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Effect of the Haldane gap on quasi-one-dimensional systems
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A quasi-one-dimensional S= 1 Heisenberg antiferromagnet with a single-ion anisotropy

Dg, (Si')'. is investigated. By treatment of interchain interactions with coupling constant J as a
mean field, this system has been revealed to have a disordered ground state due to an effect of the
Haldane gap, if J is small enough. By use of this approximation and application of the finite-size-

scaling technique to a chain, the ground-state phase diagram in the JD plane is presented. This

analysis leads to the prediction that Ni(C2H8N2)2NO2(C104) has no Neel order even at T=O. In ad-

dition it is found that the phase transition with respect to D ( &0) for a chain belongs to the two-

dimensional Ising-model universality class, which agrees with Haldane s conjecture.

I. INTRODUCTION

Since Haldane' predicted that an antiferromagnetic
Heisenberg chain has an energy gap and a massive
ground state for integral S, while not for half-integral S,
this prediction has been supported by many theoretical
studies, especially for 5=1. The approaches used in
those are, for example, finite-size scaling, numerical diag-
onalizations, Monte Carlo calculations, analyses of an
exactly solvable model, ' a variational method, etc. In
addition, some recent experimental studies gave evidence
of the Haldane gap for CsNiC1& (Ref. 7) and
Ni(CzHsNz)zNOz(C104), "abbreviated NENP.

Real materials taken as one-dimensional systems must
have small interchain interactions. Such a quasi-one-
dimensional system usually has three-dimensional long-
range order at sufficiently low temperature. Actually
CsNiC1& has Neel order below Tz(=-4. 9 K). But NENP
has no Neel order, at least down to 1.2 K. This property
of NENP suggests that, if interchain interactions are
small enough, the system has no Neel order even at T=O,
owing to large quantum fluctuations. It may be strange
that a three-dimensional system has such a disordered
ground state characteristic of one dimension, in spite of
topological differences. However, the absence of Neel or-
der even at T=O has been supported by some theoretical
studies, which are the perturbative approach, ' the field
theoretical analysis, ' the mean-field approximation for
interchain couplings, ' and the rigorous proof in the re-
duced Hilbert space. ' Such a disordered ground state is
one of the interesting quantum effects attributed to the
Haldane gap. Of course, it does not appear for half-
integral-S quasi-one-dimensional antiferromagnets, be-
cause the correlation length of the ground state is infinite
even for a chain and even infinitesimal interchain interac-
tions may produce the long-range order. '

In this paper we investigate the S= 1 quasi-one-
dimensional Heisenberg antiferromagnet with single-ion
anisotropy, which exists in real materials such as CsNiC13
and NENP. The Hamiltonian is

where (i,j ) denotes an intrachain nearest-neighbor pair
and (i,j ) denotes an interchain one, and the second term
describes a single-ion anisotropy. J is the ratio of inter-
chain and intrachain coupling constants and J (& 1. Now
J, denotes the critical value of J, such that the system has
no Neel order even at T=O for J~J, . Treating inter-
chain interactions which are represented by the third
term of (1) as a mean field, J, is estimated for each value
of D to accomplish the phase diagram in the JD plane for
the ground state. A single-ion anisotropy is also impor-
tant from a theoretical point of view, because a phase
transition occurs at some values of D for a one-
dimensional system. ' These transitions are also men-
tioned.

