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A long-time universal fixed point for domain growth in a general nonconserved time-dependent
Ginzburg-Landau model is established. Both the scaling function F(x) and the growth law or scal-
ing length L (1) associated with this fixed point are shown to have universal features. The scaling
function depends only on the spatial dimensionality, not on the form of the degenerate double-well
potential, the lattice or continuum spatial structure, or on the initial conditions. The growth law,
measured in units of the equilibrium interfacial width &, is found to have a universal amplitude mul-
tiplying the expected ¢'/? curvature drive time dependence. The universal amplitude in L () is con-
nected to the large-distance behavior of the scaling function through a nonlinear eigenvalue prob-
lem. For intermediate distances, £ <R < L, the scaling law obeys Porod’s law, F =1—a|R|/L, with
a=V'2/m(d —1), where d is the dimensionality of the system. The theory developed here is accu-
rate for all times after an initial quench from a completely disordered state to a temperature well
below the critical temperature. Comparisons with direct numerical simulations show excellent
agreement at early and intermediate times. For later times various features predicted by the theory
are in very good agreement with the simulations. It appears, however, that the selection process
determining the amplitude of L (¢) is rather sensitive to finite-size effects, and a direct comparison

between theory and simulation on this point requires simulations on much larger systems.

I. INTRODUCTION

There have been various indications that there is some
degree of universality in the growth kinetics of ordering
systems. It is known that the order-parameter structure
factor satisfies a scaling relation'? if all lengths are scaled
by the characteristic domain size L(#) in the large-time ¢
limit. The time dependence of L(t), the growth law for
the system, is robust for a variety of systems. For exam-
ple, the growth law for relaxational systems with a non-
conserved order parameter is determined by the curva-
ture driven diffusion® of domain walls and given by the
Lifshitz-Cahn-Allen law L ~t'”2. The scaling behavior
in a variety of systems has been shown* to be associated
with a zero-temperature renormalization-group fixed
point. Any universal features are therefore associated
with zero- or low-temperature growth properties, and at
the longest-time scales one expects a scaling function
which is independent of temperature. The question
arises: How universal is the zero-temperature scaling
function? Simulation work® indicates general agreement
for the shape functions for a number of different systems.
Are these behaviors approximately equivalent or is there
precise agreement? To answer such questions requires a
theoretical treatment® with the capability of computing
in the long-time regime.

In a recent Letter’ a new theoretical method for treat-
ing growth kinetics problems was introduced. In this pa-
per this approach is discussed in more detail and extend-
ed to treat a much larger class of systems. The relevance
of a nonlinear eigenvalue problem in selecting a universal
value for the parameter p=LL introduced in Ref. 7 is es-
tablished. This selection mechanism fixes the value of u
in the large-time limit and leads to the conclusion, if this
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fixed point is physically accessible, that the associated
structure factor is universal. Indeed p and the structure
factor depend only on the dimensionality of the system
for the rather large class of systems studied in this paper.

While one can carry out the theory developed here in
great detail and study almost every aspect of the growth
process, the focus will be on those questions associated
with universality. A general class of time-dependent
Ginzburg-Landau (TDGL) models for a scalar order pa-
rameter ¥ characterized by a potential V(1) is defined in
the next section. In Ref. 7 only the standard “¥*” poten-
tial was considered. In the work here the analysis is ex-
tended to the general class of symmetric potentials with
quadratic minima. It is shown below that the long-time
ordering kinetics for this general class of models is
governed by exactly the same scaling function as for the
¥* case as long as the growth law is measured in units of
the associated zero-temperature interfacial width £
(which does depend on the form of the potential). In par-
ticular, the associated scaling function satisfies Porod’s
law® in the appropriate spatial regime (described in detail
below) with a coefficient which is universal for this gen-
eral class of potentials.

The analysis in this paper will be restricted to the sim-
plest case of a single scalar order parameter that is not
conserved (NCOP). As discussed in Ref. 7, the case of
the conserved order parameter (COP) can be discussed in
the same fashion as for the NCOP, but there is an inter-
mediate time crossover from a t!/* to a ¢!/ behavior
which complicates the analysis considerably. This COP
case will therefore be discussed in a separate publication.
The development in Ref. 7 has already been extended to
the case of several scalar order parameters by Lai’ who
treated the case of a model appropriate for Cu;Au. In
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that case one has a set of three scalar order parameters
which are coupled to the fce structure of the lattice. The
key result in his analysis is that the structure factor is an-
isotropic as is observed' in x-ray-scattering experiments.

The theoretical development discussed in this paper is
a natural extension of the work by Mazenko, Valls, and
Zannetti!! (MVZ). They showed how growth kinetics
problems defined in terms of Langevin equations could be
expressed in terms of functional integrals. More impor-
tantly, they showed how the theory can be organized in
terms of two independent fields corresponding to the or-
dering and equilibrating components of the order-
parameter field. One can associate a characteristic length
with each of these components. The characteristic
domain size L(t) goes with the ordering components of
the order parameter and the equilibrium correlation
length & is associated with the fluctuations of the equili-
brated portion of the order-parameter field. The same
basic idea is followed here. The significant difference be-
tween the development here and that in MVZ is the
method used to construct the ordering component of the
field. In MVZ it was assumed that the ordering com-
ponent could be chosen to be Ising-like variable for all
times after the quench with an evolving, time-dependent
amplitude. As discussed in ref. 12, this assumption does
not allow one to treat sharp interfaces. In this paper, a
general method is developed for constructing the ap-
propriate ordering component of the order-parameter
field which allows a detailed analysis of the developing
sharp interfaces. As discussed below, a key test that
sharp interfaces are produced in the development is the
natural occurrence of Porod’s law in the theory.

