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different crystal structures we compare calculations for
the same crystal structure for all the elements. The
chosen structure is the fcc structure which agrees with
experimental room-temperature data only for thorium.

Recently Moruzzi, Janak, and Schwartz calculated the
thermal expansion for the fcc and bcc 4d transition ele-
ments and some other metals. The obtained good agree-
ment with experimental data encouraged us to treat the
thermal expansion of the actinide elements in a similar
way. In order to calculate the thermal expansion we have
used Helmholtz free energy which is expressed as a sum
of contributions from electrons and phonons. The lattice
contribution is derived from a quasiharmonic treatment
using Debye and Griineisen theory. This contribution ac-
counts for the temperature dependence of the free energy
since we neglect thermal excitations of the electrons in
the calculations. To facilitate the analysis of the calculat-
ed results the Helmholtz free energy is least-square fitted
to a Morse function. The equilibrium bulk properties are
then easily obtained from this analytical representation of
the free energy. The calculated change of the equilibrium
volume as a function of temperature leads directly to the
linear coefficient of thermal expansion by a numerical
differentiation of the equilibrium radius with respect to
the temperature. In Sec. II we present the details of our
calculations of the electronic contribution to the free en-
ergy. These calculations have been performed at different
levels of approximations where the most elaborate one in-
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eludes the effect of the spin-orbit interaction. In Sec. III
we first introduce the Debye theory for harmonic lattice
vibrations to derive the expression for the free energy.
The theory is then extended to include anharmonic lat-
tice vibrations by applying the Griineisen formulation.
We allow the system to expand with temperature and re-
calculate the Debye temperature and Griineisen constant.
Section IV accounts for the calculated results. Bulk
properties calculated within both a scalar and a fully rela-
tivistic approach are presented for all five elements. For
comparison, calculations are also presented where only
the s, p, and d partial waves are included and where all
the 5f electrons are forced into the spd conduction band.
This corresponds to the case that the actinide elements
really would form a 6d transition series of elements, a
view which was still rather commonly held a decade ago.
Finally a discussion is given in Sec. V.

II. DETAILS OF THE ELECTRONIC
STRUCTURE CALCULATIONS

The electronic part of the Helmholtz free energy is de-
rived from self-consistent electronic structure calcula-
tions. These are done using the local-density approxima-
tion (LDA) (Ref. 8) for the exchange-correlation potential
with the von Barth —Hedin parametrization. The equa-
tion of state is calculated by means of the linear muffin-
tin-orbital (LMTO) method' '" for Wigner-Seitz radii
spanning the range of approximately +5—10% of the
equilibrium radius, in intervals of 0.02 a.u. The LMTO
problem is solved within the atomic-sphere approxima-
tion (ASA) where also the so-called combined correction
terms' have been included. Scalar relativistic calcula-
tions, including relativistic shifts except for the spin-orbit
term, and fully relativistic calculations, including the
spin-orbit interaction, ' are compared. All calculations
are performed for a fcc crystal structure and 89 k points
in the irreducible part of the Brillouin zone have been
used. For the three heaviest elements in the present in-
vestigation (uranium, neptunium, and plutonium) the ful-

ly relativistic calculations were performed more carefully
with a higher accuracy. These calculations, which used
240 k points, were converged to the order of 0.01 kbar in
pressure for the Wigner-Seitz radius in intervals of 0.01
a.u. This more elaborate treatment was particularly im-
portant for plutonium since for this metal the calculated
equation of state near the equilibrium radius was difficult
to fit to an analytical function. (See the Appendix for de-
tails of the fitting function. )

In order to investigate how sensitive the obtained re-
sults are to the actual choice of crystal structure in the
electronic structure calculations, we have also performed
calculations for an assumed room-temperature bcc crys-
tal structure for uranium, neptunium, and plutonium.
These calculations, which include the spin-orbit interac-
tion, were performed using 56 k points in the irreducible
part of the Brillouin zone.

FIG. 2. A comparison between experimental values of the
linear coefficient of thermal expansion for the 4d and 5f transi-
tion metals (Ref. 17). The value for Pa is an estimation.

