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Anderson localization in systems where the randomness is anisotropic and intermediate between

the different dimensions is studied both analytically and numerically. As a function of the anisotro-

py parameter 8, which interpolates between a one-dimensional randomly layered system and three-
dimensional isotropic randomness, our results indicate the existence of a Fermi-energy-dependent
critical 8, below which the wave function is localized for arbitrarily small randomness. An interest-

ing reentry phenomenon is found in the localization phase diagram near the band edge, where the
density of states is small. Expressions for the localization lengths are obtained analytically in the lo-
calized regime when the randomness is small. The behavior of the localization length in the layer-

ing direction is found to follow the simple one-dimensional result, while in the lateral direction the
localization length behaves difFerently from the standard two-dimensional result. Physical argu-
ments are presented to make plausible the above behaviors. Our model is contrasted with the aniso-

tropic hopping model. Significant differences are noted.

I. INTRODUCTION

c. =8il;, +(1—8)y, , (2)

where z denotes the layering axis, and i denotes the trans-
verse direction x and y. y and g are random variables
with the same Bat distribution P of width 8', i.e.,

In the past decade tremendous progress has been made
in understanding the phenomenon of Anderson localiza-
tion for noninteracting electrons in random potentials. '

The single-parameter scaling theory proposed by Abra-
hams et al. has been confirmed by both analytic and
numerical approaches. It is now believed that all
states are localized in dimensions one and two for any
amount of randomness.

The model generally adopted for the study of localiza-
tion is the tight-binding Anderson Hamiltonian

H=ge a a +tea a&, (1)
Cr NN

where a, a are the creation and annihilation operators,
respectively, a, P are indices for sites on an n-dimensional
lattice, and NN denotes nearest neighbors. The hopping
matrix t is usually assumed to be constant, and the poten-
tial energy c at site a is random with a distribution
P(s ), which is either flat or Gaussian. For the above
model, much has been learned about the localization be-
havior and its dimensional dependence. In this work, we

propose a new model, where the randomness of site ener-

gy is anisotropic and intermediate between different di-
mensions, e.g. , a random superlattice with lateral inho-
mogeneities. In a three-dimensional (3D) simple cubic
lattice, the site energy c. is written as the sum of two ad-
ditive components:

IZ~, lxl(~n
p(r, }=p(n, )=p(x)= 0 th (3)

0 is an anisotropy parameter, varying between 0 and 1,
which interpolates the randomness between a 1D layered
(8=0) and a 3D isotropic (8= 1) system. Physically, our
model corresponds to predominately layered systems,
such as the Earth's subsurface or random superlattices,
with lateral inhomogeneities that may be inherent to the
system or deliberately introduced.

The above model is studied both analytically and nu-
merically in this work. In the analytical approach, the
self-consistent theory of Vollhardt and Wolfle' (VW) is
used in conjunction with the self-consistent Born approx-
imation (SCBA). By taking into account the coherent-
backscattering effect, the theory of VW has been shown
to be very successful in determining the localization
phase diagram of isotropic random models. " This di-
agrammatical theory has also been used to study the lo-
calization properties of phonons' and various kinds of
classical waves. ' For the model proposed here, the site
energy E of Eq. (2) contains a constant part, i.e.,
(1—8)y„ in every layer. Since the infinite-range correla-
tion of this term inhibits the use of coherent-potential ap-
proximation (CPA) in obtaining the averaged single-
particle Green's function, SCBA is used instead. SCBA
is known to be valid when the randomness is small and
has been used previously in the study of classical waves'
and phonons' with long-range correlations. Thus we ex-
pect our analytical results to be at least qualitatively
correct. In the numerical approach, the localization
phase diagrams are determined by using the finite-size
scaling method, which has become standard in the study
of localization phase diagrams in disordered systems. '
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Our results show that anisotropy yields novel charac-
teristics that may have potential applications. In particu-
lar, a Fermi-energy-dependent critical 8, is found, below
which the wave function is localized for arbitrarily small
randomness, and the system behaves basically as a 1D
layered material. Above 0, the system is shown to ac-
quire the 3D characteristics of exhibiting mobility edges.
In the region below O„an interesting reentry
phenomenon exists near the band edge, where the density
of states (DOS) is small.

Our anisotropic model is shown to be not describable
by a single-parameter scaling theory. The predicted be-
haviors are also noted to be significantly different from
the previously studied anisotropic models, ' where the
hopping matrix elements are different in the layering and
lateral directions but the site energy is isotropically ran-
dom. In these models it has been shown that the problem
can be mapped to a single-parameter scaling theory
through an anisotropic scale transformation. Therefore,
the system exhibits 3D Anderson transition as soon as
the hopping deviates from strict one (or two) dimen-
sionality, i.e., at 8, =0.

When the randomness is small, asymptotic behavior of
the localization lengths in the region below 8, is ob-
tained. As a function of randomness 8; the localization
length in the layering direction behaves like a 1D system,
while in the lateral direction the behavior differs from the
standard 2D result. For a fixed 8', the localization
length in the layering direction can be made to diverge
with a power-law exponent —,

' by increasing the value of
lateral inhomogeneities.

In Sec. II, the formulation for the conductivity, mobili-
ty edge, and localization lengths are given in the frame-
work of VW theory. A description of the numerical
method is given in Sec. III. Section IV contains the re-
sults and the related discussions. Conclusions are given
in Sec. V.

II. FORMULATION

Before delving into the details of the theory, we first
outline the overall road map. For the anisotropic diago-
nally disordered system described by Eqs. (1)—(3), the
averaged single-particle scattering (in the context of
SCBA) contains two parts: the 3D isotropic scattering
and the 1D scattering in the layering direction with
strengths W 8 /12 and W (1—8) /12, respectively. The
Kubo formula ' is used to evaluate the conductivity ten-
sor. The expressions for the bare conductivities in both
the layering and lateral directions are obtained by sum-
ming the ladder diagrams. The coherent backscattering
effect for localization is then taken into account by in-
cluding the maximally crossed diagrams (MCD's) in the
particle-hole channel as is usually done. However, there
is an important difference from the isotropic case in that
there is a class of MCD that contains only the 1D scatter-
ing. These diagrams reduce the conductivity in the layer-
ing direction but have no effect on the lateral direction,
since they conserve the lateral momentum. It is this im-
portant difference that gives all the novel characteristics
of the model mentioned in the Introduction. Following

VW, the bare diffusion constants in the diffusion poles of
the coherent-backscattering terms are renormalized to
obtain a set of coupled self-consistent equations for con-
ductivities (or diffusion constants) in both the layering
and lateral directions. By setting to zero the renormal-
ized conductivities, the equations to determine the mobil-
ity edges and localization lengths are then obtained.