II. MEAN-FIELD APPROXIMATION
FOR INTERCHAIN INTERACTIONS

We briefly review the mean-field approximation for in-
terchain interactions' ' we use in order to estimate J„
which is the largest value of an interchain coupling con-
stant such that the system has a disordered ground state.
We restrict lattices to bipartite configurations of chains.
First the case of Ising-like anisotropy (D (0) is con-
sidered. In this case, Neel order is along the z axis if it
exists. When a staggered mean field is substituted for the
spin operators of adjacent chains, the reduced Hamiltoni-
an describing a chain in question is

Hc = g S, .S, +, +D g (S') —h g (
—1)'S;,

l l

h =zJM„,
where z is the number of adjacent chains, and M„is a
staggered magnetization defined by
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( ) denotes the ground-state expectation value of a
chain described by (2). These self-consistent equations
have a nonzero solution for M„,if

TABLE I. Result of Shanks' transformation applied to
y'„'(D,N) for D = —0.02.

y,",(D,N )

where y'„'is the staggered susceptibility along z axis for a
chain, which is defined by

6
8

10
12
14

7.181 67
10.0985
12 6AAA

14.7318
16.3672

30.1183
24.2350
22.2843

21.3167

Therefore, J, is given by

P„-P„+0 [exp( —I n ) ] ( n ~ oo ), (9)

where I is a positive constant. Thus, this transformation
can be used to estimate y'„'at the thermodynamic limit
when the system is far from a critical point D, . D, is the
point where an energy gap disappears and y'„'diverges.
In order to estimate y",t at each value of D, we apply
Shanks' transformation twice to y,'t(D, N) calculated for
N=6, 8, 10, 12, 14. For example, the result for D = —0.02
is shown in Table I. It leads to g'„'=21+1at D = —0.02.
This extrapolation cannot be performed for D & —0. 1 be-
cause (9) is not satisfied.

Next the case of XY-like anisotropy (D )0) is con-
sidered. In this case, the Neel order of a quasi-one-
dimensional system would appear in the xy plane. Thus,
J, is given by

Thus, we have only to estimate the staggered susceptibili-
ty for a one-dimensional system at T=0.

In order to estimate y",„we calculate numerically

y,'t(D, N) which denotes the staggered susceptibility of a
finite ring with N sites, and extrapolate to an infinite
chain. y,",(D,N ) is calculated as follows. We consider an
X-site ring subject to a staggered magnetic field, which is
described by the Hamiltonian (2). The Lanczos algo-
rithm is used in the reduced Hilbert space where

g S'=0 and k =0 or n, to cal.culate the wave function of
the ground state for this system, and M„is estimated.
y'„'(D,N) is derived from the numerical differentiation of
M„with respect to h. Now we use Shanks' transforma-
tion' to extrapolate to an infinite chain. The algorithm
of applying this transformation to a sequence t P„I is

2

P„'= P„)P„+)
—P„

P„ i+P„+i
—2P„

This is useful to estimate the limit P„when (P„I has the
asymptotic form

term cannot commute with g S'. Thus, the Lanczos
method has to be performed in a larger Hilbert space
where k=0 or m to calculate y,",'(D, N) for finite rings.
To extrapolate to an infinite system, we use the same
method as for D &0. Here Shanks' transformation can-
not be applied for 0.3&D &1.6 because the system is
close to a critical region.

Using the above methods, we estimate J, for
—0. 1 &D &0.3 and D & 1.6, and give the detailed phase
diagram of the quasi-one-dimensional system in the JD
plane for —0. 1 & D &0.3 in Fig. 8.

III. PHASE BOUNDARIES OF A CHAIN

A. Finite-size scaling
and phenomenological renormalization

In order to get the complete phase diagram in the JD
plane for the quasi-one-dimensional system (2), we also
investigate the behavior of y",t and y"„"of a chain for re-
gions close to critical points. The behavior of an energy
gap of a chain is sketched in Fig. 1, which has been given
by Botet, Jullien, and Kolb, using the phenomenological
renormalization-group method and the finite-size-scaling
technique' up to N =12. But the critical behavior at D,2

is altered to be adapted to the result presented later in
this paper. There are three critical points at most, as
shown in Fig. 1. Glaus and Schneider' conjectured
D,2=D, 3 with different critical exponents between the
right- and left-hand sides using the similar method up to
N=14. In order to estimate more precise values of D,

0„

J, = 1

Zgst
(10)

