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The single-band Hubbard model (both with and without first-neighbor interactions) is studied by
exact diagonalization on several one- and two-dimensional clusters, ranging from four to nine sites,
including rings and arrangements of squares. Occupancies include the half-filled band (one electron
per site) and configurations with one and two holes in the half-filled band. Ground-state properties
are determined for a wide range of parameters. We discuss the phase diagram in the (U, V) plane
and consider spin, charge, and pairing correlations. The binding of a pair of holes is investigated.
Circumstances in which binding and pairing are enhanced by first-neighbor interactions are de-

scribed.

I. INTRODUCTION

In this paper, we report the results of investigations of
the “one-band” Hubbard model defined by the Hamil-
tonian

H=t3clc;otUSnyn, +V '3 nn; . (1
ijo i (ij)

We use a basis of localized states with one orbital per site.
The operator ¢, (cfa) destroys (creates) an electron of
spin o on site j. The quantity ¢ is the transfer integral.
The sum connects nearest-neighbor sites. The second
term represents the Coulomb repulsion between electrons
on the same site. The first two terms give the (ordinary)
Hubbard model; inclusion of the third term, which de-
scribes the Coulomb interaction between electrons on
nearest-neighbor sites, produces the extended model.

This Hamiltonian has been of interest in the develop-
ment of one-dimensional (1D) models of organic semicon-
ductors.!™? (It would be beyond the scope of this paper
to review this specific application here.) Our studies con-
cern the properties of the ground state of H, which we
find by exact diagonalization, considering small clusters
of various geometries for wide ranges of parameters and
of electron occupancies.

Important general features of the phase diagram for
1D extended Hubbard model when there is one electron
per site (half-filled band) are generally accepted:>~’ (1) In
the range U,V >0;0< ¥V < U /2 antiferromagnetic corre-
lations are important, and the ground state is often de-
scribed as a spin-density wave (SDW). However, (2), for
V > U/2, charge correlations dominate and the ground
state is described as a charge-density wave (CDW).
Strong charge correlations characterize the system even
when U is negative as long as V is positive. There has
been some controversy concerning details of the transi-
tion between SDW and CDW regimes: Is it first or
second order and does it occur exactly on the line
U =2V, or can there be some displacement? It is also
generally agreed (3) that in the third quadrant of the
(U, V) plane in which U <0 and V <0, pairing correla-
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tions (superconductivity) are important close to the nega-
tive U axis; whereas for large negative V, a condensed
state will be formed in which the particles are clustered
together in some region of physical space. A simple ar-
gument can be given to determine the boundaries of this
region. (4) In the fourth quadrant (U >0, V <0) SDW
correlations dominate as long as | V] is not too large, but
for sufficiently negative ¥V, one encounters the condensed
state.

The discovery of high-temperature superconductivity
in cuprates has attracted much attention to the Hubbard
model in general, with special emphasis on the 2D square
lattice. Topics of major interest include the existence of
long-range antiferromagnetic order in the ground state of
the half-filled band, and the effect of holes on magnetic
correlations. Of course, one would particularly like to
know whether the ground state can be superconducting.
We cannot attempt to review or even simply reference
the formidable literature that has developed on this topic
(but see White er al.® for recent “state of the art” numer-
ical results). Rather less attention has been devoted to
the extended model in two dimensions, although there
were early suggestions that some high-7, materials might
be close to CDW instabilities.’ ™! We note results of a
quantum Monte Carlo calculation'? which gives results
for the square lattice in the half-filled band case which
are quite similar to those obtained previously for the 1D
case except that the transition between SDW and CDW
states occurs close to the line U =4V rather than U =2V.

Although the early proposals that a soft phonon mode
associated with a near CDW instability might be respon-
sible for high-T, superconductivity have found little sup-
port, it remains interesting to examine the effects of the
interaction between charges on neighboring sites on a
system in which there are some holes in a half-filled band.
This interaction does play a significant role in some
theories of superconductivity.'*~1°

The exact diagonalization calculations we describe in
this paper involve systems of four, six, eight, and nine
sites, as illustrated in Fig. 1. The study of systems with
different numbers and geometrical arrangements of sites
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FIG. 1. Clusters considered in this paper: (a) square, (b) hex-
agon, (c) two squares, (d) octagon, (e) four squares.

helps one to understand which results are characteristic
of the model in general and which are sensitive to struc-
ture. We thought it would be interesting to see whether
typical differences between large one- and two-
dimensional systems (for example, the existence of a sa-
turated ferromagnetic ground state as U— « for one
hole in an otherwise half-filled band) would be apparent
in small clusters. However, the greatest emphasis is
placed on results for the two- and four-square systems of
Figs. 1(c) and 1(e) (occasionally referred to as 2X3 and
3X3). We consider electron occupancies corresponding
to the half-filled band, and this with one or two holes.