It is worthwhile considering two heuristic arguments
which lead to indicators of sharp interfaces in a theory.
Consider first'> the local order-parameter correlation
function

S()=(YP*R,t)) . (1.1)

Assume that we have a collection of large well-ordered
domains of characteristic size L in which ¥==*1,. These
domains are separated by sharp interfaces of width &.
We then estimate that ¢*~3, over a fraction of space
[L /(L +&)]%in d dimensions while ¢?~0 over a fraction
of space 1 —[L /(L +&)]% This leads to the estimate

L

L+¢

d
St=d =% 'L

: } (1.2)

for L >>&. The result that the first correction to S =3 is
of O(L™") is not satisfied by previous first-principle
theories.®

A second argument, due to Porod® and extended by
Tomita,'* ! can be expressed in very simple terms. Sup-
pose, as a function of a coordinate x there is a sharp in-
terface at some position x,, then the order parameter
shows the behavior

P(x)=1vsgn(x —xg) .

Suppose we compute the correlation of ¥(x) with ¥(x’)
where we average over the position of the interface
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. 1 e .
c(x,x )z—z—L- ., dxoP(x)P(x’),
where L is a very large distance between interfaces. We

easily obtain

_lx=x|

1
L

c(x,x’)=1,//(2)

This argument can be cleaned up and, when expressed in
d dimensions, the order-parameter correlation function
takes the form

— a|R|

C(R,1)=y} 3

+ -, (1.3)

where a is some generally unknown coefficient. If this re-
sult is Fourier transformed over space, one obtains the
usual expression of Porod’s law for sharp interfaces
C(q,t)~g "9 for “large” ¢. In the theory developed
here (1.3) is established quantitatively with explicit results
for the coefficient a as a function of d.

Note that the results (1.2) and (1.3) are compatible if,
as R—0, the interface becomes smooth for R ~§, the in-
terfacial width. This tells us that Porod’s law is valid
only over the spatial range §<<R <<L. The theory
developed here allows one to investigate the entire spatial
regime 0 < R ~ L including the crossover discussed above.

Since the theory developed below is somewhat complex
and introduces various auxiliary quantities, it is useful to
summarize here the results of the theory which can be ex-
pressed in terms of observables and can be tested by fur-
ther numerical work and, where appropriate, experi-
ments.

(1) The theory gives an S(t), defined by (1.1), in quali-
tative agreement with (1.2). Thus, one can use as a fun-
damental definition of L,

L=-S-[1-S()/8] ",

v (1.4)

where S(t) is defined by (1.1) and & is rigorously defined
in equilibrium. The theory gives that the growth law
[defined by (1.4)] has the long-time form

L=v"2u,d)2lt)!? | (1.5)

where the p,(d) depend only on the dimensionality of the
system and are given by (5.22) below and T is the funda-
mental unit of time defined by (2.1) below. In direct com-
parison with numerical simulations, excellent agreement
between theory and “‘experiment” is obtained for S(z) for
short and intermediate times. For longer times it appears
(see the discussion in Sec. VII) that the simulation values
for S(t) are rather sensitive to finite-size effects and the
agreement is only fair.
(2) The theory predicts that the second moment

S, =((V¥)?) (1.6)

behaves as L ! for long times. In particular, for the vt

potential S,L =Vv'2/3=0.471. Direct simulation of the

same system gives good agreement with a value of 0.488.
(3) For short distances R <<L the theory gives a de-
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FIG. 1. Universal scaling function defined by Eq. (1.8) for
d =2, 3, and 4 vs scaled distance x =R /L, where L is defined by
(1.4).

tailed treatment of the average interfacial structure. We
have that

C(R)=W3[1—W(R)/L+ -1,

where, for R >>&, W(R) is linear in |R|, and C(R,?)
satisfies Porod’s law (1.3) with a=V2/m(d —1). For
short distances R ~§, W(R) is analytic in R. Clearly the
short-distance behavior of W is not universal since it
probes the structure of the interface. Simulations
presented below were not run to long enough times to be
able to extract the coefficient in Porod’s law.

(4) In the scaling regime, R >>¢&, a rather simple scal-
ing equation determining

C(R,t)=vY}F(R/L)

(1.7)

(1.8)

is obtained. In the limit of small x =R /L, Porod’s law is
regained in the form described above. For large x

F(x)zFox(~d+«r/zme~m/2)x2 , (1.9)
where p=LL. This p is the same quantity occuring in
(1.5) and, of course, has the same universal values u,(d)
in the scaling regime. F(x) is determined numerically for
all x for d=2, 3, and 4 as shown in Fig. 1. The F(x)
determined by direct numerical simulation is known only
for modest times and the agreement with the theory is sa-
tisfactory. The long-distance behavior, however, before

finite-size effects set in, are well described by (1.9) with an
estimate for u, in good agreement with the theory.