-05 0
Ising-like XY-like~

1.0

where g"„"is the staggered susceptibility along the x axis
for a chain. In order to estimate g„,we have to treat
rings subject to a staggered magnetic field described by—hg, ( —1)'S,", instead of the third term of (2). This

FIG. 1. Variation of an energy gap with a single-ion anisotro-

py parameter D for an infinite chain. D„,D,2, and D, 3 are criti-
cal points. It is noted that v is smaller than 1 according to the
present analysis by the phenomenological renormalization-
group method up to N = 16.
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and a critical exponent y, which is defined by

g, (D ) ID D, l

at each critical point, we perform the phenomenological
renormalizatian-group and the finite-size-scaling methods
again, up to N=16.

Then we review those techniques briefly as follows.
Now G(D, N) denotes an energy gap of an N-site ring.
According to the theory of conformal invariance, the
behavior of an energy gap at a critical point has the
asymptotic form

+
Z

Cl

-0.2-

G(D„N)-—(N~~) .
1

(12)
—0.3 I

1/15

I I

1/(M+1)

Based on the property (12), the phenomenological
renormalization-group equation is constructed as follows:

FIG. 2. Fixed point D„(N,N+2) of the phenomenological
renormalization-group equation for an energy gap, plotted vs
1/(N+ 1).

(N+2)G(D', N+2)=NG(D, N) . (13)

D, (N, N+2) denotes the N-dependent fixed point and it
is extrapolated to the thermodynamic limit, in order to
estimate D, . Next, to estimate a critical exponent v,
determined by

G(D, )-lD —D, I,
we define

(14)

v(N, N+2) =ln N+2 (N+2)G'(N+2)
NG'(N )

where G'(N) denotes the derivative of G(D, N) with
respect to D, at D =D, (N, N+2). The form (15) is de-
rived from linearizing Eq. (13) near the fixed point
D, (N, N+2). Further, we define an exponent co by

y„(D„N)-N (N~ oo ) .

If co is known, y is determined by the relation

(16)

P —vN,

which is derived from the finite-size-scaling hypothesis. '

In addition, g is defined by

QJSJ'=0 and k =0. For D (0, the first excited state is
the lowest-energy state in the space where g S;=0 and
k=a. Thus, G(D, N) can be obtained, calculating the
lowest energy in each space by the Lanczos method. We
apply the phenomenological renormalization to G(D, N)
up to N=16. The results of D„(N,N+2) and
v(N, N+2) are plotted versus I /(N+ I ) in Figs. 2 and 3,
respectively. D, i(N, N+2) does not converge well, but v
rapidly converges to 1.03 at N=14. This behavior of
v(N, N+2) suggests that the finite-size correction decays
faster than it does algebraically, but it vanishes so sud-
denly that it is difficult to perform a precise extrapolation
from smaller-size data. In fact, the curve of
D„(N,N+2) bends only slightly at N=14, but maybe it
converges at the next point, if we get it. Thus, we regard
the largest-size result as the best value we can get, and we
think that its error is about the difference from the next-
largest-size result, that is, D„=—0.29+0.01. Next we
calculate co, applying relation (16) to g'„'(—0.29,N) and

y,",( —0.29,N+2). The results are shown in Table II.
is also calculated, using (19), as shown in Table III. Fur-
ther, y is obtained by (17). By the same analysis as D, i,

at D=D, and X~~. Since it is difficult to estimate g
accurately by an analysis of correlation functions of small
systems, we make use of the relation 1.0-

-N " (N~co), (19)

at D=D„instead. This is derived from (18) approxi-
mately if g ( 1.