III. THEORY FOR THE FREE ENERGY

It is simple to obtain a number of ground-state bulk
properties of a system provided that there is an analytical
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representation of its free energy available. For this pur-
pose we have performed self-consistent Morse fits to the
calculated free energy at different temperatures. In
agreement with the work by Moruzzi et al. the free en-

ergy is represented as a Morse function with the Wigner-
Seitz radius (r) and the temperature (T) as variables

F(r, T)=be "+ce "(+const) .

Here b, c, and k account for the temperature dependence
and the last term is a constant of no importance for the
present investigation. This yields, directly from the
fitting parameters b, c, and k, the finite-temperature equi-
librium properties such as atomic volume, bulk modulus,
and entropy. The thermal expansion is then obtained nu-

merically from the calculated equilibrium volume by
means of a second-order central difference formula. In
order to make this article relatively self-contained we will

review the formalism necessary to calculate the free en-

ergy.

A. Helmholtz free energy

The total free energy for a metallic system is, at least
for moderate temperatures, dominated by the separate
contributions from electrons and phonons. It is physical-
ly well justified to neglect the electron-phonon coupling
as well as the entropy contribution from the electrons.
Neglecting also the thermal dependence of the electronic
structure the finite-temperature free energy F(r, T) takes
the form

F(r, T) =E,(r)+E h(r, T) TS I, (r, T)—.

E, and E h are the electron and phonon contributions to
the energy, respectively, and S h is the phonon entropy.
Godwal and Jeanloz' introduced a contribution from
thermal excitations of the electrons but for temperatures
up to room temperature this contribution to the equation
of state was found to be negligible in the present investi-
gation. The temperature-independent analytical ansatz
for the electron energy, E„is of the same analytical form
as above for the Helmholtz free energy, namely a Morse
function

3
T 0/T EF(r, T)=E,(r) —k&T 3 — f dx

QH 0

3 l ( l 8/T)
8T

where the integral is recognized as the Debye function.
The Debye function is available in tabulated form' but is
more conveniently represented analytically by cubic
splines or other functions fitted to the tabulated data.
The free energy is now determined except for one param-
eter, the Debye temperature.

B. Debye temperature

First we apply Debye theory in order to derive an ex-
pression for the Debye temperature, valid for the equilib-
rium lattice separation. As is well known, however, the
Debye theory only considers harmonic vibrations of the
lattice and cannot account for the thermal expansion
which instead is a consequence of anharmonicity of the
lattice vibrations. The anharmonic behavior of the lattice
is often treated by means of Gruneisen theory. To do this
we extend the expression of the Debye temperature to in-
clude a dependence on the lattice separation which will
be described by the Gruneisen parameter y. For a given
temperature, however, the Gruneisen parameter is ap-
proximated by a constant and its value depends on the
free energy itself, or rather the equilibrium volume which
is obtained from the free energy. The determination of y
therefore requires an iterative procedure, which is found
to converge rapidly. A self-consistent analytical repre-
sentation of the free energy at the actual temperature is
then obtained. This approximation of the lattice behav-
ior with a mixture of Debye and Griineisen theory and a
constant y for a given temperature is of a so-called
quasiharmonic type.

In the Debye theory the highest phonon frequency is
the cutoff frequency, ~D, given by

' 1/3
6m v

V—
d'or

—2A,orE,(r)=boe '+coe '+const . (3)

The parameters b0, c0, and A,0 are adjusted to fit the equa-
tion of state, P, =P, (r), obtained by means of LMTO
electronic structure calculations (see the Appendix). The
phonon energy contains the thermal energy, U, derived
from Debye theory, and the zero-point energy E0. The
phonon energy is expressed as

3
0/T 9k~0

Eph U+E0 9kB T dx+
Pw 0 x 8

(4)

where 0 denotes the Debye temperature and k~ is
Boltzmann's constant. Inserting the corresponding ex-
pression for the phonon entropy (see the Appendix) the
free energy takes the form

Here V is the Wigner-Seitz volume and v is the average
velocity of sound in the crystal. With r as the Wigner-
Seitz radius the Debye temperature becomes

hCOD AUm 9Q~=
2m.k~ rk~

1/3

As a good approximation for isotropic crystals" we use
an average value for the velocity of sound expressed in
the shear and longitudinal velocities, v, and UI

..