II. STRUCTURE OF THEORY

A. Definition of problem

The system treated here is the time-dependent
Ginzburg-Landau model in the presence of Gaussian
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noise. In terms of dimensionless length scales, the basic
equation of motion satisfied by the order-parameter field
PY(R,t)is

YR, 1) SF
S - )
5 8¢(R’t)+1](R,t), 2.1)
where the Gaussian noise satisfies
(n(R,t)n(R",t"))=TT8(R—R")8(t—1') , (2.2)

T is a dimensionless measure of the final temperature,
and the driving effective Hamiltonian is assumed to be of
the general form

F= [dRLV P+ V()] . (2.3)
V(y) is assumed to be a symmetric degenerate double-
well potential with quadratic minima. A particular reali-
zation is the “A potential”
V(¢):§<1—¢2>2+%¢6 . (2.4)

For A=0 this reduces to the standard ¢* potential dis-
cussed in Ref. 7. A clear check on the universality of our
results will be their dependence on A. Henceforth, the ¢*
potential will be referred to as the A=0 potential.

The equation of motion (2.1) must be supplemented by
a set of initial conditions at time t=t;,=0 satisfied by
¥(R,1)=1v,(R). For our purposes here, where the sys-
tem is assumed to be initially disordered, we assume an
initial probability distribution governing ¥, which is
Gaussian and with second moment

(o(R)Yy(R'))=¢,8(R—R’) . (2.5)

B. The functional-integral formulation of the problem

MVZ discussed in some detail how the Langevin equa-
tion problem defined in the last section can be
transformed into a functional-integral description of the
problem. This reformulation of the problem facilitates
the subsequent set of transformations where the “peak”
and ‘‘phonon” portions of the order-parameter field are
separated. After formally replacing the averaging over
the noise by a functional integration over the order-
parameter field, one obtains the generating functional

Z[U]= [ D[4, 1D[$]1D[¥]

- Al 4,

Xe Yexp [ favwin |, @6

where ¢ is the conjugate field introduced by Martin,
Rose, and Siggia,“’ and one must perform functional in-
tegrals over ¥, ¥, and the initial field ¢,. The “‘action” 4
is given for the problem defined in the last section by

A[@ﬂ%d’o]: A[¢O]
+ [d1{ig()[B(1;9)
=81, —t)h(DY} ., @7

where
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B(L;)=A(P()+V'[(1)], (2.8) 1(B,0,0,m)= A[ ]+ A[m]
A(1>—%+r( v, 2.9) +fd“$“)[3“?°+¢)
1
—&(t (1)
and fdl‘:fddef,z‘”dtl. To simplify things some- ool (]2 1)

what it has been assumed that the quench is to zero tem-
perature [7=0 in (2.2)]. Normalizations and regulariza-
tions!” have been chosen such that the Jacobian associat-
ed with the transformation from a functional integral
over the noise to one over the field ¥ is a constant. The
part of the action governing the initial values of ¥ is
given by
A[‘/’o]:%fdde';T

YAR,)) (2.10)

All correlation functions among the order-parameter

fields can be determined by taking derivatives of InZ[ U]
with respect to the external source field U(1).

C. Introduction of the peak variables

A key step in the theory is to divide the order-
parameter field ¢ into a peak contribution and a fluctuat-
ing component. The first step in this process is the intro-
duction of an auxiliary field m(R,¢). If the initial func-
tion space is governed by the probability distribution

P p]=e "MV Nl/z (2.11)
then one must treat the enlarged space
P[$7¢’¢O!m]:P0[m]P[{/;’d])l/}o] ) (212)

where it is assumed that Py=e  4[™] is a normalized

functional of the field m. These spaces are coupled by
making the translation

P()=c[m(1)]+¢(1)

where o is a local functional of m and ¢ replaces ¥ as the
independent field.

After making the translation (2.13) the total “action”
governing P[d} &,y m ] becomes

(2.13)

Ao(By, Y m)= Albo]+ A[m ]+ [d1d(1) liB(l;o
and

A4,(8,6,400,m)= [d1(1iTV,(1;0,¢) (2.23)
The convention will be used below that B(1)=B(1;0).

At this stage all of the transformations are formal and
without approximations. The action A [m] governing
the peak variable and the functional o[m(1)] have not
yet been spec1ﬁed The main requlrement is that the term

(0,6, Yy, m) can be treated as a “small” perturbation
on the part of the action given by Ao(9,é, v, m ).

Inserting (2.13) in (2.8) one has

B(1;0+#)=B(L;0)+A(1)(1)
FTV (0 +8)— V(0] . 2.15)
Defining
2/ |9
q0<1>—< SVt H>0, 2.16)

where the average is over Py[m], (2.15) can be rewritten
as

B(1;0+6)=B(1;0)—i [ d2G; '(12)4(2)
+IV,(1;0,¢) (2.17)
where
Gy l(12)=i aa +T[—Vi+gd(1]|8(12), (2.18)
1
[(1L;0,8)=V'[c(1)+¢(1)]—V'[a(1)]
—q()g(1), (2.19)
and 8(12)=8(R,—R,)8(¢; —1t,). For the simplest case of

(2.4) with A=0, ¢3(1)=—1+3(0?) and
V,(1;0,8)=30*—(a?))p+30¢*+¢° .