The dimension of the Hamiltonian matrix increases
very rapidly with the number of sites and the number of
particles. For example, the number of states in the sub-
space with S, =0 for 6 particles on 6 sites is 400; for 8
particles on 8 sites, 4900; for 9 on 9 sites, 15 876; for 16
on 16, 16563 690, and so on. The growth in size of the
Hamiltonian matrix limits the size of the cluster that can
be investigated by exact diagonalization. Of course, one
can employ improved algorithms (e.g., the Lanczos
method), or use spatial and spin symmetries which reduce
the size of the matrix whose eigenvalues have to be deter-
mined, but cluster size limitations are always a problem
for calculations of this type. Considerably larger clusters
can be studied if one forbids the double occupancy of any
site. Then one must consider a different Hamiltonian—
the so-called t-J model. We have not done this, as it ap-
pears that the #-J model gives results which represent the
underlying Hubbard model accurately only for fairly
large positive U (say U > 10).

Instead of considering the largest possible clusters, we
have attempted instead to cover a large region of the U, V
parameter space for those we considered. This requires a
large number of calculations, so that the time required
for a single one has to be limited. We think that the
reader will find some of the results concerning pairing
and spin coupling, for the case in which these are two
holes in a half-filled band, to be both surprising and
unusually interesting. And, as suggested above, we dis-
cuss the dependence of the results on the assumed
geometry.

This paper is organized as follows: In the next section
we describe our procedures and give definitions for the
specific correlation functions that we calculate. Our re-
sults are presented in Sec. III. Section III A contains
some discussion of the ordinary one-band Hubbard model
(with U >0). The extended model is described in Sec.
III B. Our conclusions are summarized briefly in Sec. IV.

II. PROCEDURE

We consider the Hamiltonian of Eq. (1) on a basis of lo-
calized states, i.e., states which are eigenstates of the n;.
For convenience, one of the parameters of Eq. (1) can be
set equal to 1 in magnitude. We take this to be ¢. This
means that the parameters and energies of the Hamiltoni-
an are in effect U/|t], V/|t|, and E /|¢|. In addition, the
systems we consider in this paper are such that the ener-
gies are independent of the sign of ¢, and we may thus
consider ¢ to be positive. Interchanging electrons and
holes (c,-;:»b,);) merely displaces the energies by a con-
stant, which we ignore.

In this work, we will consider the ground-state proper-
ties of the system only and do not address questions con-
cerning finite-temperature behavior. The clusters are
treated as free: periodic boundary conditions are not im-
posed. (For some of the clusters considered we found
that imposition of periodic boundary conditions pro-
duced severe distortions in the spectrum of single-particle
states.) The properties of the system will be described on
the basis of correlation functions and related structure
factors. The correlation functions are spin

L;=4{Gl(n;y—n; )nj;—n; )IG) @
and charge
D‘.j=(G|n,~n,-|G> ’ 3

in which |G ) is the ground-state vector. We note that
the D;; satisfy the sum rule

3 Dy=n;, @)
ij
where n, is the number of electrons in the system. We
also consider pairing-correlation functions P;;,
Py ;;=(Gl0,0]|G) . (5)

Hirsch'® has defined a set of operators O:
local singlet

0;=citciy » (6a)
extended singlet
1
0i=7§_(CiTci+xl—Cilci+XT) s (6b)
triplet
0, =¢i1Citx1 » (6¢)

triplet antiparallel

1
0,«=7—2-"(C,'ch+xl+cilci+xT) . (6d)
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Our calculations will emphasize local singlet pairing.
It has to be observed that, in the presence of repulsive in-
teractions, this is not necessarily the most significant.
However, up to this point, our calculations have not
shown convincing evidence for the importance of other
pairings.

Some confusion can arise because the pairing-
correlation functions defined above may not be zero in
the case of a noninteracting electron system. A possible
way to correct for this is to subtract a single-particle con-
tribution defined as that obtained by factoring P;;. Con-
sider the corrected local singlet pairing functlon PL ij
defined by

PIS =<G|C,-TC,-1CITJC;1 'G)
—{Gley1c)11G ) {Gle; ] 1G) ©)

Note that the local singlet pairing involves the transfer
of an “up-down” electron pair between two sites. In the
case i = j, involving the same site,

PE:=(Gln;n;||G)—{Gln;;|GY{Gln;)IG) . (8

This function clearly contains spin and charge fluctuation
contributions. In the simple case in which a half-filled
“band” (one electron per site) is considered and all the
sites are identical, then

PLi=(Gln;n; |G)—1 . ©9)

This measures the double-occupancy probability with
respect to that in a uniform system. Hence, we expect

C —_1
PL,ii_ 3

in the large-U limit of the Hubbard model and
P L,ii =0 ’

as U—0. If U is negative, the double occupancy in-
creases and P,S ij becomes positive. However, the
negative-U Hubbard model is known to be superconduct-
ing. Hence, we do not think it is desirable to exclude the
one-site pairing term when the possibility of supercon-
ductivity is considered. However, if single-particle
correction is not included, PE ij will be positive and will
increase as U decreases (U >0). If misinterpreted, an in-
correct prediction of superconductivity for U >0 may be
made.