1v(q)= —X,e exp( —lq R ), (6)

where 5 denotes the vector pointing from a site to one of
its nearest neighbors. R is the spatial coordinate of site
a, and X is the total number of sites in the lattice. In
SCBA, the averaged single-particle Green's function (GF)
and its self-energy X can be derived from Eqs. (2)—(6):

1

E —s(p) —X~ (E)

q

1=—g S(q)R +—

+
q

W8 1 1

12 N, E—e(p') —X+

with

+W(1 —8) 1 ~ 1
(g)

12 Ng E—s(p +p ) —X+
P] II ~

P()

S(q) = ~8'+( I —8)'N~, 5, ,]

Here 6+ and 6 are, respectively, the retarded and ad-
vanced GF's. E denotes the electron energy, X~ is the
number of layers, ")." and "~~" denote components of vec-
tor in the layering and lateral directions, respectively,
and ( ), denotes configurational averaging. The deriva-
tion of Eq. (8) is given in Appendix A. In the presence of
anisotropy (8( 1), the scattering strength function S(q)
is seen to contain two parts: one from the 3D isotropic
scattering, with strength 8 0 /12 and the other from 1D
scattering in the layering direction, which conserves the
transverse momentum in the lateral direction and has
strength W (1—8) /12. Thus the self-consistent solution

A. Single-particle Green's function

The Hamiltonian of Eq. (1) can be rewritten in the
momentum representation as

H=Ho+H, =g s(p)a a&+g U(q)a&+ a
P p'q

with

e(p)=g exp( i p —5),
5

and
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of Eq. (8) leads to a self-energy that depends not only on
the energy but also on the transverse momentum pll.

B. Conductivities

Knowing the averaged single-particle GF, we can now
evaluate the conductivity by using the Kubo formula, '

o//(ru, E)= J dE

XTr(u 5(E+ H)u—/5(E H))—, ,

(10)

(p'lu, lp) =5 7 E(p)=5 u, (p) .

In this work we have set the Plank constant h and lattice
constant to be unity. Due to the anisotropy there are two
different conductivities at (=a ) and trl (=tr;; ) in the
layering and transverse directions, respectively. By using
the relation

5(E+ H)—=(i/2m )[G+(E+ ) —G (E+ )],
the zero-temperature conductivity of Eq. (10) can be writ-
ten as

2 2

where E+ =E+rul2, f is the Fermi distribution function,
and v is the velocity operator in the j direction with the
matrix element

with

, g u, (p)((p~G+' '(E )~p')u, (p')(p')G '+'(E )~p)), ,
R A( AR)

7T p p

(12)

where E becomes the Fermi energy. We have neglected
the terms like {t), and P,

""because they are inherently
small (since they have two poles on the same side). The
ensuing calculation of P,,

" and P,",
" consists of evaluating

two classes of diagrams: the ladder diagrams for the bare
conductivities and the M CD's for the coherent-
backscattering effect that gives rise to localization.

The ladder diagrams are shown in Fig. 1, where the
solid lines are the averaged GF's. Each vertex, denoted
by heavy solid line, contains two types of scattering: 3D
and 1D scattering, which are denoted by dashed and dot-
ted lines, respectively. For o ~, only the diagram Fig. 1(a)
contributes because all the other diagrams vanish after
the summation of p and p'. In the static limit (ru~0)
this diagram gives the following result for the bare con-
ductivity 0.~:

2

0,' '(E) = —g u j (p)R ~ (E)R ~ (E)
n N

hR (E)

~ll

(13)

To obtain the second equality in Eq. (13), we have used
the following relation and definitions:

Rp Rp =(Rp —R )/[(Rp )
' —(R+ ) '],

hR =R+ —R

(14)

(15)

and

(R )
' —(R ) '=X+ —X =AX

ll ll ll

(16)

By using the Einstein relation, a(E)=2e p(E)D(E),

Ladd r
'i P'

r r

(

+ + r g i a +

l(P)

Pq P'

y v (p')

p) p (a) (b) (o) (d) (e) (0

I

I

I

FIG. 1. Each vertex in the ladder diagrams (bold solid line) consists of two types of scattering. The dotted line denotes the 1D
scattering with a strength of [ W'{ 1 —8)'N~~ /12]5„0. 3D isotropic scattering, denoted by a dash line, has the strength W'8'/12. The

solid line denotes the averaged Green's function R.
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where p(E) is the density of states, the corresponding
bare diffusion constant becomes D(o)(E)

3u (E)

mW 8p(E)
(20)

u, (p)bRp
(17)

with

with

p(E)= Im+Rp+(E)= ghR (E) .
P P

(18)

6e ull(E)o'"(E)=2e'p(E)D"'(E) =
m8' 0

(19)

For a~~, on the other hand, one can allow any number of
1D scatterings (dotted lines) in the diagram because they
preserve the transverse momentum. The summation of
this class of diagrams [Figs. 1(b), 1(e), etc.] is carried out
in Appendix B. The final expressions for the bare con-
ductivity and diffusion constant are

AR
ull (E)=g[u„(p)+u~(p)]

X AR
(21)

It should be noted that, in the limit of 0~0, D~~
'

diverges but D(~ ' is finite as can be seen from Eqs. (20)
and (17). This is exactly the desired property for a ran-
domly layered system.

To study the localization behavior, a MCD has to be
included in the vertex of Eq. (12). For the I component,
the vertex correction 5$„"")due to the first-order MCD
is shown in Fig. 2(a). However, for the

~~
component we

also have to include the class of ladder diagrams that
contains only the 1D scatterings, e.g. , the diagrams L,
and L2 in Fig. 2(e) also have to be included. Thus, the
general first-order MCD correction to 5$,""("can be
written as

5P "")(co,E)= gu (p)u (p')R+(E+ )R (E )R+. (E+ )R (E )JJ '
4 2 J J

X g Uj '(p, p(;(u, E)U' '(p„p2', co, E)U, '(p', pz', co, E) (22)

with

U,' )(p, p(;ru, E)=5, j=z (23)

and

U '(p, p(;ru, E)=U( )(p, p);co, E), j=i =x or y, (24)

where U' ' and U' ' are the functions represented by the diagrams shown in Fig. 2. Following a derivation similar to
that given in Appendix B, the function U' ' can be evaluated easily, yielding

8P ERp (E)

2n N II' ll 8 (E)

Evaluation of the function U' ' is carried out in Appendix C. The dominant terms in the final expression are

U(M)(p p
. E )

12N

(25)

8'
X 8 +(1—8) 8 F((P2)11'(Pi)ill'k)-'co'E} p '(k;co, E)

12N~

where

k=pl+pz ~

Q( '(k (u E)=

with

+(1 8) X(IF((pl)ll(p2}ll, kl, N, E)5(pi)ll, (p2)