Using the results (2.17) in (2.14),
into the sum

(2.20)

Ar can be separated

Ap(d,¢,00,m)= Ag(D,8,00,m)+ A;(d,6,05,m) ,
(2.21)
where
)+ [d2G(12)6(2)—i8(1, —14)¥( 1 (2.22)

—

D. The zeroth-order theory (formal structure)

Before one can demonstrate that the perturbation 4,
given by (2.23) is actually small, the zeroth-order action
A, given by (2.22) must be analyzed. Inspection of (2.22)
shows that the ﬁelds ¢ and m are coupled through the
term Ifdl #(1)B(1) in the action. This coupling in the
action can be ehmmated by making the translation

=¢&(1)— [d2Gp(12)iB(2) (2.24)

so that
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Ao($,8,8,m)= A[h]+ A[m]
+ [ain) [fdzc;‘uz)g(z)
_l'a(tl —to)wo(l)

(2.25)

The original fundamental field is then expressed in terms
of the new fields by

W =o(1)— [d2iG(12)B(2)+£(1) . (2.26)
The evaluation of the structure factor
Cy(12)= (Y 1)p(2)) (2.27)

can be carried out at zeroth order since the fields m and §
are uncoupled to obtain

c3<12)=c<12)—ifd§GF<2§><B<§)a(1))0
—i [d1G(1T(B(Ma(2)),
— [d1d2 G, (11)G,(22){ B(T)B(2)),

+C.(12) . (2.28)

The focus in the rest of the paper will be on the peak con-
tribution

C(12)=(o(1)a(2)), .

The evaluation of the phonon contribution C;(IZ),
defined by

C(12)=(&(1)5(2)) ,
is described in detail by MVZ in Sec. II F with the result
C.(12)=— [d1G(11)G21)8(1, —15)e; .  (2.29)

This is as far as one can go without specifying 4[m ]
and o[m]. At this stage one can see that it is the interac-
tion ¥;(1;0,6—iGzB) which must be small. Since ¥, is
constructed to be proportional to ¢ ={—iG B, one must
require that, on average, § and B be small for long times.
The smallness of the phonon field { is guaranteed at low
temperatures by the formal identification of £~V'T at
long times.

The belief that one can construct B(1;0), (2.8) with ¢
replaced by o, to be small for long times is based on the
following physical observations. If o[m] can be con-
structed to be uniform (==*1v),) everywhere except near
interfaces, then space and time derivatives of ¢ are small
except near interfaces and V'(y,)=0 by construction.
While B(1;0) is not small near an interface, the amount
of interface decreases with time and one expects that
averages of B(1;0) will decrease toward zero for large
times.

E. Specification of the peak variable

1. Qualitative notions

It is time to specify in detail the construction of the
peak variable o[m ] and its associated action A[m]. The
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main ingredients in this determination are that, for long
times, o[m ]=*, except near sharp interfaces where o
flips sign. The idea is that m(R,¢) is a smooth field but
with an amplitude that grows inexorably with time.
Thus, in some region of space,

m(R,t)=1/25,(t)sin[(y —yo)/Lo(t)]

and m(R, 1) has a zero in the plane perpendicular to the y
direction at y =y,. Suppose that

o[m]=ytanhm(R,¢) .

Then, away from the interface, say for y —y,>0, for
large Sy(1), o[m]=1,, while for y —y, <0, o[m ]= —,,.
Near y —y,=0, o shows a sharp interface even though
the spatial variation of m might be quite gentle for large

A key idea here is that m serves as a type of spatial
coordinate measuring the distance to an interface. Thus,
when m — — «, the system orders in the state —1,. As
m increases through zero, o flips, and as m goes off to
infinity 0 — +1¢,. Thus, m maps out the interfacial
profile of the system. Thus, one can assume, in a formal
sense, that m ~1/S,=L is proportional to the charac-

teristic length L scaling the system. One can define
(m?)=S,=L*/m (2.30)

and assume that S; and L increase with time. It will be
shown below that this definition of L coincides with (1.4)
for long times.

2. The Gaussian assumption

Consider the average S(t)=(o%m)), where it is as-
sumed that

olm)=y¢i[1—g(m)],
where g(m ) vanishes as |m|— 0. Then,
S(t)=w[1—(gm)),] .

Assume next that the action governing the field m,
A[m], is quadratic and Py[m ] is a Gaussian probability
distribution. If o%(m) and g(m) depend only on the field
m at a single space-time point, one obtains, using (2.30),
that

fdm e*(l/2)m2/5‘0g(m)

—(1/2)m?%/8
fdm e 0

In the limit as S, becomes very large, the numerator of
this expression is well behaved as S;— o since g(m) is
assumed to be integrable, but the denominator goes as
V'S,. Given the identification of Sy~ L? in (2.30), one
then obtains qualitative agreement between the analysis
here and the sharp interface result given by (1.2).
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Thus, it appears sensible to choose Py[m] to be a
Gaussian probability distribution. Since Py[m ] is Gauss-
ian, it can be specified by a single equation governing the
second moment

Co(12)={(m(1)m(2)), . (2.31)

In choosing this determining equation for C, one should
recall the necessity of minimizing B(1) and also of decou-
pling the variables o and {. Looking at (2.28) one sees
that the peak and equilibrated contributions can be
decoupled by choosing (B(1)o(2)),=0. This is, of
course, completely consistent with minimizing B(1). In
practice, B(1) and o(2) can be uncorrelated only for
t, >t,. In general, one can choose

(B(1)0(2))y=8(t, —ty){a(1)a(2)), . (2.32)

Once the dependence of ¢ on m is specified, (2.32) deter-
mines C, and the m-field statistics completely. Recalling
that B(1) is given by replacing ¥ by o in (2.8), one sees
that (2.32) is simply the statement that o (1) satisfies the
noiseless version of the equation of motion (2.1) on aver-
age.

