: Twofold degenerate
eigenstates in the SPO sector appeared first for N = 12.

APPENDIX: PROOF OF THE
HIGHER CONSERVATION LAWS

We follow standard inverse-scattering transform
methods and start with the transfer matrix T~(t(, ), which
is defined by the ordered product,

T~(A)=L. , (A, )L 2(A, ) LN(A, ), (A 1)

where the operators Lz(A. ) act in (C ) C and are given
by

L„(A)=El+i 1(1)gIl 1(n —1)S, (n)o, 1(n +1) l(N) . (A2)

1(x), S,(x), and x =1,2, . . . , n, . . . , N are 2X2 unit and
spin matrices at the sites x. The Pauli matrices cr, act in
a two-dimensional subsidiary space. The operators L„
and T~ obey the following commutation rules: [trT~(A, ), trT~(p)] =0, (A5)

ty of tr[ T„(A,) ] for different values of the spectral param-
eter,

R (A. —p)L„(k)L„(p) =L„(p)L„(A. )R (A, —p),
R(A, —p)T~(A, )T~(p)= Ttv(p) Ttv(A)R(A, —p),
where R denotes a 4 X4 matrix of the form

a 0 0 0
0 b c 0

R(~)=
O b O

0 0 0 a

with

(A3)

(A4)

where tr means the trace in the two-dimensional subsidi-
ary space. This scheme is directly applicable to the AFH
Hamiltonian, which is related to T~(A, ) via

(A6)

We may therefore expand trT~(A, ) into a power series in

(A7)

a=1, b=, c=1

A+i I+i
The direct products in Eq. (A3) connect the Pauli ma-
trices in the two subsidiary spaces. The matrix R acts in
this product space. Equations (A3) and (A4) imply that
R (A, ) solves the Yang-Baxter equations.

More remarkable, for our purpose, is the commutativi-

The operators Gk, defined in Eq. (3.4) appear as
coefficients in this expansion. By construction, they com-
mute with the AFH Hamiltonian, which completes the
proof of the nonlocal conservation laws. The local con-
servation laws (3.1) and (3.2) follow from the higher-order
derivatives of the logarithm of the transfer matrix [cf. Eq.
(A6)]. We found a more direct access to these conserva-
tion laws by means of generalized Jacobi identities.

'D. Vaknin et al. , Phys. Rev. Lett. 58, 2802 {1987);G. Shirane
et al. , ibid. 59, 1613 {1987).

~J. G. Bednorz and K. A. Miiller, Z. Phys. B 64, 188 (1986); C.
W, Chu et al. , Phys. Rev. Lett. 58, 405 (1987).

P. W. Anderson, Science 235, 1196 (1987); S. Chakravarty, B.
Halperin, and D. Nelson, Phys. Rev. Lett. 60, 1057 (1988).

4J. Oitmaa and D. D. Betts, Can. J. Phys. 56, 897 (1978).
~E. Dagotto and A. Moreo, Phys. Rev. B 38, 5087 (1989).
T. Barnes and E. Swanson, Phys. Rev. B 37, 9405 (1988).
R. J. Baxter, Ann. Phys. (N.Y.) 70, 323 (1972).
L. D. Faddeev, in Structural Elements in Particle Physics and

Statistical Mechanics, edited by J. Honerkamp, K.
Pohlmeyer, and H. Romer (Plenum, New York, 1983); P. P.
Kulish and E. K. Sklyanin, in Proceedings of the Internatt onai'

Symposium on Integrable Quantum Fields, Vol. 151 of Lec
ture Notes in Physics, edited by C. Montonen and J. Hietarin-
ta (Springer, New York, 1982); M. Wadati, T. Deguchi, and
Y. Akutsu, Phys. Rep. 180, 247 (1989).

B. Sriram Shastry, Phys. Rev. Lett. 56, 1529 (1986); H. Grosse,
Lett. Math. Phys. 18, 151 (1989).

' M. Liischer, Nucl. Phys. B117,475 (1976).
' L. Hulthen, Ark. Mat. Astron. Fys. 26A, N11 (1938)~

P. W. Anderson, Mater. Res. Bull. 8, 153 (1973); S. Kivelson,
D. Rokhsar, and J. Sethna, Phys. Rev. B 35, 8865 (1987).

' S. Ramasesha and Z. Soos, Solid State Commun. 46, 509
(1983);Phys. Rev. B 29, 5410 (1984).
E. Gagliano, E. Dagotto, A. Moreo, and F. Alcaraz, Phys.
Rev. B 35, 1677 {1986).