1 2 1
Um + (&)

3 U3 U3
s 1

The mean velocity v is expressed as a function of the
bulk modulus 8, which in this case is calculated for a
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static lattice by means of the fitting parameters bo, eo,
and Xo in Eq. (3) (see the Appendix).

From the assumption of an isotropic crystal' one can,
with Poisson's ratio v and the atomic mass M as the only

l

input, approximately calculate the Debye temperature
from first-principles electronic structure calculations.
With Eqs. (7) and (A12) the Debye temperature is ex-
pressed as

2 2

3 1 —2v

' 3/2
1 1+—
3 1 —v

3/2 —1/3
3

1+v

1/2 1/2

(9a)

p. = h

kq

4m

3

In the work by Moruzzi et al. Poisson's ratio is ap-
proximated to be —,

' independent of the element. This is

appropriate for the 4d transition metals and a number of
other metals but somewhat less accurate for the light ac-
tinide elements. The early actinides have Poisson s ra-
tio' of about 0.25 except for plutonium where it is only
0.15. Therefore the generalized expression above, consid-
ering the different Poisson's ratio, is needed to obtain the
Debye temperature. However, in order to keep the calcu-
lations free from experimental input, 0.25 is used as a
representative value for Poisson's ratio for all the present
actinide elements. By explicit calculations we have found
that the calculated properties are rather insensitive to the
actual choice of Poisson's ratio.

Introducing a function f(v) the expression for the De-
bye temperature in Eq. (9a) is rewritten in the form

—1/6 ' ' 1/2

f (v) (9b)

from derivatives of the static lattice pressure

V $2PggV2
y 3 2 dP/d V

(13)

This form of y is often referred to as the Slater approxi-
mation, ' and is one of three commonly used expressions
for the Griineisen parameter. In Eq. (13) the pressure is
obtained from the electronic structure calculations, i.e.,
no zero-contribution to the pressure is included. ' This
leads to a rather complicated expression for the
Gruneisen parameter as a function of volume, involving
the Morse parameters bo, co, and Ao in Eq. (3). The
Gruneisen parameter, however, evaluated at the equilibri-
um radius, ro(T), is used to define a constant Griineisen
parameter at the given temperature, T. With a constant
Gruneisen parameter for a fixed temperature we obtain
from Eq. (11) the nonlinear relation 8Vr =const, which
gives the volume dependence of the Debye temperature
as

When the radius and the atomic mass are given in atomic
units and the bulk modulus in kbar the Debye tempera-
ture is given by (in K)

ro
O(r, ro) =80

3r

(14)

' 1/2

8=67.48f (v) (9c)

where the bulk modulus is calculated at the equilibrium
radius.

So far we have not included the anharmonic behavior
of the lattice vibrations. For this purpose we define the
Gruneisen parameter'

0 lnp
3 ln V

Then the expression for the Debye temperature in Eq.
(9b) is used to derive the Griineisen parameter as a func-
tion of volume and bulk modulus and we obtain

1 1 BlnBy=
6 2 BlnV

(12)

From the definition of the bulk modulus in the Appendix
[Eq. (A6)] we can directly derive an approximation to y

For convenience we label the Debye temperature as 80
when it is evaluated at the equilibrium radius, ro. It de-
pends implicitly on the temperature, since ro is a function
of T, and is given by

' 1/2
roB(ro)

80——8(ro)=67.48f (v)

This expression for the Debye temperature is the same as
that used by Moruzzi et al.