3. Construction of o[m]

Consider, finally, the specification of the peak variable
o[m]. The general results in this section are new. The
main idea to keep in mind is that m serves as a coordinate
which labels the interfacial profile. It is then clear that a
general, nonperturbative definition of o[m] is given by
the classical equation for a single interface

1 d%
— =y 2.33
2 dm? [o] ( )
with the boundary conditions
lim 9% =0 . (2.34)
Im|— o dm

This choice is general and natural. The factor of 1 in
(2.33) is chosen simply for convenience.

One can, as usual, solve (2.33) by introducing the “con-
served energy,” and integrating to obtain the general re-
sult

o dx

m=1["
2o VW)= V(i)

(2.35)

where the turning points *, are defined by V'(¢,)=0.
For the A=0 potential one has the extremum points
Yo==11, V(¢y)=0, and (2.35) gives m=tanh o or
m =tanhm as was simply postulated in Ref. 7.

The large-m limit of o(m ) is dominated by the contri-
butions near the turning point. Expanding V(x) for x
near 1, we easily integrate to obtain

1
™ gl e Hino)]
0

and one obtains for large m that

—[2V(yym]'/?

o=1y,—Ce , (2.36)
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where C is a constant. One therefore obtains exponential
decay for large m. It is this general behavior of ¢ which
characterizes the growth kinetic class studied here.

4. A potential

Consider next the potential (2.4) in (2.35) as a nontrivi-
al generalization of the ¥* case. In this case the parame-
ter A cannot be scaled away. The first step in treating
this case is to find the “critical” or turning points which
satisfy V'(y,)=0, and are given by

S SOV ey
=—(V1+4r—1) . 2.37
o % ( ) ( )
For large A, |i,| is pushed toward the origin. Thus,
[l <1 (|¢gl|=1—A+ --- for small A). It is then a

straightforward integration using (2.4) and (2.37) in (2.35)
to obtain

¢V 1—etanhm

o , (2.38)
(1—etanh?m )72
where
5 2M 1
e=Yg—— 7, (2.39)
(O (1+2A42)
m=m /&, , (2.40)

and one measure of the interfacial width is given by

Ex 1=y 1+2A43)12 . (2.41)

Note that o given by (2.38) has the asymptotic form
(2.36) with C=2/(1—¢).

In subsequent sections various integrals over the inter-
facial profile are needed. The relevant definition of the
interfacial width is given by

e= [ ax [ o))
0 — o

=§0_\/2__1n(1+\/—6) , (2.42)
€

where the second line is for the A potential. Also needed
are the integrals

x, = ff:iigiaﬁuwg :

where o, =d"o(x)/dx".

(2.43)

III. EVALUATION OF m AVERAGES
A. General development

While there was an attempt in the last section to
motivate the choices for A[o ] and o[m ], one could sim-
ply start at this point with the assumptions that Py[m ] is
Gaussian, that o[m ] is determined by (2.33), and that C,
is determined by (2.32), and work out the consequences of
this theory. The first step is to investigate (2.32) which,
in turn, requires that one carry out the implied Gaussian
averages over the fields o[m ] and V'[o]. As a first step,
it turns out to be useful to introduce the quantities
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an
L= (1) (3.1)
7 am"(1)
and the correlation functions
C,.(12)=(0,(1)0,,(2))o=v3C,,,(12) . (3.2)

Using (2.33) and (3.1) in B(1), defined by (2.8) with y=o0,
one obtains

B(=A(Lo(1)+L o)1), (3.3)
and the fundamental equation (2.32) is given by
d 2 r
= +T 12)+—
a1, (—=Vi)|C(12) 2C20(12)
=08(t,—¢,)C(12), (3.4
where C(12)=C(12).
Representing o(1) in (3.2) as a Fourier integral,
dk ikm
o= [ Togetimih, (3.5)
one has immediately that
Coni12)= [ v 4 ik, ) (iky)™
nm “J g 2r ! "2
Xaklak2<e,k,m<1>+1k2m<2>>0 . (3.6

Since the underlying probability distribution for the m
variables is Gaussian, for arbitrary H(1),

<exp deH(T)m(T) ]>

L [dTd2H(MH(2)Cy(12)

0

=exp (3.7

where it is assumed that {(m(1
defined by (2.31).
ing (3.6) and (3.7),

H(1)=ik,8(11)+ik,8(12)

))o=0 and C,(12) is
In the present case of interest, compar-

and defining

Sol1)=Cy(11) , (3.8)
(3.6) reduces to
dk, dk,
:f—2—7;—~2———(1 1)"iky)"oy 0,
Xexp{ —L[k3So(1)+k3S,(2)
+2k k,Cy(12)]} . (3.9)

One can immediately derive from (3.9) the very useful
derivative relations
9
0S,(1)

Co(12)=1C, 45 n(12) (3.10)

and

0

aC,(12) Crm 12~

Coirmi1(12). (3.11)
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At equal times S,(1)=S5,(2)=S,(t), and
d
C.m(R,
35,(1) m(R,)=1[C, 15 (R, 1)
+C,m+2RT, (3.12)
where R=R,—R,.
B. Averaging theorem
1. General form
Consider next a general average of the form
Cg(12 R (] )=<g1(m(1))g2(m(2)) e g"(m(n )))0 .
(3.13)