Q[Rp (E+ }R
p (E )]/[I —A P3

II

(u, E)]
P3

8 8 y[R+ (E+ )R (E )]/[I —A (p3)II, CO, E ]
P,

(26)

(27)

(28)
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and

k
P3+=P3+

2

W (1—0)
A((p3))).,co,E)— g R[(p ))+(p4)~]+(E+ )R[(p ) +(p ) )

(E ),
(P4)1

(29)

(30)

F((p)))), (p2))~, k), (v, E)=
X (p ), +(p ) +) /z( + )R:(p ) +(p ) —) /z(E- )

(p3)~

W (1—8)
X (p ) +(p)) +k /2( + } —(p ) +(p )

—): /2(

(31)

It is shown in Appendix D that in the hydrodynamic limit (ro, k ~0) the function ()I('
' has a 3D anisotropic diffusion

pole of the form

(32)'o'(k;, E ) =— 2mP(E)i)i
—i~+D(,"(E)k', +D'„"(E)k'„'

with the bare diffusion constants D) ' and DI)
' given by Eqs. (17) and (20). Thus, the first term of U™in Eq. (26)

represents the coherent-backscattering effect due to the 3D scattering, which vanishes in the limit of 0~0. The func-
tion F in the last term of Eq. (26) also has the following simple expression in the hydrodynamic limit:

r &R(„)„+(„),(E)
(p3)q

F((p) )()~(p) })rk)ztsE) =
P] II~

with

(33)

H((p) ))), k);co,E)—=— vari 2 z W (1—g}2

6 12'~

(ER(p ) +(p ) } v, ((p3 ~) k
X (~R(p, )„+(p,),

}'
2

+ X
(p3)l (P3)l (pl)ll

(34)

It is easily seen from Eqs. (33) and (34) that the function F has a (p) )))-dependent (1D) diffusion pole [last term of Eq.
(34)] with an equivalent "inelastic" scattering time [first term of Eq. (34)]. The physics of this 1D inelastic scattering
time will be discussed later. Thus the last term in U' ' of Eq. (26) represents solely the 1D coherent-backscattering
effect in the layering direction, which vanishes in the isotropic limit of 0~1. Since the 1D scattering preserves the
transverse momentum, there is no such 1D coherent-backscattering effect for the transverse conductivity. Substituting
the results of U/(

' given in Eqs. (23)—(25) and U' ' given in Eqs. (26)—(34) into Eq. (22) yields, after some straightfor-
ward but lengthy manipulations, the first-order MCD corrections to the function P

gyRA(1)( E )

leLR
p

LaLR
p

2 g v~ (pz ) Bg(p~~), Q), E ) (35)

with

8,(p), ;(v, E )
8' (0) k. ~ E

(36)

and

iWObX

2~ 0 W p p 12mpN ), H (p~~), k);(v, E)
(i =x or y),

where P( ' and H are given by Eqs. (32) and (34). The correction of P', "")from the second-order MCD are shown in

Fig. 3 for both the layering and the transverse directions. Again, for the transverse direction, the ladder diagrams L,
and L2, which contain only the 1D scatterings, should be included in 5$;;"' ' because they give a nonzero contribution.
The evaluation of these diagrams is rather lengthy but follows a procedure similar to that described in the evaluation of
5$,,

""' and will not be shown. The results are
2
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and

i8' 0 LakXp (0)
2

(i=x or y), (39)

where the function B~ is given by Eq. (36). In fact, the generalization of the above results to the nth order MCD correc-
tion is simply to replace the power in the large parentheses of Eqs. (38) and (39) by n It.should be noted that in deriv-

ing the above results the following approximation has frequently been used:

(gR )'=(R+ —R
—)'=——(R+R —+R-R+)=

P P P P P P P

—26R
P (40)

where the small terms R z R + and R R
&

have been neglected. This approximation may be generalized to

2
'n —1

(b,R )"=—b,R (41)

By summing the MCD corrections to infinite order and denoting the result as 5$,"",the complex diffusion constant
D ~(co,E) can be expressed as' '

and

Dj(co,E)
D (0) (E)

gyB A
1 hR~ 1

gu2(p, )(bR /gX )
' bX I+(ERp/EX )B~(pll, co, E) '

II II

P

(42)

D ( E) QPRA
1+ II

D(0)(E) yRA(0)
II IL

2nu~~p(E)N &
1 (iW —8 AX& /12mpN )g [P (k;co, E)/H (p~~, ki,'co, E)]

k

(43)

where ul is defined by Eq. (21) and p""' ' denotes the
ladder diagram contributions to P";,", which can be ob-
tained from Eqs. (11), (13), and (19).

In order to obtain the self-consistent equations to
determine the mobility edge, approximations have to be
imposed to simplify Eqs. (42) and (43) without losing the
qualitative features of the problem. First, by using Eq.
(41), the function of ERE in the denominator

[1+(hRz/DRY)B~] of Eq. (42) can be approximated by
—2/b, X& due to the existence of another AR in the

numerator under the summation of p. Thus both this
factor and the corresponding one in Eq. (43) can be con-
sidered as functions of

p~~
only. Second, these factors can

be decoupled from the summation of p by taking their
averaged values, i.e., (F(p~~)) = I/N~~X F(p~~). In fact,

il P(( II Pi[

this is not the only approximation one can choose. Alter-
natively, the average can also be defined by

(F(p~~ ) )p
=Xp~R pF(p~~ ) /Xp~R p

.

No qualitative difference in the final results has been
found between these two approximations. In this work
we choose the first average scheme. With the use of the

I

Dj(co,E)=Di '(E)+Di(co, E)
}2

~li

iW 8
Dl(ro, E}=DI~ '(E)+D(~(co,E)

k;co, E
H (pll'kj', co,E)

(44)

(45)

It should be noted that the function B~ in Eq. (44) con-
tains the previously mentioned p~~-dependent 1D diffusion
pole with an inelastic scattering time as can be seen from
the 1/H factor in Eqs. (36) and (34). In order to realize
self-consistent procedure, it is required that an averaged
diffusion constant with the form of D~~ '(E) given by Eq.
(17}should come out of this 1D diffusion pole. This can
be realized if the function hX H is approximated by its

average. From Eq. (34},with the use of Eq. (41},it can be
shown that

I

above decoupling procedure, Eqs. (42) and (43) can be
written respectively as

(hX H(, k, ,E)) -='+D' '(E)k +—
(1—8)

(46)
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where we have defined

y(E)= —'(~~ )
2 II II

(47)

Thus, in the final approximation, by averaging the function EX' H in Eqs. (44) and (45) separately, the following equa-
~ll

tions are obtained:

Di (ro, E)=D i '(E) 1 1 Dt(ro, E)
~pN (1+ [(1—g) /2yg ]( iso—+D k )) (

—ico+D(o)k2+D(o)k2)