We have now reached a stage at which the volume
dependence of the total free energy can be calculated for
a given temperature. In order to obtain the variation of
the equilibrium radius as a function of temperature,
ro(T), the above-described method with self-consistent
Morse fits to the free energy is carried out as a function
of temperature. At each temperature we apply quasihar-
monic theory and the new free energy is obtained from
the calculated Debye temperature and Griineisen con-
stant. In practice this is performed for increasing tem-
peratures starting at zero temperature, where the free en-
ergy is dominated by the electronic part. In Eq. (3) the
Morse fit to the electronic contribution serves as a good
starting solution for the iterative Morse fittings to the
free energy in Eq. (1) at zero temperature. The tempera-
ture is then slowly increased stepwise in order to main-
tain good starting solutions in the iterative procedure. In
this manner rapidly convergent Morse fits to the free en-
ergy is obtained. Having obtained a self-consistent Morse
fit and therefore ro(T), the linear coefficient of thermal
expansion is simply calculated as

dro(T)

ro(T) dT
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A. The atomic volume

In Fig. 3 and Table I the calculated room-temperature
equilibrium volumes for the earlier actinide metals are
shown for different levels of approximation. As can be
seen the difference between the atomic volumes at room
temperature obtained from scalar relativistic and fully
relativistic calculations is small for all the actinides ex-
cept for neptunium and plutonium. This agrees well with
the zero-temperature results obtained by Brooks. Espe-
cially for plutonium the fully relativistic calculations give

40- experiment
spin-orbit
scalar
no Sf electrons

35

IV. RESULTS

Several bulk properties are easily obtained from the
analytical representation of the room-temperature free
energy. In the present work we are particularly interest-
ed in the thermal expansion and the atomic volume. In
order to obtain the thermal expansion it is also necessary
to calculate the bulk modulus and the entropy (see the
Appendix) both of which are found to be in reasonable
agreement with experimental data. It deserves to be
mentioned that the influence of the spin-orbit coupling on
the calculated bulk modulus is most significant for nep-
tunium and plutonium. The lowering of the bulk
modulus is indeed substantial for plutonium and the cal-
culated result is in good agreement with experiment. The
behavior of the calculated entropy through the series is
found to resemble the experimental data quite well, even
though there is a nearly constant discrepancy of the order
of 10%.

TABLE I. Calculated and experimental values for the atomic
volume. The experimental values are from Donohue (Ref. 22).
The calculations of the equation of state are performed at vari-
ous levels of approximation: (i) spin-orbit coupling (spin-orbit),
(ii) scalar relativistic without spin-orbit coupling {scalar), (iii) no
5f orbitals and no 5f electrons (no 5f) Th.e spin-orbit calcula-
tions have also been assigned a pressure correction (see rpain
text) in order to obtain the experimental atomic volume. The
results are denoted by "AP."

Vexpt

spin-orbit

Vscalar

Vno 5f

Th

32.9
32.9
34.0
34 4
40.4

Pa

25.0
25.0
26.3
26.5
34.7

U

20.8
20.8
21.8
21.4
30.7

Np

19.2
19.2
19.0
18.6
28.4

PU

20.0
20.0
19.4
17.0
27. 1

a rather pronounced increase of the atomic volume, con-
siderably improving the agreement with the experimental
value. The calculated atomic volumes are slightly larger
than the experimental ones ' for thorium, protactini-
um, and uranium, while they are slightly smaller for nep-
tuniuIn and plutonium. Since the absolute value of the
atomic volume influences the thermal expansion, calcula-
tions with a correction to the equation of state, obtained
from electronic structure calculations, have been per-
formed. This has been done in the simplest possible way,
namely by adding a constant pressure term to the elec-
tronic pressure in order to obtain a room-temperature
equilibrium volume in agreement with the experimental
data (see Sec. V).

The results from calculations including only s, p, and d
valence electrons are also shown in Fig. 3 and will be
commented on later. For uranium, neptunium, and plu-
tonium the equilibrium atomic volumes obtained from
calculations for an assumed bcc phase are found to be
5—10% smaller than the atomic volumes obtained from
calculations referring to the fcc phase.

B. The linear coefticient of thermal expansion

0
& 30

E

25

20

Th Np Pu

FIG. 3. The calculated atomic volumes at various levels of
approximation for the earlier actinide metals together with the
experimentally observed atomic volumes (Ref. 22).