As the number of sites increases, there are many
different correlation functions to be considered, and it be-
comes convenient to introduce structure factors. In the
case of spin, we have, on introducing a wave vector q,

=1
S,(q) N 121 e
Similar structure factors are defined for density

=1
S.(q) N Izj
and pairing. We consider the local singlet

=1
Si@=+ e

ij

iq(R; R)L . (10)

iq:(R; R)

'D; (1n

ij

iq-(R,—Rj)PL,U ’ (12)

and the single-particle corrected local singlet

¢ :i
Sf(q) Nizj

e Rpe (13)

If the geometry of the system is such that all sites are
equivalent, the 1/N and one sum may be deleted. In a
small system, only a limited set of wave vectors q have
any significance. We consider only q=0 for the pairing
correlations but for spin and charge structure factors, we
consider alternating cases; q= in one dimension or
q=(m,7) in two dimensions. Some authors emphasize
the possibility of more complicated g-dependent struc-
ture factors in superconductivity such as “d wave.”?

If the nearest-neighbor interaction ¥ is sufficiently neg-
ative, a condensed or droplet state will be formed. The
particles occupy the smallest possible number of contigu-
ous sites. In the case of a half-filled one-dimensional sys-
tem in which all sites are identical by symmetry, Lin and
Hirsch® proposed to use a structure factor

N
S(Q,,,)=—Zexp(tQ ‘R) S (D ;—n ) n; 4 ))

ji=1
(14)

in which Q,, =2w/N. We believe it may be simpler for
the small systems of interest here which are not necessari-
ly half-filled, to use the parameter

M

= 2

j==M

n,

Di,i+j_ W

2
] ) (15a)

in which n, is the number of particles (“electrons”) in the
system, N is the total number of sites, and
1

M=
2

ne
= -1

) ) (15b)

if the quantity on the right is an integer, otherwise M is
the next integer larger than that quantity. A positive
value of C indicates condensation. In a system in which
the sites are not geometrically equivalent, C should be
redefined after determining the sites on which condensa-
tion occurs.

In the case of systems of less than eight sites, we used a
program that actually computed all the eigenvalues and
eigenvectors of H. For larger (eight- and nine-site) sys-
tems, we used a Lanczos algorithm program which
makes proper allowance for the possibility of degenera-
cies (often realized).!” In this case we obtained typically
the lowest four eigenvalues and eigenvectors for the
lowest two spin states.

III. RESULTS

A. Simple Hubbard model

We begin with some results for the simple Hubbard
model [V =0, in Eq. (1)] for positive U. Although this
model has been extensively studied through Monte Carlo
calculations, the present results are interesting in that we
consider different geometries, and there is no limitation
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on the size of U /t.

In Fig. 2 we show, for the half-filled case, our results
for the antiferromagnetic spin structure factor S ().
The following points should be noted: (1) The structural
factor increases with the size of the system; one expects
that S;(7)~N. (2) In the case of the two six-site systems
shown, S () is slightly larger for two squares than for
the hexagon. (3) The structure factor increases with U in
a qualitatively similar fashion for all systems; it is close to
its large-U limit for U/t =20. This value may be regard-
ed, roughly, as defining the large-U limit.

The average double occupancy in the ground state,
scaled by the square of the number of electrons in the sys-
tem

d2=£22<"i1”i1) ) (16)
he i
is shown in Fig. 3 for the half-filled band for three of the
systems studied. It is obvious that the same general ten-
dencies are exhibited by all systems. For U larger than
about 10, the dependence is essentially ¢ /U>. In Fig. 4,
d, is plotted as a function of the number of holes N, for
the four-square system. Notice that d, is almost indepen-
dent of N, up to N, =4. The one-hole systems behave
quite similarly to the half-filled band, except that those
which become ferromagnetic (have a high-spin ground
state) at large U, have zero double occupancy for U larger
than the critical value for ferromagnetism.

Most of the systems considered have a maximum spin
ground state in the large-U limit when there is one hole in
a half-filled band. We give in Table I the critical value of
the U/t for the maximum spin state for several systems
(some of these results are taken from our previous publi-
cations). !%1° However, the ground state for five electrons
in a hexagon is not ferromagnetic for any U /t.?° These
results are qualitatively consistent with Nagaoka’s
theorem,?! which, however, explicitly applies only to
infinite systems. In addition, Riera and Young?? have
found that the ground state is ferromagnetic with max-
imum spin for infinite U in V8XV'8, V10X V10, and
4 X 4 square lattice clusters with one hole.