1 ~x 1 D, (~,E)
1 ——

ir—o+[2yg /(1 8) ]—+DP'k7TP

Dl(ro, E)=DIi '(E) 12 1 D (ro, E)
'rr pg W N a I 1+[(1—8) /2yg ]( iso+—Dike)I (

—ico+D' 'k +Dli 'k

(48)

(49)

RA (1)
(M, E) ~ v, (p)

P

(a)

P

Wp

v (p)

where v~ and ~II are respectively defined by

1
ri(E) = —'

p(~,
VII

r~(E) = 6

mS'Op

(50a)

(50b)

U(M) (p p
. ~ F)

P) P2

P +

P2 Pq P2

Pg P2

' X
Pq P2

RA (0)
((d, E) 0' v~ (p )

P P
'

i~%gX~ ~g////~i~%g~j

iXXOXX~&//1/ii%14 . I

P P

Here iy and vII are the relaxation times in the layering
and transverse directions, respectively, as can be seen
from Eqs. (17) and (20). From Eqs. (8) and (50), the in-
elastic scattering time r;„[=(1—8) /2yg ] in the 1D
diffusion pole of Eq. (48) can be roughly considered as the
difference between the scattering times in the transverse
and layering directions, which goes from zero to infinity
as the anisotropy is increased. Physically, this is the time
that limits the 1D diffusion process in the layering direc-
tion caused by the 3D isotropic scattering. The existence
of ~;„ thus provides a lower cutoff in k~ space, i.e.,

P P]

u~ ] (p p ~ E) =
h~ÃQ,

P Pg

(p p'& E)= L+ —s(

p +

P

Pg
~~
X

P2 P)

X

P2 P'

X X
0

P p)

P2

X X

P2 P'

k',"(E)= 2y(E)8
( 1 8)2D(0)(E)

(51)

below which the 1D diffusion becomes invalid. It should
also be noted that Eqs. (48) and (49) give the correct 8~0

Pq P3+ P2 P1 P3+ P4+
RA (2)

(~, E) tx, (P)

P

P

P

///M&g

pP

vz (P )

(b)

P2 P3- P1 P2 P3 p4 -p,

FIG. 2. (a) The first-order maximally crossed diagrams
(MCD) contribution to the vertex correction P""'"in the layer-
ing direction. (b)—(d) The MCD s that give rise to
U' '(p&, p2', co,E), (e) for the transverse direction, the ladder dia-
grams L l and L, that give nonzero contribution are also includ-
ed in the first-order MCD vertex correction 5$";;"'". (f) and (g)
The ladder diagrams L

&
and L2 that give rise to U' '(p, pl, co,E)

and U' '(p', p2', co,E) respectively. (h) and (i) were obtained by
redrawing the diagrams (c) and (d) in the particle-particle chan-
nel and then reversing the momentum of the lower lines.

RA (2)
(~, E) ~v (P)

= v;(P)

P

xL)~/M x 2i
hXxxx~ 8/lli~x%%18

PM

P
q~%XQX ~l////g~

g&L,i~ i~M&g

khlhhh~ k/1/z

P

P.

6///zh~4,
P

P.

~LL4~~18//likxxx~,
p7

(c)

FIG. 3. The vertex correction 5$,","'~' due to the second-
order MCD's are shown for (a) the layering direction 5$„"'2'
and (b} the transverse direction 5$,";"'". M, L~, and L2
represent the same classes of diagrams shown in Fig. 2.
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and 0~1 limits. In the isotropic limit, 8~1, it is easy to
see from Eqs. (8) and (47) that r~=rl, D~ '=D~~ '

( =D' '), and y

=der&

p/12 B. oth Eqs. (48) and (49) then
reduce to the standard 3D isotropic result; i.e.,

Qo(E)= 1—

and

r~(E) F~(E)

[kP (E)] +k
(57)

D(co,E)=D' '(E)—
~p& i—co+ D'o'k ~

P

(52) 4y(E)
(E)U~~(E)

' (58)

In the 1D randomly layering limit, 0~0 we have 7~~~ ao,
while ~~ is finite. In this limit 3D diffusion terms in Eqs.
(48) and (49) vanish, and Eq. (48) reduces to the standard
1D result in the layering direction.

C. Mobility edge

For a self-consistent theory, the bare diffusion con-
stants D~ ' and D~~

' in both the 3D and 1D diffusion

poles of Eqs. (48) and (49) are replaced by D~(co, E) and

D~~~(co, E), respectively. However, in the case of a ID
diffusion pole, instead of using a lower cutoff k~ we
choose to first write the 1D pole in the form

[ ird+D —'((k ) +k )]

with k~~ ' defined by Eq. (51) and then renormalize as D~~ '

afterwards. This has the equivalent effect of introducing
a lower cutoff. The mobility edge equations are obtained
by requiring D~(co=0+,E*)=D~~(co=0+,E") =0:

D~(0+,E") F~(E")r(E')=0=1-
D(0)(Ee ) X

X
1 0(E*)

q r(E*)k +k

(53)

and

where Eq. (20) has been used to obtain Eq. (58). The
function Q(E') in Eq. (53) is due to the 1D scattering.
Although both D~ and D~~ vanish at the mobility edge,
their ratio r(E') is finite and, from Eqs. (53) and (54), has
the following expression:

Fii(E')r(E*)= [1—Qo(E")] .
FJ(E )

(59)

g F~(E")kll+Fll E")[1—Qo(E')]kx
(60)

The summation over k represents a double integral over
and k„each having a upp«cutoff'of kii g, /li~(E")

and k~ =poll~(E"), where l~~
and l~ are the mean free

paths in the transverse and layering directions given by

111 =3V2Dl~l" /U~ll and ll 3Di" /Ul.——The arbitrary con-
stant go is of order unity and is chosen to be 0.40 so that
we recover the known critical value of 8' /t = 16.2 in the
isotropic limit 8=1, E =0. Equation (60) may be solved
numerically as a function of 8 at various Fermi energies.
Results are presented and discussed in Sec. IV.

D. Localization lengths

Substituting Eq. (59) into Eq. (53) or (54) yields a single
equation for the mobility edge as

1=F~~~(E')F,(E')—1

D~, (0+,E") F~, (E*)=0=1-
D"'(E') & ~ r(E')k'+k' '

with

F~(E)= 1

np(E)DP'(E)

DI (0+,E)
r(E)= +Dll(O, E)

(54)

(55)

(56)

In the localized regime, the equations for the localiza-
tion lengths g~ and

g~~
in the layering and transverse direc-

tions can be obtained from Eqs. (48) and (49) by first re-
normalizing the diffusion constants and then setting

lim[ ice/D~
~

(co,—E)]=(~
~~

(E) .
CO~0

If we define the function r(E) as the square of the ratio of
localization lengths (g~ ~~), the localization length equa-
tions become

1 1 rj(E) 1
I =F~(E)r(E) — Fz(E) 1——

(E)[g (E)+k~]+k~~ ~~~ E +j „5~(E)+[k~(E)] +k
(61)

and

Fii(E)1=
N „r(E)[g, '(E)+k', ]+k

(62)

I

ior of g~ and
g~~ may be studied analytically. This is done

at the end of Sec. IV.