CV

+
Z
Z

B. Calculations and results

1. Ising-like region (D &0)

Independent of a sign of D, the ground state of a chain
without an external field belongs to the space where

I I

1/(N+l)

FIG. 3. Exponent v(N, N+ 2) of the phenomenological
renormalization-group equation for an energy gap at D„,plot-
ted vs 1/(X+ 1). It converges at N = 14 and gives v=-1.03.
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D = —0.29
CO

D =0.93 D =1.01

TABLE II. Exponent co estimated by applying the asymptot-
ic form (16) to g„(D,N) calculated at D= —0.29, 0.93, and
1.01, which are critical points D, l, D,2, and D, 3 estimated by the
phenornenological renormalization-group method.

same universality class as the two-dimensional Ising mod-
el, whose critical exponents are v=1, y=1.75, and
g=0.25. This statement agrees with Haldane's conjec-
ture. %e think that the small difference of v from 1 is at-
tributed to the logarithmic correction for (12), predicted
by conformal invariance. Thus, we use v = 1 and

y = 1.75 for later analyses.

2.017 1.724 1.713 2. XY-like region (D &0)

10

12

14

16

2.031

1.988

1.912

1.828

1.761

1.611

1.638

1.629

1.625

1.654

1.634

1.626

1.623

For D&0, the first excited state exists in the space
where g~S~'=El. Thus, the Lanczos algorithm is exe-
cuted there to calculate G(D, N) up to N=16, but
est"(D, N) can only be calculated up to N=14 owing to
the memory limit of a computer because g S' does not
conserve under a staggered magnetic field along the x
axis. Now the same analysis is applied to critical points
D,2 and D,3, as the Ising-like case. The results are shown
in Figs. 4 and 5 and Tables II and III. Then our estima-
tions are as follows:

co = 1.76+0.06,

y = 1.81+0.06,
g=0.26+0.02 .

The scaling relation

y =v(2 —ri) (20)

holds within the errors. Based on these results, it is
reasonable to determine that this transition belongs to the

we estimate these exponents at the thermodynamic limit.
The results about this phase transition are as follows:

D„=—0.29+0.01,
v= 1.03,

and

Dc2 0 93+0.02,
v=O. 16+0.04,
a) = 1.625+0.004,

y =0.26+0.07,

g =0.354+0.003,

D,3= 1.01+0.01,
v= 1.29+0.04,
co = 1.623+0.003,

y =2.09+0.07,
g=0.356+0.003 .

As shown in Fig. 5, v is likely to converge to a finite limit

TABLE III. Exponent g estimated by applying the asymptot-
ic form (19) to ((1/Ng, (

—1)'S;) ) calculated at D= —0.29,
0.93, and 1.01, which are critical points D, &, D,2, and D,3 es-

timated by the phenomenological renormalization-group
method.

D = —0.29
7l

D =0.93 D =1.01

0.209 0.321 0.325

10

12

0.195

0.203

0.221

0.338

0.347

0.351

0.341

0.349

0.353

05-

I

1I15
I I

1/(M+1)

16

0.241

0.260

0.354 0.356 FIG. 4. Fixed points D,2(N, N+2) and D,3(N, N+2) of the
phenomenological renormalization-group equation for an ener-

gy gap, plotted vs 1/(N+ 1). It cannot be determined definitely
whether D,.2=D, 3 is true or not.
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0.05-

05-

I

1/15

v(N, N+2)(D, &) o
I

1/9 ~](N+I) 1/5 0 O.i 0
II

1.0 2.0

FIG. 5. Exponent v(N, N+ 2) of the phenomenological
renormalization-group equation for an energy gap at D,2 and

D,3, plotted vs 1/(N+1).

FIG. 7. Outlined phase diagram in the JD plane for the
ground state of a quasi-one-dimensional system. z is the number
of adjacent chains.

in each case. Further, the scaling relation (20) is also
satisfied. Thus, both are algebraic phase transitions. It
corresponds with Glaus and Schneider's conclusion. '

However, our estimation leads to D,2/D, 3, which is
against their conjecture. Therefore, whether D,2=D, 3 is
true, is still an unsolved problem.