Using the Fourier representation g;(k) for each g;, one
can carry out the associated Gaussian averages using
(3.7) and obtain

c (12 )_f dk, dk, dk,
8 ) r o 27
Xg\(k1)gy(ky) - g,(ky)
Xexp zk ;Colij) (3.14)
Inserting the inverse Fourier transforms one obtains
C,(12---n)= [dxdx, - dx,g,(x,)gy(x;) - - - g, (x,)
XP(x,X9, .. .,X,), (3.15)
where

dk, dk,  dk,

D(x,,x,, ... ,x,,)=f

27 2w or
n
Xexp | —i 3 k;x,
J
Xexp

— 13 ik, Colif) ] :
‘.7./.
(3.16)

® is just a multidimensional Gaussian integral which is
given by'®

_ 1 )
¢(X1,XZ, ceey Xy )_ (271.)"/2 (detCO)
X exp Zx Ajx; |, 37
where
(3.18)

> A Colkj)=8;
k
and the sum is over the discrete index.

2. One-point terms

In the case of a general “one-body” average (n=1),
(3.17) gives
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Dlx,)= o VIS (3.19)
V218, (1)
and averages are given by (3.15) as
(g(1))= dx —(1/2)x2/5,(1)  (3.20)

= —QF————g(X )e

3. Two-point correlations

For correlation functions evaluated at two distinct
space-time points one can evaluate (3.17) for the case of
two entries and obtain

detCy=5,(1)S,(2)—C3(12)=D 2 (3.21)
and
2
cb(xl,xz):»D—exp ——D—[x%so(2)+x§so(1)
21 2
~2x,x2co(12)]]. (3.22)

For equal times, S,(1)=S5,(2)=S5,(t), C,(12)=C,(R,t),
and

D(x,,x5)

zﬁexp —%g(x%+x§—2fx1x2) (323
where

S(R,)=Cy(R,1)/Sy(t) (3.24)
and

r==sTe (3.25)

C. Large-S, expansions

The key to the description of the late stages of the
domain growth is the assumption that S,(1) becomes
large. This will be demonstrated in detail in Sec. VI. It is
useful here to write down the asymptotic expressions for
various quantities in the large-S, limit.

1. One-point quantities

In the case of the averages over quantities which de-
pend on only a single space-time point, (3.23), the large-
Sy limit depends on whether g(x ) decays to zero for large
x or not. If g(x) does not converge to zero for large x,
one can write

glx)=g(w)+Ag(x), (3.26)

and in the average over Ag(x) one can expand ®(x,) in
powers of S ! to obtain

(g(1)),=g(e)

n

1
n!

X [T dx x2"ag(x) .
o (3.27)
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This expansion assumes that the integrals over x*"Ag(x)
exist. For the particular case of the “local” order-
parameter correlation function one finds

S(=(a%(1)),

:1/’% 1__§_+

— , (3.28)

where the definition (2.42) for the interfacial width has

been used. This relation connects the two expressions
(1.4) and (2.30) for L.

2. Two-point quantities—R >>&

In the regime where R >>&, f(R,t), defined by (3.24),
is away from its value of 1 near R=0 and, for
So>>1, y2/S,<<1. In this case one can formally ex-
pand ®(x,,x,) given by (3.23) in powers of y2/2S, in
(3.15) with g,(x,)=0,(x,) and g,(x,)=0,(x,) for
n+m >0, and do the x, and x, integrations to obtain

2 -
c,,,"(R,z)z&,,,,ls,,,lL—Vz[HO(so ny. (3.29)
One can construct the leading contribution to C=C, by
integrating the derivative result (3.11) for n=m =0 to
obtain

C()
c=f0 dx C,,(Sp,x) . (3.30)

Inserting the result (3.29) into (3.30) one directly obtains
that

2 2 ) ¢2
c=—¢9f’df'(1-f'2)““2=2—°sm"‘f . (331
T Yo T
Given C=C, one can generate all the other correlation
functions by differentiation. For example,

3 Wy

Cy==Cyp= —
20 3S, 00 ﬂSo(l—fz)”z

(3.32)

and one can obtain C,, by taking the derivative of C,, or

directly using the expansion (3.29) to obtain
2

_ M

C,, = VLU
22 #567

(3.33)

It is very useful to note that one can use (3.31) to express
fin terms of C in C,, to obtain

(3.34)

This expression will be important in the development of
Sec. V.

3. Two-point quantities: R ~§

The expansion in the last section for large S is valid
away from R =0 where it is valid to assume that
y%/28,<<1. When this inequality is not satisfied one
must be more careful. Generally, for n +m >0, one has
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Con fdxldxzo (x,)o,,(x;) 5 VSO
72
Xexp|— o (x3+x3—2x,x,f)|, (3.35
25,
where f is given by (3.24) and y by (3.25). If one is in the

near field R /L <<1 and f=1 one can make progress.
Define

28,
b257=2(1+f)(SO—C0) (3.36)
Y
then, for large S,
b2
=]1——+" 3.37
S 45, ( )

and b serves as a rough measure of R, the distance
separating the order-parameter fields. To lowest order in
1/8,, for fixed b, f can be set equal to 1 in the 2x,x,f
term in the exponential in (3.35), and one obtains

R,?)