III. NUMERICAL APPROACH

In general, Eqs. (61) and (62) have to be solved numerical-
ly. However, at small randomness the asymptotic behav-

Since a significant amount of approximations have
been introduced in obtaining the analytical equations on
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—=2( cosK, +cosK„+cosE ) .

Consider each set (K„,E ) as a channel, denoted as I.
There are a total of M XM channels in the rod. For a
given energy E/t, the real solutions of K, from Eq. (63)
determine the number of channels open for wave propa-
gation. The transmission matrix tIJ between a channel I
at one end of the rod and a channel J at the other end is
equivalent to Green's function GIJ(O, N), which can be
calculated by using the recursive Green's-function tech-
nique as described in the work of Lee and Fisher. Here
we simply extend the method to the 3D case. The locali-
zation length LM of the rod is related to the transmission
matrix by

—1LM= lnTrt t . (64)

The length N has to be long enough so that L~ has con-
verged to a constant value. In addition, the variance
hL~(N) has to be small so that the value of L~ is accu-
rate. This can be achieved either by averaging over many
configurations or by considering a long rod. From the
knowledge of L~ the localization character of a state is
determined by the behavior of Liir/M versus M as de-
scribed by MacKinnon and co-workers; i.e., L~/M in-
creasing with M indicates a delocalized state, whereas
L~/M decreasing with M indicates a localized state.

IV. RESULTS AND DISCUSSIONS

A. Mobility edge curves

In the numerical calculations based on Eq. (60) the mo-
bility edge W, (8)/t is calculated as a function anisotropy
0 for each fixed value of the Fermi energy. Since the sys-
tem is symmetric in E, we only need to study the portion
E )0 regime. The Fermi energies chosen for numerica1
evaluations are E/t=0, 2, 4, 5, 6, and 7. The corre-

the mobility edge and the localization lengths, the validi-

ty and accuracy of the analytic predictions have to be
verified and checked by numerica1 simulations. The nu-
merical method used to determine the mobility edge is
the standard finite-size scaling method. Consider a
disordered system governed by the Hamiltonian defined
through Eqs. (1)—(3) in a rod geometry of length N and
cross section M XM. The layering direction is defined to
be the lengthwise direction along the rod. Both ends of
the rod are connected to perfect leads, i.e., 8'=0. For
such a system the transmission amplitude of an electron
through the disordered rod can yield the localization
length LM of the rod.

If the periodic boundary condition is chosen in the
transverse direction, then the propagating eigenstates in
the ordered region are just plane waves labeled by a con-
tinuous momentum index K, in the direction along the
rod and two discrete transverse momentum indices IC„
and K =en/(M+1) (n =0,+1, . . . , +M/2 if M is
even; n =+1, +2, +(M+1)/2 if M is odd). The disper-
sion relation is then

sponding curves of W, (8)/t are shown by solid curves in

Figs. 4(a) —4(f). The interesting feature about these curves
is that for each E/t there is a finite critical value of 0= I9,
below which the electron is localized for any randomness.
The value of 0, increases from 0.18 at the band center
(F. /t=0) to unity when the band edge (E/t) is ap-
proached. The mathematical origin of this 0, comes
from the function Qo in Eq. (53). When the randomness
is small, it is easy to see from Eqs. (55) and (58) that both
functions F, and F

~~

contain a factor O' . However, by
using the uppe~ cutoff k&,

ll
go/l, , il

d' cussed in ec II
the k space and k~ space summation in 3D and 1D
diffusion poles of Eqs. (53) and (54) give additional factors
8' and W, respectively. Thus, as 8'~0+, the 3D lo-
calization effect disappears as expected, but the 1D locali-
zation term Qo becomes independent of W and is only a
function of 8. In fact, the value of Qo goes montonically
from zero when 8=1 to infinity when 8=0 as can be seen
from the inelastic scattering length term, (ki ), in Eq.
(57). The critical 8, is then determined by the condition
that Qo has the value unity. Physically, the existence of
this nonzero 0, can also be understood from this inelastic
scattering term. In the randomly layering limit (8=0),
the only scattering is the 1D scattering in the layering
direction and the system is effectively 1D with a localiza-
tion length g~, proportional to W . If the isotropic
scattering is turned on (8%0), then the inelastic scatter-
ing length, (k ) ', which is also proportional to W
becomes finite due to the factor (1—8)/8 in Eq. (51). If 8
is small such that the inelastic scattering length is larger
than some effective 1D localization length, then the elec-
trons cannot feel the 3D scattering and remain localized.
The critical 8, is thus the value of 8 at which the above
two lengths become comparable and the system loses its
1D character. The same physical interpretation of 8,
emerges from the localization length analysis at the end
of this section. It should also be noted that this 1D local-
ization effect becomes increasingly important as the band
edge (E/t =6) is approached, where the density of states
p(E) in Eq. (55) reduces to zero. This is the reason why
8, increases as E moves away from the band center.

Above 8„the value of W, /t is seen from Fig. 4 to have
a peak that is above the 3D isotropic value. This is due
to the net decrease of isotropic disorder, for a fixed 8', as
I9 decreases from 1. As a result, 8', increases with de-
creasing 8 until the 1D scattering catches up, at which
point W, plunges to zero rather abruptly. Another in-
teresting effect is noted to exist for E/t =5—6 [Figs. 4(d)
and 4(e)], i.e., close to the band edge. Here W, (8) is seen
to form a loop so that in a range of 0 values there can be
two values of 8, for a given 0. This reentry behavior
may be understood as follows. Since the density of states
is small near the band edge, the effect of increasing 8'is
to increase the density of states and to reduce the locali-
zation effect. Once the states become extended, further
increasing of 8' is then to enhance the 3D coherent-
backscattering effect and, hence, induce localization
again. This is similar to the reentry behavior seen in the
E/t )6 region of the isotropic system ' ' except that
the abscissa is E/t rather than 8. Figure 4(f) shows the
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mobility edge curve for E/t =7. Again the reentry be-

havior exists. However, the lower W, curve now ends at
some finite value of W, /t =7.0 as 0—+1, which recovers
the reentry behavior of an isotropic model for E/t )6.