IV. PHASE DIAGRAM IN THE JD PLANE

Having determined the values of y„and y,'," for D far
from critical points, and a critical exponent y, we give
the whole behavior of y,*t'(D &0) and y,","(D &0) for a
chain, which is a solid line in Fig. 6. For —0. 1 & D &0.3
and D & 1.6, we use the values extrapolated from finite
rings up to %=14, and for other region the line is so ex-
trapolated as to give the estimated critical exponent at
each critical point. The dashed curves are the results for
finite rings up to N=12. Now we can get the entire
phase diagram in the JD plane for the quasi-one-
dimensional system described by the Hamiltonian (1), us-

ing the formulas (7) and (10). It is shown in Fig. 7, where
z is the number of adjacent chains. We explicitly distin-
guish D,2 from D,3, but the two points are possibly iden-
tical. For a later discussion, it is convenient to show a
magnified phase diagram for —0.1&D &0.3, in Fig. 8.
An error attributed to extrapolation is a few percent at
most, for each point. Thus, we do not draw an error bar
explicitly.

V. DISCUSSION

Through the above analysis, it is found that a disor-
dered ground state can exist even in a quasi-one-
dimensional system with a single-ion anisotropy if inter-
chain interactions are sufficiently small. Then we refer to

zJ

0.05

Oi
I

l
l

l
l l
\ l40-ll

X l~rlr
D, g

0 I

0

N=12

N=)0
N=s

0,2 0,3
I I
1.0 2.0

FIG. 6. Variation of the staggered susceptibilities y,'t'(D & 0)
and g„"(D&0) for a chain. The solid and dashed curves
represent those of an infinite chain and ¹ite rings, respective-
ly.

0
-O.l

I

O.l

A

0.2 ~ 0.3

FIG. 8. Phase diagram in the DJ plane for the ground state
of a quasi-one-dimensional system, in the region —0. 1 &D
& 0.3. An error due to the extrapolation ofy„is less than a few

percent for each point. The result of the neutron-scattering ex-

periment for NENP is located at A. In the case of CsNiC13, the
result by Buyers et al. is located at 8 and that by Kakurai et al.
is located at 8'.
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consistency with the results of experiments.
NENP has orthorhombic structure. The number of

nearest adjacent chains is 2 and that of next-nearest ones
is also 2. Thus, we put z =4, which leads to smaller es-
timation of J, . The neutron-scattering experiments
yielded J=0.0004 and D =0.2 (XY' like), which is locat-
ed at A in Fig. 8. NENP is completely included by the
disordered region. Apart from this, recent magnetization
measurements have given a critical magnetic field along
the z axis, which are gp&H, —= 11 K by Katsumata et al. '

and 14 K by Ajiro et al." Since the first excited state has
the property +~Sf =+1, those give an energy gap, and
lead to 6 =—0.23 and 0.29, respectively, where we take an
intrachain coupling constant as 48 K which was estimat-
ed by the susceptibility measurement. To estimate D
from these results, a D-versus-G plot for a chain is
presented in Fig. 9, where G is an energy gap of an
infinite chain estimated by Shanks' transformation from
finite rings up to X= 14, just as g„.Referring to this
plot, the two experimental results lead to D =—0.2 and 0.3,
respectively. Thus, NENP may be located a little more
to the right than A in Fig. 8. Nevertheless, NENP is in a
disordered region, for J is very small. Therefore, we con-
clude that NENP has no Neel order even at T =0, and it
has an energy gap in spite of small interchain interac-
tions. It suggests that NENP is an ideal material to
study on the Haldane gap. The present analysis is con-
sistent with no discovery of Neel order down to 1.2 K.
We are looking forward to a measurement at lower tem-
perature for NENP.