Sglm)
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FIG. 2. Ground-state antiferromagnetic spin structure factor
S;(7). Open squares, hexagon; solid triangles, two squares;
crosses, octagon; solid circles, four squares.
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FIG. 3. The average double occupancy, scaled by the square
of the number of electrons in the system, is shown for the half-
filled band: squares, two square system; triangles, octagon; solid
circles, four squares. The inset shows the same quantity (four
squares only) on a linear scale.
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FIG. 4. The dependence of the scaled averaged double occu-
pancy [Eq. (16)], on the number of holes for the four-square sys-
tem for several values of U.
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TABLE 1. Critical value of U, /t for a maximum spin ground
state in the case of one hole in the half-filled band. Note that
the maximum spin state is never the ground state for a hexagon
or an octagon (but the latter has an intermediate spin, S =%,

ground state for sufficiently large U).

U/t
Square 13
Octahedron 11
Two squares 52
Cube 39.5
Four squares 68

A characteristic feature of the Hubbard model in all
geometries is the formation of local moments when U /¢
is large. This occurs because, by aligning the spins on
each site, the system avoids the large repulsive energy
that would otherwise occur when electrons of opposite
spin are on the same site. Thus, for U/t > 10 (roughly),
the local moment, normalized by the number of electrons
in the system (and averaged over sites if these are not all
equivalent),

m=4(S2)N/n, 17

is nearly independent of geometry and occupancy (n,).
The limiting value, 1, is approached smoothly. On the
other hand, the coupling between moments on different
sites depends strongly on geometry and occupancy, and
has been the subject of much recent interest.

Figure 5 shows the dependence of the antiferromagnet-
ic structure factor S;(m) for the four-square system of
Fig. 1(e) on U/t and the number of holes in the system.
The curve for zero holes is reproduced from Fig. 2 for
comparison purposes. One observes the significant
reduction in S;(7) when one or two holes are present in
the system. This reduction is much larger than can be
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FIG. 5. Dependence of the antiferromagnetic structure fac-
tor S;(7) on U/t for the four-square system of Fig. 1(e). The
curves are labeled by the number of holes in a half-filled band.
The lower two curves are terminated at the value of U/t such
that the ground state is not the low-spin state.

accounted for according to Eq. (17), and indicates the
reduction of the coupling between sites, i.e., the reduction
of magnetic order. The curves for one- and two-hole sys-
tems are terminated at the value of U/t at which the spin
of the ground state increases beyond the lowest possible
value. This occurs for the two-hole system (as well as for
the one-hole case noted earlier). The two-hole ground
state has § =3 for 37< U/t <85 and § =3 for U/t > 85.
However, Riera and Young?? found a singlet ground state
as U— « for the square clusters they considered includ-
ing 4X4. Evidently the existence of a magnetic ground
state at large U for two holes is sensitive to the precise
size and geometry considered. It should also be noted
that in the 3X3 geometry the single-hole system has a
triplet ground state for small U (0< U/t <2.8).

Figure 6 shows first- and second-neighbor spin-
correlation functions for a ring of eight sites (octagon) for
the half-filled band and for two holes in a half-filled band.
In the half-filled case at large U /¢, the second-neighbor
correlation function is in magnitude, 43% of the first-
neighbor function and of opposite sign. In the case of
two holes, the first-neighbor correlation function is, for
large U/t, 52% of that for the half-filled band, but the
second-neighbor function has only 23% of the magnitude
of the half-filled band and is of opposite sign. Magnetic
correlations are thus greatly reduced in strength beyond
first neighbors and are not describable in terms of alter-
nating T and | spins.

The geometric simplicity of the octagon makes possible
a simple interpretation of the spin correlations in the
one-hole case when U is fairly large but the ground state
still has § =. Each site has } of a single electronic mo-
ment. This local moment is almost exactly compensated
by negative spin correlation on the two nearest-
neighboring sites, these functions being close to (—1) of
the single-site moment.

We now turn to the question of the binding of two

os}
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ay O = —— AL S
04t
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I

FIG. 6. Comparison of (4 X ) first-neighbor (solid curves) and
second-neighbor spin-correlation functions (dashed lines) for an
octagonal cluster. Curves are labeled by the number of holes in
the ‘“half-filled band.”
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holes. This is described in terms of the quantity

Ez=E(0)—2E(1)+E(2), (18a)

in which E (0) is the ground-state energy of the half-filled
band, E (1) refers to one hole in the half-filled band, and
E(2) to two holes. A negative value of Ej is taken to in-
dicate binding. This quantity has been investigated by
Riera and Young for the simple one-band Hubbard mod-
el for an eight-site cluster.?> They found binding for
small to moderate U for this system. A recent preprint
reports binding for two holes in a 4X4 lattice for
o<U<72*

Our results do not show binding for most, but not all,
of the clusters we have considered. For example, binding
is also not found for the two-square systems of Fig. 1(c),
or for the four-square system [Fig. 1(e)], but weak binding
is found for the octagon. Our results for the four-square
system and the octagon are shown in Fig. 7. We have
also considered quantities

Ep;=E(0)+E(3)—E(1)—E(2) (18b)

and

Ep,=E(0)—2E(2)+E(4) . (18¢)

The first would be negative if a three-hole cluster were to
be stable against a two-hole cluster and a single hole; the
second if two two-hole clusters would bind. In fact, these
are strongly positive for the simple Hubbard model in the
cases we considered, but some regions where they are
negative occur for the extended Hubbard model. An ex-
ample will be shown below.