The results presented above are obtained from di-

agrammatical analysis and are by no means rigorous. We
have also carried out numerical simulations by using the
finite-size scaling method described in the preceding sec-
tion. For any chosen cross section M XM, the transmis-
sion matrix t is calculated for a rod of N sites in length.
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FIG. 4. Values of W, /t plotted as a function of 8 for (a) E/t =0, (b) E/t =2,, (c) E/t =4, (d) E/t =5, (e) E/t =6, and (f) E/t =7.
The solid lines denote the results calculated from diagrammatical analysis. Simulation results are denoted by dots.
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The localization length L~ is then obtained by using Eq.
(64). The slope of the curve LM/M versus M determines
the nature of the states. In our numerical calculations,
the value of M runs from 2 to 8 and N up to 4X10 . In
Fig. 5, a typical result is shown for E/t =0, 0=0.4. The
behavior of LM /M is plotted as a function of M for vari-
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FIG. 5. Behavior of L/M plotted as a function of M for
E/t =0, 0=0.4, and various values of 8'/t. Curves with posi-
tive slopes denote delocalized states, and curves with negative
slopes denote localized states. The mobility edge in this case is

located between W/t =26 and 29.

ous values of 8'. The curves with positive slopes denote
delocalized states, and the curves with negative slopes
denote localized states. Mobility edge in this case is lo-
cated between 8', /t =26 and 29. From a collection of
these curves the approximate values of W, /t are obtained
as a function of E/t and 0. These are shown by dots in
Figs. 4(a) —4(e) together with the analytical curves. It is
seen that for E/t =0 [Fig. 4(a)] the agreement with nu-
merical results is remarkably good. Both the peak value
of W, /t as well as the sharp rise of W, /t beyond 8, are
well reproduced. The value of 0, =0.18 is also in reason-
able agreement with the extrapolated numerical value of
8, =0. 1 The reentry behavior is also seen at E /t = 5 and
6 [Fig. 4(d) and 4(e)]. Since the density of states is small
near the band edge, large fluctuations prevent us from
getting any reliable result when W/t is small. However,
both analytic and numerical results give consistent quali-
tative characteristics of this model, e.g. , the existence of
0„the reentry behavior, etc. The quantitative agreement
is noted to deteriorate as E/t increases towards the band
edge. This is due to various approximations used in the
theory. For instance, the third term for U' ' of Eq.
(C18), which has been ignored, might become important
in comparison with the second term when 0~1. The in-
clusion of this term could potentially enhance the 1D lo-
calization effect (or suppress the extended region), there-
by giving a closer agreement between the analytical and
numerical results in the region near the band edge.

The existence of a finite 0, is not found in the previous-
ly studied anisotropic models. ' In these models the
anisotropy comes from either the scattering potential or
the effective masses, while the site energy remains isotro-
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pic and random. It has been shown that, in the metallic
limit, all these models can be reduced to the single-
parameter scaling theory by making a suitable anisotrop-
ic scale change. Therefore, the system exhibits 3D An-
derson transition as soon as it deviates from strict one (or
two) dimensionality. In particular, this has been shown
explicitly for the anisotropic hopping model, where an
appreciable amount of disorder is always required to lo-
calize the E/t =0 state in a highly quasi-two-dimensional
system. In contrast, the anisotropy in our model is due
to the infinite correlation of randomness in each layer.
This infinite correlation gives rise to an effective 1D
scattering in the layering direction that conserves the
momentum in the transverse directions. Since this 1D
scattering provides a coherent-backseat tering effect only
in the layering direction but not in the transverse direc-
tions, distinct features from the previously studied aniso-
tropic model hopping emerge. Also, because of the pres-
ence of the 1D diffusion pole in the layering direction
[Eq. (48)] our problem is not reducible to a single-
parameter scaling theory even in the metallic limit.
Therefore, there exists no anisotropic scaling that can
reduce our model to an isotropic random model.

B. Localization lengths

In the localized region, the localization lengths gt and

gl can be obtained in general by solving Eqs. (61) and
(62). However, in the case of small randomness, their
asymptotic behaviors can be obtained as follows. Given
fixed E/t (E/t (6) to the leading order in W, Eqs. (51),
(55), and (58) can be written as

fthtdc'
1=- exp +

4~2 W2g 2 W4
(72)

and

with

1=- f(~)h~d

4n
(73)

a=tan ' h~

(h 2+ —2)1/2
(74)

b(0)"=
W

with

(75)

b (0)=h (0)+c (0)

By neglecting the first term on the right hand side of Eq.
(72), Eqs. (72) and (73) for c(0) and d(0) can be solved
and are indeed found to be Windependent. Higher-order
estimation from Eq. (62) suggests that g(0, W) behaves
like h~~

'W . Thus Eq. (70) gives the same asymptotic
behavior as the 1D result. However, Eq. (71) gives a be-
havior that is different from the standard 2D result of

-=( l/W') p( '/W'). '
Finally, we analyze how c(0) changes when the mobili-

ty edge is approached along a constant but small W/t.
By neglecting the 3D localization term in Eq. (61), the
remaining terms describe an effective 1D localization
problem with an effective localization length
pt=[(kot)2+(~ ]'~ . The function pt can also be written
in the form

k(to) h(0) W2

Ft =ft(0)W-
Fl =—f(((0)W

We can also write the momentum cutoff as

(65)

(66)

(67)
3.0 )

and

(0)W2+0
I

(68)
2.0—

k'= —= h (0) W'Xp

III

(69)

From Eqs. (61) and (62), the following asymptotic forms
for g~ and gl can be inferred:

(70)

1.0—

and

d(0)gl=g(0, W)exp (71)

00 I I I I

-7.0 -6.0 -5.0 -4.0 —3.0 —2.0 —& -0

In (0 — 0)

Here the W dependence of the function g(0, W) is a
power fortn. Equations (70) and (71) can be proved by in-
serting them into Eqs. (61) and (62). After integration, it
is found that

FIG. 6. At F. /t=0, W/t=10, the localization length as a
function of 0 in the layering direction g~(0) as obtained by solv-
ing Eqs. (61) and (62) (denoted by the dots). The slope in this
log-log plot shows that g~(0) diverges with an exponent —' near
the mobility edge I9*=0.215.
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01

c(0}=[b (0)—h (0)]

(g gp) =([87), +(1—0)y ][07/J„+(I—0)y„]),
8
12

[0 +(1—0) ] if a=P (i =j,m =n ),

Since h (8) and b(0) are, respectively, the quantities
that measure the inelastic scattering time and effective
1D localization length, b is always smaller than h ' in
the localized region so that c is real and positive. As the
mobility edge 8* (8'~8, as W~O) is approached, two

lengths become closer and c diverges. The expansion of
c (8) near 0' gives an exponent —,', i.e.,
c(0)~ (8—8'} '~ . In order to verify this exponent, we
have numerically calculated gi and g) from Eqs. (61) and

(62) for the case E/t =0, W/t =10, and 8'=0.215. In
Fig. 6 we show the log-log plot of gj(8) versus 8-8'. The
slope is indeed found to be exactly —

—,'.