CsNiC1~ has been revealed to have Neel order below
Tz(=—4.9 K) by neutron-scattering experiments. Since
chains are arranged in a triangular lattice in CsNiC1&,
sites cannot be divided into two sublattices. Thus, this
case is beyond our analysis, but the three-dimensional
long-range order measured by experiments has almost a
classical 120' structure, at least below Tz(=4.4 K).
When the mean-field approximation for interchain in-
teractions is applied to such a case, we have only to sub-

stitute M„~cos120
~

for an interaction with each adjacent
chain, within the lowest order. Since the number of adja-
cent chains is six, we may put z =3 to refer to the phase
diagram in Fig. 8 in this case. Buyers et al. determined
1=0.017 and D= —0.038 (Ising-like) about CsNiCI~,
fitting the spin-wave approximation to the results of
neutron-scattering measurements. This is located at B in
Fig. 8, which is in an ordered region. Thus, the present
analysis is also consistent with this experiment. Howev-
er, Kakurai et a/. have recently found J=0.006 and
D = —0.002 by the polarized neutron-scattering measure-
ment. This result was also derived from fitting the spin-
wave approximation, but taking a spin-flip process into
consideration. This is located at 8 in Fig. 8, which is in
a disordered region. Thus, it is inconsistent in turn. On
the other hand, Aleck' has applied the field theoretical
technique to the lattice like CsNiCl~, and determined
J, =—0.013 neglecting D. This estimation also does not
agree with the result by Kakurai et al. In our opinion,
CsNiC1& has such small interchain interactions that the
spin-wave approximation they used is not valid owing to
large quantum fluctuations.

Next we consider the nature of the present analysis.
The method we use in order to estimate J, is partly based
on a mean-field approximation. Intuitively a mean-field
theory tends to overestimate order. In fact, a mean-field
approximation for interchain interactions gives an upper
bound of T, at least for the quasi-one-dimensional Ising
model. ' It suggests that the present analysis gives a
lower bound of J, . But this statement is not rigorous and
whether it is true or not is too delicate a problem to solve
here.

At last we discuss the relation between G and J, . J, is
plotted versus G in Fig. 10 for —0. 1&D &0.3. The
curves for the Ising-like and JY-like cases almost coin-
cide with each other. Thus, J, is determined only by G
independently of a sign of D, for a large energy gap. Ac-

G

Q4

0.2

zJ,
XY-like o

Ising-like

0.04-

002—
0.3 o

D=Oo

—0.02
~ -0.04

0.1 o
~ -0.06

0 -0.08

~ -0]

0
-Q1

I

0
I

Qt

I I

02 0 03
I

Q.4

FIG. 9. Variation of an energy gap with a single-ion anisotro-
py parameter D for an infinite chain, in the region
—0. 1 &D &0.4. Each point is estimated by Shanks' transfor-
mation applied to finite rings for X=6, 8, 10, 12, 14. Each error
is due to the extrapolation.

0 Q2

I

Q.4

FIG. 10. Plot of zJ, vs G for —0.1&D &0.3. The solid and
dashed lines represent behaviors of J, for the Ising-like and
XF-like cases, respectively, in the small-G region.
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cording to the critical behaviors of y„and 6, J, has the
form

J, —G" (6~0),
where co = 1.75 for Ising-like case and co =-1.6 for XY-like
case. Therefore, in the small-gap region, an energy gap is
more effective in destroying Neel order for the XY-like
case, within the present analysis.

VI. CONCLUSION

In this paper a quasi-one-dimensional Heisenberg anti-
ferromagnet with a single-ion anisotropy is studied.
Treating interchain interactions as a mean field, the larg-
est value of an interchain coupling constant J, with a
disordered ground state is given by I/(zg;) for D (0
and I/(zy, ',") for D )0, where y,", and y,",' are the stag-

gered susceptibilities of a chain. Then we determine the
behavior of g'„'and y"„bythe finite-size-scaling technique
and present the ground-state phase diagram in the JD
plane, as shown in Fig. 8. This result suggests that
NENP has no Neel order even at T=O.

In addition, it is found that the phase transition of a
chain at D -=—0.29 belongs to the same universality class
as the two-dimensional Ising model. It agrees with
Haldane's conjecture.
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