Figure 4 shows the calculated linear coeKcient of
thermal expansion in two different approximations for
the earlier actinide metals. The first approximation,
where the elements are regarded as part of a 6d transition
series, is denoted by "no 5f electrons" in the figure. The
second approximation to the thermal expansion is ob-
tained from the scalar relativistic calculations where the
5f electrons are included in the treatment. These calcu-
lations are denoted by "scalar" in Fig. 4. The spin-orbit
interaction is sti11 neglected at this level of approxima-
tion. Also shown in the figure are the experimental
values collected by Gschneidner, ' except for uranium
where the value is taken from Barett et al. (see Table
II).

For theoretical interest we performed calculations
where the 5f electrons and 5f orbitals were omitted in

the treatment. The 5f electrons were for this purpose
placed in the 7s, 7p, and 6d conduction band. This treat-
ment of the valence electrons yields much too large equi-
librium volumes (Fig. 3) and much too small values for
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tinides this indirectly proves that these elements form a
new type of transition series, clearly distinct from the d
transition series of elements. The scalar relativistic calcu-
lations do not show any dramatic rise of the thermal ex-
pansion for the elements beyond uranium but still they
show a considerably higher thermal expansion than the
calculations where the actinides were considered as a 6d
transition series. Already within the scalar relativistic
treatment of the 5f electrons the calculated thermal ex-
pansion of the medium —heavy actinides is a factor of 2
larger than expected for a d transition series of elements.
This demonstrates that at least for certain bulk properties
itinerant 5f electrons give rise to a different general be-
havior than what is characteristic for d transition sys-
tems.

In Fig. S the results from the fully relativistic calcula-
tions are displayed and it can be immediately seen that
the results for the thermal expansion are now greatly im-
proved. In contrast to the scalar relativistic calculations
above these calculations include the effect of the spin-
orbit coupling. The thermal expansion obtained from
these calculations are denoted by "spin-orbit" in the
figure. In order to reproduce the experimental atomic
volume we have also made calculations where the elec-
tronic pressure is corrected by adding a constant pressure

FIG. 4. The calculated linear coefficient of thermal expan-
sion for the earlier actinide metals together with the experimen-
tally observed values (Ref. 17, except for U, Ref. 24). The
theoretical values are obtained from scalar relativistic calcula-
tions (i.e., without spin-orbit coupling) as well as from calcula-
tions where no 5f electrons or Sf orbitals are included. They
are denoted by "scalar" and "no 5f electrons, " respectively.

the linear coefficient of thertnal expansion (Fig. 4). The
general behavior of the atomic volume is, however, simi-
lar to that of the 4d and Sd elements. It is most interest-
ing to notice that in this treatment the thermal expansion
becomes almost identical to the thermal expansion of the
4d and Sd transition elements. In view of the experimen-
tally observed anomalous thermal expansions of the ac-

50

CD
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q
40-
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o 30
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v 20
C

TABLE II. Calculated and experimental values of the linear
coefficient of thermal expansion for Th, Pa, U, Np, and Pu. The
experimental values are from Gschneidner (Ref. 17). For urani-
um we have also listed an additional experimental value from
Barret et al. (Ref. 24). For the notation compare table heading
of Table I.

10

(10 'K ') Th Pa

&expt

Qgp

~spin-orbit

+scalar

ano Sy

11.2
12.3
14.2
13.6
10.0

(7.3)'
6.4
7.7
6.4
4.9

"'Estimated value (Ref. 17).
From Barett et al. (Ref. 24).

143 b12.6
10.4
12.8
9.2
4.8

Np

26.5
17.3
16.0
11.1
6.6

PU

55.0
41.0
33.2
11.4
4.0

I

Th Pa U PU

FIG. 5. The calculated linear coefficient of thermal expan-
sion for the light actinide metals together with the experimen-
tally observed values (Ref. 17, except for U, Ref. 24). The re-
sults from fully relativistic calculations are denoted by "spin-
orbit" and from pressure corrected calculations by "hP."
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term to the equation of state. These corrected calcula-
tions, which constitute the final level of approximation,
are denoted by "AP"' in Fig. 5.