V. CONCLUDING REMARKS

In this work, an anisotropically disordered model is
proposed where the site energy randomness is anisotropic
and intermediate between different dimensions. Both di-
agrammatical and numerical methods were used to study
its localization characteristics. The predicted phase dia-
grams show many new features not found in previously
studied anisotropic hopping models. At small random-
ness, the localization analysis in the localized region
shows a typical 1D behavior in the layering direction.
However, the behavior in the transverse direction is dis-
tinctly different from the standard 2D result. A critical
value of the anisotropy is found above which the system
makes the transitional 3D characteristics.

While our calculations are for the electronic tight-
binding model, we expect the qualitative features of the
results to be valid for classical waves as well. This
means, on the one hand, that in predominantly layered
systems (such as the Earth's subsurface) a small amount
of lateral inhomogeneities would not modify the qualita-
tive behavior of wave localization. ' Yet, on the other
hand, the deliberate control of lateral inhomogeneities
could offer a new handle not only on the 1D localization
length, but also on the observation of localization-
delocalization transition. For example, if one can intro-
duce a controlled amount of lateral inhomogeneities into
random superlattices, then the delocalization of electron-
ic states may be monitored by a change of sign in the
temperature coefficient of resistivity. Similar experimen-
tal possibilities exist for classical wave propagation
through randomly layered systems with transverse inho-
mogeneities. Related theoretical issues are under further
study.

8'
(1 —8) if a&P but m =n,

12

0 if a&P, mWn.

(A 1)

By defining S(q)=N(v(q)v( —q)), and using Eqs. (5)
and (6), one gets

S(q) =N ( v(q)v( —q) ),
1 iq (R —Rp)

c cp, e
a,P

W [8 +(1—8) ]
12

(1—0)~ iq. (R, —R )

e
t~j, m

(A2)

where the first term comes from the contribution when
a =p, while the second term comes from the contribution
from asap but lying in the same layer. Since

1=N g —1,
II q(( p

R))%0 R((

(A3)

with X~~ denoting the total number of sites in a layer, Eq.
(A2) can be expressed as

8'
S(q)= [8+(1 8) N„5 o] —. (A4)

In SCBA, the self-energy is therefore

g & v(q) ( —q) &,&
q

1—g S(q)Rp+q
q

W8 W(1 —8)
12N 12N

q q

(A5)

APPENDIX B

With the use of Eq. (7), it is easy to see that the first and
second terms on the right-hand side of Eq. (A5) do not
depend on p and p~, respectively. Thus the self-

consistent solution of Eq. (A5) leads to a self-energy that
does not depend on p~, and Eq. (A5) can therefore be
rewritten in the form of Eq. (8).

APPENDIX A

The derivation of Eq. (8), the self-energy expression in
the SCBA, is given here. Denoting a = ( i, m ) and
p=(j, n), it is easily shown that

Here the e pression p„„"' '(0+,E) of Eq. (12), due to
the contribution from all ladder diagrams that contain
only 1D scatterings (dotted vertex lines), is evaluated.
The contributions from Figs. 1(a), 1(b), l(c), etc., can be
written down and summed as follows:
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5„"„"' '(0+,E)=, g U„(p, )U„(p2)Rp (E)Rp (E)1

7T P P

W'(1 —8)'N
X 5 + 5( ) ( ) R+(E}Rp (E)+

Pl PP 12N

W(1 8—) N ~5 R+ (E)
Pl

II 3 II

P3

Pl Pg

1

1 —[W (1—8) /12N3] g R(p ) +(p ) R(p ) +(p )

(p))~

v„(p) }R+@1 14n. ' '1 —[W (1 8) /12—N)]JR(+ ) +( ) R( ) +( )

(P3)~

1 z 1

4n p &&(p ) 1 —[W (1—8) /12N) ] g [bR(p ) +(p ) /EX(p ) ]2 2
(Bl}

Here Eqs. (14)—(16) have been used in the last term of Eq.
(Bl). However, SCBA of Eq. (8) gives the relation

W8 W(1 —8}bX = ghR + QhR( )+( )
. (B2)

12N 12Nj
( )

shown in Fig. 2(h) where the momentum p3+ are given by
p3+=P3+k/2 with k=p, +p2. Since the momentum is
conserved at each vertex, i.e., p&+p3 =p3+ —

pz, it is
easy to see from Appendix A that this diagram gives a
term

yR A (0)(0+ E )—
xx & Z ~ZgZ g hR p(E)

Similarly,

yR A (0)(o+ E )
—yAR (0)(0+

y
AR(0)(()+ E )

—yR A (0)(()+ E )

Substituting Eq. (B2) into Eq. (Bl},yields

g U„(p) )bR (E)
Pl

(B3)

(B4)

g S(P)—P3+ p R
p S(P3+ P2),

P3

(Cl)

where S(q) is given by Eq. (A4). Similarly, the diagram
in Fig. 2(d) can be converted to that of Fig. 2(i), giving

g S(p) —p3+)Rp Rp
P3~P4

S(P3 P4}Rp Rp S(P4+ P2) '

By summing these diagrams to infinite order, the function
U' ' can be written as

Equation (19) is obtained by substituting Eqs. (B3) and
(B4) into Eq. (11).

APPENDIX C

To evaluate the maximally crossed diagrams shown in
Fig. 2(b}, the diagrams in the particle-hole channel is
redrawn so that it becomes the particle-particle channel.
The momentum of the lower lines are then reversed. By
using the time-reversal symmetry, the resulting ladder di-
agrams become equivalent to the standard form and
therefore can be summed. Following the above pro-
cedure, the diagram shown in Fig. 2(c) becomes the one

I

U' '(p) p2, ~ E}=X S(p) —P3+}
P3~P4

XP' ' (k;a), E)S(P4+ —p2)

= g S(P3+Q)gp 'p S(Q—P4},
P3 P4

with

Q=(p2 —p) }/2

(C3)

(C4)

where the function (t)p 'p (k;co, E ) satisfies the following

self-consistent equation

Pg

(C5)
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8 P( )(k, co, E)+8 (1—8) N((X( ) [c)[tI ) Q (k, co, E)+PI ) +Q (k co E ]

Substituting Eq. (A4) for the function S into EQ. (C3) and (C5), we have, respectively,
'2

2
)

W
12N

+( — )' '„g y,",' „„, „(, ,
P3 l'14 l

(C6)

and

where we have defined

P' '(k'cc) E)= g ()}' ' (k co E)
P3~P4

and

WO

(p5)

(C7)

(C8)

ct)'p '( k, co, E ) =g Pp
'
p ( k; co, E ) =g (()(

'
( k, cu, E ) .