The presence or absence of binding of a pair of holes is
not a general characteristic of the Hubbard Hamiltonian:
its presence or absence depends on the geometry of the
physical system. It turns out that binding is strongly
influenced by the presence of the first-neighbor interac-
tion ¥V in the Hamiltonian. We will discuss this below.

The single-band Hubbard Hamiltonian can also be con-
sidered for negative U. An on-site attraction replaces

0.20

0.0

BINDING ENERGY Eg/t

FIG. 7. The binding energy for two holes [Eq. (18)] is shown
for the four-square system of Fig. 1(e) (solid line) and for the oc-
tagon (dashed line).

repulsion. Anderson®® argued that such a description
might be appropriate for some defects in semiconductors.
In the case of negative U, the Hubbard Hamiltonian leads
to pairing and to superconductivity.?® This superconduc-
tivity is of the BCS type for |U| small, and goes over to
that resulting from the Bose condensation of pairs (which
exist above T,) when |U| is large.?’ It has been argued
that cuprate superconductors may be negative-U sys-
tems. 28

Scarlettar et al. have discussed the phase diagram for
the negative-U Hubbard model on a (2D) square lattice.?
They find that the ground state at half-filling shows both
superconducting and charge-density-wave order, and that
away from half-filling there is a transition at a finite tem-
perature into a superconducting state.

Our results show the coexistence of pairing and CDW
correlations for negative U for all of the systems con-
sidered. An example of this is shown in Fig. 8 where we
plot the single-particle local singlet pairing structure fac-
tor and the charge structure factor for four electrons in
the two-square system of Fig. 1(c). We have subtracted
from the charge structure factor the value for nonin-
teracting electrons (U =0) in the same system so both
curves pass through the origin. The results show the
enhancement of both singlet and pairing correlations for
negative U. We will return to the subjects of pairing and
binding below in connection with our discussion of the
extended model.

B. Extended Hubbard model

Because much of the work on the extended Hubbard
model has been concerned with the half-filled band situa-

Structure Factor
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N\
N\
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N\
\
\\
N U

1 1 Po—

-8 -4 Qe 4 8
r-0.5

FIG. 8. The corrected local singlet pairing structure factor
(solid line) and the charge structure factor (from which the
value for U =0 has been subtracted) (dashed line) are shown for
the two-square system of Fig. 1(c).
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tion in a one-dimensional system, we begin our considera-
tions of the effects of the first-neighbor interaction by
showing results for six electrons in a six-site hexagonal
system in Fig. 9. This system exhibits all of the features
mentioned in the Introduction. To show this effectively,
we have plotted the spin, charge, and singlet pairing
structure factors, and the condensation parameter as a
function of angle 8,

f=tan" (U /V),
going around an ellipse defined by
U?+4V?i=a?.

We have chosen to associate U with 2V in this figure be-
cause, qualitatively, one thinks of V as twice as effective
as U in determining the properties of one-dimensional
systems. We chose a =8¢ in order to describe a system
with reasonably strong interactions, but not in a strong-
interaction limit.

Specifically, the system shows the expected transition
from spin-density-wave to charge-density-wave behavior
in the first quadrant for V slightly greater than U /2.
(This is also true for the octagon.) The CDW structure
factor is dominant through the second quadrant. Pairing
is important in a small region in the third quadrant close
to the negative-U axis. It should be noted that singlet
pairing is slightly enhanced by a weak attractive first-
neighbor interaction: the maximum of the pairing struc-
ture factor as ¥ varies occurs just below, not on, the
negative-U axis. As V becomes more negative, a con-
densed state is formed which persists into the fourth qua-
drant. However, as the magnitude of the negative V de-

SOW cow

CONDENSED ‘ Sow

0wo-po

60

Structure Factores

FIG. 9. The charge structure factor (solid line) S.(7), (4X)
spin structure factor (dashed line), local singlet pairing structure
factor (dashed line with circles) Sp(0), and condensation param-
eter (dashed line with +) are shown for the six electrons in a
hexagon. Quantities are plotted as functions of angle 8 around
an ellipse U?+4V?=64¢2 (inset). In addition, the local singlet
pairing structure factor is shown for four electrons in the same
system (dashed line with *). Regions of dominance of spin-
density waves, charge-density waves, pairing, and condensation
are marked at the top of the figure.

creases in the fourth quadrant, the SDW state reappears.
The SDW structure factor S, () has its maximum with
respect to ¥V not at U =0 but for slightly negative V.
Thus, SDW ordering is also enhanced by a small negative
V. In addition, the local singlet pairing structure factor
is shown for this system for two holes in the half-filled
band. This quantity is enhanced with respect to that for
the half-filled band, and maintains a significant value
throughout the regime of CDW order.