ITH‘I (

1 ;Kx]_lel/bz

= | dxdx,0,(x)0,,(x,))————e
J dxidxao, x, V28,

(3.38)

This procedure can be systematized using (3.37). We
focus on (3.38) here. This quantity has the property that,
as b —0, one obtains a d function that picks out the R=0
contribution. By changing to coordinates r =x, —x, and
y=(x;+x,)/2, (3.42) can be put into a form which em-
phasizes its large-b behavior. After a series of simple ma-
nipulations, (3.38) can be rewritten as

_1ym*+lpy—n—m
c, (Rp=+—1"_0
\/25077
><f “dz J(bz2)H, ., (z)e *,  (3.39)
where

T dx alx)[o(x)—o(x+r)] (3.40)

and the H, are the standard Hermite polynomials. Equa-
tion (3.39) cannot be used directly to obtain Cy,. The
strategy here will be the same as in the last section. One
first determines C,; and then integrates to obtain Cy, us-
ing
S,

C:S—fcodx C1\(Sg,x) . (3.41)
Using (3.39) for C,, and carrying out two integrations by
parts, one easily finds that

C(R,t)=S(t)—

1f+oc ~ _,2
— dz J(bz)e % . (3.42)
V2§, T =

Notice that J(7) can be expressed in the form

toe 2 24 2
~dx[oi(x) =yt di—olx)o(x+r)]

=—&Pi+J(r) (3.43)
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and using (3.28) to evaluate S in the large-S, limit, one
obtains the result

C(R,1)=1—W(b)/L , (3.44)
where
+ dx ‘X
W(b)=f_°c v T(bx) /YR (3.45)

Corrections to (3.44) are of O(L ~*). One can then evalu-
ate C,, directly using (3.39) or use (3.12) and (3.44) to ob-
tain
~ 1 2 oW 3
=——=°" 4 .
Cy “ T b O(L ™)
One can then work out the small- and large-b limits for
the various correlation functions. Starting with the ex-
pression (3.40) for J, one finds for small 7 that

(3.46)

r2
J(r)=7w(2)§xl ,

where (2.43) has been used. Inserting this result in (3.42)
one obtains for small b that

P
W:_i 1_+.‘__+_
V2

2 (3.47)

The small-b limit for C,, is given, using (3.47) in (3.46),
by

- =5,
var !

Higher powers in b2 bring in higher-order derivatives of
0.

Cyo(R,1) (3.48)

In carrying out the large-b limit one must evaluate J(r)
for large r. It is not difficult to show that

=245lr|+ -

Inserting this result into (3.39) and doing the integration
over the Hermite polynomials, one obtains, for n +m >0,
that

(3.49)

VQ/m)(—1"*!

Con(Rt)=

bn +m—1
(n+m) (n+m-—=2)
x L [((n+m)/2—1] (350

and these correlation functions fall off rapidly with in-
verse powers of b for large n +m.

Clearly, given (3.43), J(r) also goes as 2¢3|r| for large
r, and

W(b)=V2/mb+ ---

(3.51)

for large b. Inserting (3.51) in shows that

Y3 — C(R,1t) grows for large b, while

(3.44)

1/2

~ 1 {2

C Jg)=—— |- .
2,0(r,2) L |7 (3.52)
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decays to zero with large values of b. These results will 3 9C,,,(12) 3
be crucial in Sec. V. E*C,,,,,(l )= W 31 Cy(12)
For the A=0 potential one can evaluate J(r) simply ! 0 !
with the result N aC,,,(1 )iS 1)
2r 3S,(1) at, ~°
== (3.53)
tanbr =C, (12) 9 Cy(12)
and m+1,n+1 atl 0
1/ 2 aS,(1)
2 todxxe * \ 0
— . 3.54 +3Ch 42, (12)——, 4.1)
Wib)= b fo " tanhbx 3.54) zTm ot
It . L . aC,,,(12)
t is worthwhile pointing out that the two expressions v,C,, (12)=— mn V,Co(12)
for C(R,t) given by (3.31) and (3.44) overlap in the re- m 9C,(12)
gime £<<R << L. Since f can be written in the form _
(3.37), (3.31) can be expanded in powers of b>/4S, and Con+ 101112V, Co(12) 4.2)
we obtain agreement with (3.44) in the regime and
L>>R >>§. X 5
Vi€, (12)=C,, 11, +2(12)[V,C((12)]
+Cp i1 +1(12)VICH(12) . (4.3)
IV. EQUATIONS OF MOTION The C,,,(12) therefore satisfy (for ¢, and ¢, > t,)
A. General equations of motion AC,,,(12)=C,, 4, +,(12 JA(1)C(12)
Armed with the results of the last section and the basic +1C,, 4, ,(12) 95,(1)
equation of motion (3.4), one can proceed to the deter- rren at,
mining equation for Sy(1) and C,(12) and, in turn, the —FC,,,+2,,,H(12)[V1C0(12)]2 . 4.4)

C,.,(12). The main ingredients in the analysis, besides
(3.4), are the derivative relations (3.10) and (3.11). One For the particu]ar case of m =n =0 one has, comparing
immediately finds that (4.4) and (3.4), for ¢, and 1, > 1,