As can be seen from Figs. 4 and 5, when scalar relativ-
istic (scalar) and fully relativistic (spin-orbit) calculations
are compared, the increase of the thermal expansion due
to the spin-orbit interaction is small for thorium but in-
creases when we proceed to heavier actinides. The in-
crease for plutonium is large and with the inclusion of the
above-mentioned correction for the pressure it is indeed
most substantial. The thermal expansion, calculated with
the spin-orbit coupling included, is in satisfactory agree-
ment with experimental data for the first three actinides.
(The experimental value for protactinium is, however,
only an estimation. ) As regards the absolute value the
agreement is not so good for neptunium, but the calcula-
tions reproduce the experimental data in the sense that
we calculate a considerably higher value than for urani-
um. The calculated thermal expansion for plutonium is
also found to be smaller than experimental but much
higher than for neptunium, when the spin-orbit coupling
is included. In this respect the fully relativistic calcula-
tions account quite well for the experimentally observed
anomalous rise between neptunium and plutonium. Thus
we have demonstrated that the anomalous thermal ex-
pansion of the actinides to a large extent can be account-
ed for when the spin-orbit interaction is included in the
calculations.

As mentioned above we have also performed calcula-
tions for the bcc crystal structure. The thermal expan-
sions obtained from these calculations were found to be
relatively close to the thermal expansions obtained for
the fcc phase.

V. CONCLUSIONS

Analysis of the calculations shows that the 5f electrons
of the medium —heavy actinides greatly affects their
thermal expansion. The infiuence from the 5f electrons
can be divided into two steps depending on the level of
approximation. Firstly, the scalar relativistic results, in
comparison to the results from calculations where the 5f
states are totally neglected, demonstrate that for all the
light actinides the 5f electrons give a positive contribu-
tion to the thermal expansion. Thus the thermal expan-
sion becomes about twice as high as when the actinides
are considered as a 6d transition series. Secondly, it is
only when the spin-orbit interaction of the 5f electrons is
included in the calculations that the anomalous rise of
the thermal expansion for the elements beyond uranium
becomes apparent. In the present work we have shown
that for plutonium the thermal expansion thereby in-
creases by about a factor of 4 relative to the scalar rela-
tivistic result.

When the actinides are treated as a 6d transition series
the calculated thermal expansion remains practically con-
stant as one proceeds along the series. In contrast, when
the 5f electrons are included within the scalar relativistic
calculations the thermal expansion increases with in-
creasing atomic number beyond Pa. This is explained by
the increasing occupancy of the 5f orbitals with increas-
ing nuclear charge. In this respect the thermal expansion

confirms the picture of the early actinides as part of a 5f
transition series and not a 6d transition series since the
thermal expansion is considerably affected by the occu-
pancy of the 5f band. The treatment of the valence elec-
trons as 7s7p6d electrons in a 6d transition metal has also
a pronounced effect on the calculated atomic volume,
which is found to increase considerably. It is most in-
teresting to notice that in this treatment the calculated
absolute values of the thermal expansion and general be-
havior of the atomic volume actually compare very well
with the behavior of the 4d and 5d elements. Indirectly
the very different values of the thermal expansion ob-
served experimentally for the actinides relative to the d
transition elements give strong evidence for a direct in-
volvement of the 5f electrons in the bonding of the ac-
tinide metals.

The splitting of the 5f band due to the spin-orbit cou-
pling gives rise to a most anomalous increase of the
thermal expansion with atomic number. This behavior
becomes more evident as we proceed through the actinide
series and it reflects the fact that the spin-orbit splitting
of the 5f band is increasing with increasing nuclear
charge and hence its effect on the bulk properties be-
comes more pronounced. For plutonium the effect is
especially large and gives a linear coefficient of thermal
expansion that is about a factor of 10 larger than would
have been expected for a d transition element with eight
valence electrons.

The small pressure correction which was added to the
equation of state for plutonium (21 kbar) and for neptuni-
um (15 kbar) gives a higher value of thermal expansion
since the correction causes the equilibrium volume to be
displaced to a more volume-dependent regime of the
equation of state. For the other elements in the present
treatment the situation is the opposite. Here the pressure
correction leads to a displacement of the equilibrium
volume to a somewhat less volume-dependent regime of
the equation of state and the result is a decrease of the
thermal expansion.