P4 P4

(C9)

The symmetry of the function ()}' ' with respect to p3 and p4 can be seen by iterating Eq. (C5). Summing both sides of

Eq. (C7) with respect to p4, (p3)), p4, and p3, we obtain, respectively,

QJ'2 g2
g (I)' )(k;a),E)= 1+ P( )(k;co,E)+ g P( ' (k;co, E) g R+ (E+ )R (E ), (C10)

(P3)l (P3)i (P3)l

and

WOP' '(k, a), E)= 1+ Q' '(k;co, E) gR+ (E+ )R (E )+
12N

' ' 3+ + 3- 12N. P3

XgR+ (E+)R (E ) g PI ) +( ) (k ct) E)
P3 (P5)l

Solving Eq. (C10) for X( ) P
' and then substituting it into Eq. (Cl1) yields

g R+ R [1+(W 8 /12N)(t) ']
(P3)l(0)

( )
')) '' 1 —[W (1 8) /12N) ]Q—R+ R

P3

and

(Cl 1)

(C12)

y(0)(k, ~,E)=

+ 1
QRp Rp +

1 —[W (1—8) /12N~] g R[( ) +(p ) ] R[(p ) +(p ) ]
(P4)l

1 —( W 8 /12N )g R + R
p

" " 1 —l~'(1 —8)'/12Nl]r R[( )+(p)] R[(p)+(p)]
(P4'l

(C13)

The functions pI ') +Q in Eq. (C6) are obtained by setting (p3)((= Q(( in Eq. (C12). With the use of the relations
II

p3+=p3+k/2=p3+(p)+pz)/2 and Eq. (C4), we find

W0
X P(",)) Q (k;co,E)=F{(p))(),(p, ))(,k„.co, E} 1+ P(o)(k;co, E) (C14)

and

W2g2
Q PIp') +Q (k;co,E)=F{(p2)(),(p)))), k);co,E} 1+ P' '(k, co, E)

(P3)l

(C15)
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with

(p ) +(pi)i+ki/2 + —(p))((+ p3
((

—ki/2
(P3)~

F((p) )(~, (pp)((, ki, ~,E)— +
1 —[W (1—8) /12Ni] g R(p ) +(p ) +k /q(E+ )R (p ) +(p, ),—k, n(E )

(P3)~

(C16)

Siinilarly, the last term in Eq. (C6) can be obtained by setting (p3)~~(=
—

Q((, (p4)(~~ =Q(~~ in Eq. (C7} and summing both

sides with respect to (p3)i and (P4)i. We find

Substituting Eqs. (C14), (C15), and (C17) into Eq. (C6), we obtained

pf 2

U (p„p„ , E)= W8~+( I —8) 8 F((p()(~~, (p~)((, k, ;co,E)
12N~

2 2

+(p ) Q (p ) +Q (k, co, E )=F((P) }II,(P i)ll, k;co, E) 5(p ) (p )
+ X pg +(p ) (k, m, E )

(P3)~, (P4)~ (p4)~

(C17)

8'
X 8 +(1—8)'8 F (pz)(), p, (), i'co, P' '(;~, )

12N

+(1—8) N((F((p) )((, (pz)((, ki;co, E}5(p ) (p )

+8 (1—8) N~~[F((P() (,((Pz)~~, k iso, E)

+F((p&)((,(p) )((,k»~, E)]+8 (1—8)' F((p())~~, (p, )(~~, k»co, E)

XF((pp II' p) )I('k)', co,E ) (C18)

The first term of Eq. (C18) contains a factor P( '(k;co, E), which is shown to be a 3D diffusion pole in Appendix D. The
second term is noted to contain a factor (1—8) coming from the 1D scattering alone. The last two terms, which van-
ish in both the L9~0 and 0~1 limits, arise from a mixture of 3D and 1D scattering. Without losing the qualitative
feature of the problem, these two terms have been ignored in Eq. (26) of the main text.

APPENDIX D

In this Appendix, we will show that in the hydrodynamic limit the functions (t)' ' of Eq. (28) and F of Eq. (31) can be
written in the forms of Eqs. (32) and (33), respectively. Using Taylor s expansion up to first order in co and second order
in k, we have

1
R p (E+ ) =Rp+k/~(E+co/2) =

E+co/2 E(p+ k—/2) Xp+k/—z(E+co/2)

(Dl)

The function R
p (E) can also be expanded in a similar way. By using these expansions, the function A of Eq. (30) be-

comes

A((p3)((y~&E)—= g ' — ' ——— '
U&((p4)~) &+

&
v„((p3)(()

12N
(P4)l (P3)ll (P3)ll (P3)ll (P3)ll

1 + 8 c3

4 8 qaBp Bpl
(D2)

where we have defined q as (P3)((+(p4)i, and Eqs. (14) and (15) have been used in deriving Eq. (D2). The terms linear in

kz disappear under summation of (p4)i due to the accompanying factor U((p4)i}. Since the first term of U™[in Eq.
(26)] is basically due to 3D isotropic scattering, we can expand the function (1—A ) in Eq. (28) in powers of (1—8) .
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With the use of Eq. (8), we find from Eq. (D2), with some manipulation,

[1—A ((p3) II, co, E }]
2

W'(1 —g)'
M 12%q

(b,R ) ~ 1 b,R
Xg —+-

( p )
i5

8~
IIk2

( p )
2 2 Leak X( p )

2 (bRq) kll~I4 I ) t —
vll((PB)II ) ~

t}Jp, t}pt dpi dpi

'2
(D3)

with

PW 9 (E). (D4)

Similarly, the function Rp (E+ )R (E ) is expanded to the order co and k . With the use of the Eq. (40), after some
p3+

lengthy algebraic manipulations, the following result is obtained

8 0 g R+ (E+ )R p (E )[1—A ((p3)II', co,E)] '=-1—
'+ ' m. W 8 p(E)p

AR
k2

II II
3U (E)k

srW 8 p(E)

leo+ g vz((p3)t)
2npX „ (P3)ll

(D5}

By substituting Eq. (D5) into Eq. (28), the leading term yields Eq. (32).
The expansion of the function F in Eq. (31) is much simpler due to the absence of kII. Equation (Dl) gives immediate-

ly

+g R(p ) +(p3)1+I,i/~(E+)R(p ) +(p3)t k~/~(E )-=g
(p3)~ (p3)~

~~(p ) +(p ), (Pl)II+(P3)
2

AX( ) 2| !wLR (p ) +(p )

&t«s'3)t)kt
(Pl)II

Substituting Eq. (D6) into Eq. (31) and using Eq. (8), we obtain Eq. (33) as the leading term.

(D6)
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