The two-dimensional clusters of Figs. 1(c) and 1(e)
show the antiferromagnetic to CDW transition for values
of V significantly smaller than U/2. For a large two-
dimensional system, the transition would be expected to
occur close to ¥ =U/4."* Figure 10 shows the spin and
charge structure factors for the four-square system of
Fig. 1(e) as a function of V for U =2¢t. In this case, a
sharp transition between spin and charge ordering occurs
at ¥ =0.555¢.

The sharpness of the SDW-CDW transition also de-
pends on geometry. We describe a transition in a finite
system as sharp if it involves the crossing (in energy) of
two eigenstates which have to be of different symmetry,
as a parameter in the Hamiltonian is varied. Otherwise, a
single state can evolve continuously although rapidly. In
this sense, a sharp SDW-CDW transition occurs for the
half-filled system in the (four-site) square, exactly on the
line U =2V. A sharp transition is also found in the four-
square system as shown in Fig. 10, but not in the other
clusters (hexagon, two square, octagon) considered in this
paper. The transition becomes more rapid [in the sense
that dS, () /0¥ becomes larger] as U increases.

It will also be noticed that Fig. 10 shows a second tran-
sition at negative ¥, at (roughly) ¥ =—0.71. This transi-
tion leads to the disappearance of the SDW order, the ap-
pearance of double occupancy, particularly on the central
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FIG. 10. The dependence of (4X) the antiferromagnetic and
the charge structure factor for the four-square system of Fig.
I(e) in the half-filled band case on the nearest-neighbor interac-
tion V is shown for a fixed value of U (U =2.0¢t). A sharp tran-
sition between antiferromagnetic and CDW states occurs at
V/t =0.555. Another transition occurs close to ¥/t =—0.71.
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atom, and thus to the development of a condensed state.

Our most striking results for the extended model con-
cern the case in which there are two holes in the half-
filled band. The inclusion of first-neighbor interactions
can favor either spin alignment or pairing for certain
ranges of parameters. In some geometries, notably the
two-square and four-square systems we find two regions
in the (U, V) plane where alignment occurs. The first is
along and below the U axis for large U, as illustrated in
Fig. 11. For ¥V =0 and large U, the ground state for four
electrons in the two-square has S =1. The spin align-
ment is rapidly suppressed for positive V, but is favored
for negative ¥V, and the region in which the ground state
is a triplet extends below the U axis as far as (roughly)
U =9. In addition, there is another region at large U and
V, where the ground state has S =1. In this case, the
spin alignment exists in the presence of CDW order, as
shown in Fig. 11.

For negative V, a condensed state forms. In the two-
square, four-electron system, the ground state for large
negative V and positive U is characterized by single occu-
pancy of the two middle sites [see Fig. 1(c)], while the two

FIG. 11. Partial phase diagram for two holes in the half-filled
band for the two-square system of Fig. 1(c). The regions with
vertical shading are those in which the two holes have parallel
spin; the region with circles is that in which the two-hole bind-
ing energy is negative. Note that the scale of U changes from
linear to logarithmic at U/t =10. The long-dashed line in the
upper part of the plane is the CDW boundary. The CDW order
occurs above and to the left of this line. The system is unstable
in a manner described in the text below the short-dashed line in
the lower part of the figure. A condensed state develops be-
tween the negative-U axis and this line.

pairs of end sites have equal probability (4) of being oc-
cupied. The charge correlation functions indicate that if
the left pair is occupied, the right pair is vacant, or vice
versa. The ground state contains both possibilities
symmetrically. The condensation begins to develop
below the U axis, and the occupancy pattern is already
apparent below about V' =—1.1 over a wide range of U.
Because none of the sites are doubly occupied, condensa-
tion develops in the presence of spin correlations. How-
ever, if V becomes sufficiently negative, the system be-
comes unstable in a sense pointed out by del Bosch and
Falicov.” If the system were to be connected to a reser-
voir of particles, it would fill up. This occurs when the
energy per particle in the system when all sites are doubly
occupied (U /2+7V /3) is lower than the energy per par-
ticle in the four-electron system. The latter quantity is
close to ¥ when U >0. The stability line defined in this
way is shown in Fig. 11. For large U, the line is well ap-
proximated by ¥ =—3U/8. It should be noted that this
line lies well below the onset of condensation: in this sys-
tem condensation does not necessarily imply instability.
Similar features are found in the four-square system.