In spite of the fact that the present calculations clearly
exhibit the anomalous thermal expansion behavior of the
actinides there is a remaining discrepancy between theory
and experiment for neptunium and plutonium. This
discrepancy is most likely due to our simplified treatment
of the crystal structure. The self-consistent electronic
structure calculations are performed for an assumed cu-
bic symmetric structure and the approximate calculation
of the 0ebye temperature is based on the same
simplification.

The comparison between the linear coefficient of
thermal expansion obtained from calculations corre-
sponding to fcc and bcc crystal structures have shown an
insensitivity to the choice of cubic crystal structure. The
calculations have only been performed for cubic symme-
try and the computed thermal expansion is therefore
necessarily isotropic. The imposed cubic crystal struc-
ture only applies for thorium, which has a fcc structure.
The other elements have unsymmetric crystal structures
that are far more complex. This means in particular that
their thermal expansion is anisotropic and the experiment
by Lawson et a/. has shown that the lattice parameters
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for uranium have different temperature dependence. One
of them is actually decreasing with temperature and the
corresponding coefficient of thermal expansion is there-
fore negative. Similar behavior is also known experimen-
tally for neptunium and plutonium. The experimental
data we have used refer to average values, and the calcu-
lations, due to the cubic symmetry, only give a single
coefficient for the thermal expansion.

At room temperature uranium has an orthorhombic
structure with four atoms per unit cell. The crystal struc-
ture of plutonium is even much more complicated. It has
a monoclinic structure with 16 atoms per each unit cell
and this highly unsymmetric configuration is most likely
the origin of the remaining discrepancy between the
present calculations and experiment for the thermal ex-
pansion of plutonium. Similarly neptunium has a com-
plex orthorhombic structure with eight atoms per unit
cell at room temperature. Thus also this structure is con-
siderably more complex than the assumed fcc phase in
the calculations and again we conjecture that this is the
main reason for the remaining difference between our
computed results and the experimental data.
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APPENDIX

At a given temperature the Helmholtz free energy is
fitted to a Morse function, given by

F(r) =be '+ce "+const . (Al)

P( )
BF( V)

av (A2)

takes the form

The constant is of no importance since it will not
inAuence the calculated bulk properties. The equation of
state which is defined as

4m.r
3

(A4)

Since equilibrium corresponds to a minimum of the free
energy or equivalently, zero pressure, the equilibrium ra-
dius can be formulated in terms of fitting parameters as

1
ro =—ln

2c
b

(A5}

The bulk modulus defined as

)
BP( V)

av

simplifies at equilibrium to

(A6)

8 (ro) = (b +4ce ') .
12m ro

(A7)

(A8)

where the integral is available in tabulated form. Howev-
er, one can also easily use the free energy to directly ob-
tain the entropy as

BF(,T)
aT

(A9)

These two expressions have been used as an internal con-
trol of the numerical treatment. The entropy obtained
this way is slightly smaller than experimentally observed
entropy. The discrepancy is almost constant for the
elements and it is of the order of 10%.

Within the approximation of a perfect elastic and iso-
tropic crystal the longitudinal and shear velocities VI

and U, in Eq. (8) can be obtained from the relations in-

volving the elastic constants 6 and E, which are the shear
and Young*s modulus, respectively:

V1=
G 4G —E
p 3G —E

1/2

Vs=

1/2
6
P

(A10)

where p is the mass density. From Eq. (A10) and the fol-
lowing relations for the shear and bulk modulus, where
v is Poisson's ratio:

Within the Debye approximation the contribution to the
entropy from the phonons can be calculated from the fol-
lowing expression:

3

S h =3k' 4 — f dy —ln(1 —e )
8/T y —8/T

ph B
p~ 0

kf
P(r)= (b+2ce "),

4m. r
(A3)

G=—,8=E E
2(1+v) 3(1—2v}

(A11)

where r is Wigner-Seitz radius which is related to the
atomic volume Vby we derive the mean velocity in Eq. (8) as

4~
v =r

m

1/2
2 2

3 1 —2v

3/2
1 1+—
3 1 —v

' 3/2 —1/3
3

1+v

1/2 1/2

(A12)
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