We have also examined the binding energy of two
holes, given by Eq. (18a). There is a region of binding in
the first quadrant for small U and moderate to large V.
This is indicated in Fig. 11. Binding coexists with the
CDW order. The binding extends throughout the second
quadrant. The situation is similar in the four-square sys-
tem as is illustrated in Fig. 12. We have investigated
pairing correlations in this region, and find positive
values of the corrected local singlet pairing structure fac-
tor in the region in which Ej is negative, as shown in Fig.
13. However, the possibility of phase separation of the
holes has to be considered seriously, as the two-pair bind-
ing energy Ep, also becomes negative in this region (as
does also Epg,, which is not shown). There is a small
range in the neighborhood of ¥ =1 where S} is positive,

FIG. 12. The region of hole binding for seven electrons in the
nine-site system is indicated by circles.
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FIG. 13. The corrected local singlet structure factor for
seven electrons in the nine-site four-square system (solid curve,
left-hand scale) is shown as a function of V' /t for U =0.5t. The
pair binding energy Ej is shown (dashed line, right-hand scale)
as is the two-pair energy Ejp, (divided by 5, dotted line, right-
hand scale).

Ey is negative, and Eg; and Ep, are still positive. The
pairing described here coexists with the SDW order.

It remains for future investigations to determine
whether the enhancement of pairing by repulsive first-
neighbor interactions also occurs in larger systems, and
whether there is any relevance to high-T- superconduc-
tivity as actually observed. However, several other
groups have found hole binding in systems where a first-
neighbor interaction is added to a Hubbard model for
CuO, planes.’*" 32 The particular interest of the present
results is that pairing occurs in a parameter region in
which U and V are of modest size.

IV. CONCLUSIONS

We have studied the one-band Hubbard and extended
Hubbard models on several lattices by exact diagonaliza-
tion. In general, our results are limited to fairly small
clusters (quantum Monte Carlo calculations are possible
for larger systems), but there are no restrictions in our
work concerning the occupancy or the size of the param-
eters that we can consider, and the calculations can be
performed using the exact ground state, rather than re-
quiring an extrapolation from finite temperatures. Our
findings may be summarized as follows.

A. Simple Hubbard model

1. Half-filled band

In this well-studied system, our results agree with those
of other calculations, including quantum Monte Carlo
simulations for larger clusters. We find antiferromagnet-
ic alignment of local magnetic moments, with a structure
factor that increases with the size of this cluster. Howev-
er, our work extends to much larger values of U than
have been considered in Monte Carlo calculations. Our
results for U/t >20 for the nine-site system should be

quantitatively rather reliable here in the sense that finite-
size effects should be small, and enable a determination of
the amount of double occupancy as a function of U in a
region which is not easily accessible to the Monte Carlo
calculations. For negative U we observe the coexistence
of the CDW order and local singlet pairing.

2. One and two holes in a half-filled band

For moderate values of U, we see the expected reduc-
tion in the range of magnetic alignment. At large U,
we find ferromagnetic alignment in the quasi-two-
dimensional systems, where there is one hole, consistent
with Nagaoka’s theorem, but in the one-dimensional sys-
tems the ground state is not a saturated ferromagnet. We
have determined the critical value of U defining the fer-
romagnetic region for several different geometries. In the
case of two holes, we have found, in the quasi-two-
dimensional systems, a region of unsaturated ferromagne-
tism at large U, and believe this should be considered
seriously as a possibility in larger systems. Local singlet
pairing is found for negative U.

B. Extended Hubbard model

In the half-filled band case, our results are consistent
with previous work. We have studied the entire phase di-
agram, including the condensed state for large negative
V. The new results concern the case when there are a
pair of holes in the half-filled band.

(1) For negative values of ¥ too small in magnitude to
produce a condensed state, we find that, for positive U,
local moments are enhanced, and spin alignment is
strengthened. The region of unsaturated ferromagnetism
is extended to smaller values of U.

(2) An unexpected region of spin pairing has been
discovered in the upper first quadrant of the (U, V) plane
where it coexists with the CDW order.

(3) We find, in the quasi-two-dimensional systems, a re-
gion local singlet pairing, and in which two holes bind,
for moderate and large values positive values of V, and
small positive values of U (also for negative U). Al-
though there is certainly a tendency toward phase separa-
tion in this region, we find in some of the clusters that
there is a window in which two holes bind and pair, but
larger hole clusters do not bind. Although other authors
using different models, more explicitly relevant to CuO,
planes, have found the binding of pairs under rather simi-
lar circumstances for specific parameter values, we be-
lieve this is the first calculation to determine the portion
of the phase diagram in which binding occurs. The possi-
ble relevance of this region of parameters to high-T, su-
perconductors remains to be studied.

There is another way of looking at the results which is
also of interest. From the studies of clusters of different
geometry, one can recognize properties which are charac-
teristic of this type of model in general, and those which
show a pronounced dependence on sample geometry.

In the first category of generic results we place (1) for-
mation of local spin moments for strong on site interac-
tions, (2) existence of SDW or antiferromagnetic correla-
tions in the ground state of a half-filled band system, (3)
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reduction of the range of spin correlations by hole doping
except when a ferromagnetic ground state is formed, (4)
occurrence of local singlet pairing for negative U, (5) a
transition to the CDW order for sufficiently repulsive
nearest-neighbor interactions, and (6) enhancement of
magnetic correlations for positive U and of pairing corre-
lations for negative U by weakly attractive first-neighbor
interactions.

The second category of geometrically sensitive results
includes, obviously, the precise numerical values of the
parameters at which the transitions occur. Moreover,
some qualitative features are also dependent on geometry

including: (1) the presence or absence of saturated fer-
romagnetism in the large-U limit for systems with one
hole in a half-filled band (this has been recognized for
many years), (2) the occurrence of a ground state with
S >0 or § for a system of two holes in the same limit, and

(3) the binding of two holes for small U.

ACKNOWLEDGMENTS

This work was supported in part by the Louisiana Edu-
cational Quality Support Fund and in part by the Nation-
al Science Foundation under Grant No. 8810249.

*Permanent address: Department of Physics, University of Poo-
na, Pune 411007, India.

13. Hubbard, Phys. Rev. B 17, 494 (1978).

2V. J. Emery, Phys. Rev. B 14, 2989 (1976).

3V. J. Emery, in Highly Conducting One Dimensional Solids,
edited by J. Devreese, R. Evrard, and V. van Doren (Plenum,
New York, 1979).

4J. E. Hirsch, Phys. Rev. Lett. 53, 2327 (1984).

5B. Fourcade and G. Spronken, Phys. Rev. B 29, 5096 (1984).

6H. Q. Lin and J. E. Hirsch, Phys. Rev. B 33, 8155 (1986).

7L. M. del Bosch and L. M. Falicov, Phys. Rev. B 37, 6073
(1988).

8S. B. White, D. J. Scalapino, R. L. Sugar, E. Y. Loh, J. E. Gu-
bernatis, and R. T. Scalettar, Phys. Rev. B 40, 506 (1989).

9J. D. Jorgensen, H. B. Schuttler, D. G. Hinke, D. W. Capone
II, K. Zhang, M. Broedsky, and D. J. Scalapino, Phys. Rev.
Lett. 58, 1024 (1987).

103, Yu, A. J. Freeman, and J. H. Xu, Phys. Rev. Lett. 58, 1035
(1987).

1L, F. Mattheiss, Phys. Rev. Lett. 58, 1028 (1987).

12y, Zhang and J. Callaway, Phys. Rev. B 39, 9397 (1989).

13C. M. Varma, S. Schmitt-Rink, and E. Abrahams, Solid State
Commun. 68, 681 (1987).

143, Callaway, D. G. Kanhere, and P. K. Misra, Phys. Rev. B
36, 7141 (1987).

15v. J. Emery, Phys. Rev. Lett. 58, 2794 (1987); V. J. Emery and
G. Reiter, Phys. Rev. B 38, 4547 (1988).

16J, E. Hirsch, Phys. Rev. Lett. 54, 1317 (1985).

173. K. Cullum and R. A. Willoughby, Lanczos Algorithms for

Large Symmetric Eigenvalue Computations (Birkhauser, Bos-
ton, 1985).

18y, Callaway, D. P. Chen, and R. Tang, Z. Phys. D 3, 91 (1986);
Phys. Rev. B 35, 8723 (1987).

193, Callaway, D. P. Chen, and Y. Zhang, Phys. Rev. B 36, 2084
(1987).

20The large-U ground state for seven electrons in an octagon has
S =3 (instead of S =1 or 7); apparently an exceptional case.

21y, Nagaoka, Phys. Rev. 147, 392 (1966).

22)_ A. Riera and A. P. Young, Phys. Rev. B 40, 5285 (1989).

23], A. Riera and A. P. Young, Phys. Rev. B 39, 9697 (1989).

24E, Dagotto, A. Moreo, R. L. Sugar, and D. Toussaint, Phys.
Rev. B 41, 811 (1990).

25p, W. Anderson, Phys. Rev. Lett. 34, 953 (1975).

26p. Pincus, P. Chaikin, and C. F. Coll, Solid State Commun.
12, 1265 (1965).

27P, Nozieres and S. Schmitt-Rink, J. Low Temp. Phys. 59, 195
(1986).

28, A. Wilson, Int. J. Mod. Phys. B 3, 691 (1989).

29R. T. Scarlettar, E. Y. Loh, J. Gubernatis, A. Moreo, S. R.
White, D. J. Scalapino, R. L. Sugar, and E. Dagotto, Phys.
Lett. 62, 1407 (1989).

303, E. Hirsch, S. Tang, E. Loh, and D. J. Scalapino, Phys. Rev.
Lett. 60, 1668 (1988).

31C, A. Balseiro, A. G. Rojo, E. R. Gagliano, and B. Alascio,
Phys. Rev. Lett. 60, 1668 (1988); Phys. Rev. B 38, 9315 (1988).

32w, H. Stephan, W. v. d. Linden, and P. Horsch, Phys. Rev. B
39, 2924 (1989).