—rc22(12)[vlco<12)]2:—€CZO(12). 4.5)

aS,(1)
C 1 (12)A(1)Cy(12)+1Cy(12) ar
l
Since the C,,,(12) are functionals of C((12) and S,(1), (4.5) becomes the fundamental equation determining Cy(12) and
So(1). In Sec. VI it is shown how one can numerically solve (4.5) and establish the general picture developed previously

built on the idea that S, increases with time without bound. Using the basic equation (4.5) one can rewrite the general
equation for C,,,, (4.4), in the form

r 1 So(1) - ,
A(I)Cm,,(12)+?Cm+2‘,,(12)= 2 o +r |E,,(12)+=,,(12)I'[V,Cy(12)]°, (4.6)
1
[
where CB(12)=(B(I)B(2))o=%(B(l)02(2))o . @9
=,..12)=C,, ;, ,(12)
One can then obtain an equation of motion for Cg,(12)
_ by setting » =0 and m =2 in (4.6). Using this result in
C (12) Cyl12), 4.7 y g g
miln e (12) T (4.9) leads to the result
= _ 1 aS,(1)
= — S S— r
Emn(12) Cm+1,,,+1(12>C”(mczz(m Cp(12)=— % 8(;1 +T [Z(12)
—Chnian+2(12) . 4.8) rz.
. +——E(12)[V,Cy(12)]* . (4.10)
As a nontrivial example of the use of these higher- 2

order equations of motion, consider the quantity

(B(1)B(2)), which appears in the zeroth-order structure ~ Therefore, if the corrections to the peak contribution in
factor given by (2.28). One has immediately from the  (2.28) are to be small, =, and =;, must be small.
definition (3.3) of B(2) and (2.32), for ¢, and ¢, > t,, that Using techniques already developed, it is straightfor-
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ward to show, in the limit of large S, that, near R=0,
Z(0)~0(L %), while for R away from zero,
Ep(R)~0(L ™*). Similarly for R=0, Z,(0)~0(L "),
while away from R=0, Z,(R)~0(L%). While
E02(0)~1/L for R near zero, (V,C,)? vanishes as R? as
R —0. Thus, for R=0, Cgz(0)~1/L3, while for
R>>1, Cz(R)~1/L* and one can conclude that this
quantity is very small for late times and does not contrib-
ute to the scaling behavior.

The role of perturbative corrections to the peak contri-
bution has been investigated in some detail. The results
are that there are no low-order corrections to the scaling
results. The nonzero temperature corrections are of the
same form as found in Sec. IIID of MVZ. The focus
during the rest of the paper is on the contributions to the
structure factor from the peak contribution. It is there-
fore assumed that, for long times, C,(R,?)=C(R,?).

B. Determination of Cy(R,?)

The entire premise of this theory is that C, and, in par-
ticular, S grow with time in an unbounded fashion. To
establish this result (4.5) must be solved as an initial value
problem for equal times (¢, =t,=t >t,). For R0, (4.5)
can be put in the form

3CH(R) _ 3S, Cy(R)

ot ot C;(R)
1
— 2[4 R)—ViC(R)], 4.11
C..(R) [[3Cx(R) 2 C(R)] ( )
while for R =0 one must solve
as,
[C1(0)+Cyy(0) ] ——=2T[—1Cy(0)—S5,], (4.12)

at

where S, is defined by (1.6) with ¢ replaced by o. Equa-
tions (4.11) and (4.12) are supplemented by the initial
condition

C(R,t:O)ZSR,Ofl . (413)

Clearly, since C(S,,C,=0)=0, this requires
Co(R,tZO):SR’OS()(O)

and gives the equation S[S,(0)]=¢; which must be
solved to obtain S,(0) in terms of ¢;.

In order to proceed one needs to know C, C,,, and
C,, explicitly as functions of C, (and S;) and then in-
tegrate (4.11) and (4.12) forward in time. Unfortunately,
these quantities are generally only known as double in-
tegrals at each time step (for all R). One must therefore
develop analytic representations for these quantities (in-
terpolation formulas) which one can check once and for
all with the double integrals. The interpolation formulas
used below are for the A=0 potential and are given by

L
C L sin

L,Cy
L,

-1

) (4.14)

Lg
(1—-Lic3/L§)?

C,= (4.15)
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and
LOLICO
(1—L,C%/3Ly)""% "’

Cpo=— 4.16)

where the one-dimensional integrals L, are defined by
an

L,(S,)=(—2)"
as;y

(o) . (4.17)

These interpolation formulas satisfy the first two terms in
the exact expansion in powers of C, [which follow from
(3.9)]. Using the large-S,, results

I/2(211)! 1

n! (28,)"

2

L =
n(SU) WS()

+ -, (4.18)

it is easy to show they also reproduce the exact large-S,,
results given in Sec. III.

Finally one needs practical expressions for the L, as
functions of S, and for the R=0 components of C, C,|,
and C,,. It was found that the following interpolation
formulas, which are exact in the large- and small-S,, lim-
its, give excellent fits to the numerically determined func-
tions over the entire S, range, 0=, < «.

S=1-L,, 4.19)
Lo=(1+b,Sy+b,S2)/(1+b,S,+b,53v/S,7/2) ,
(4.20)

where b, = —1.512, b,=3.4, b;=—0.4941;
L,=2/(1+8S,+b,S3+27S)"?, 4.21)

where b, =14.89;
L,=16/(1+17S,+b,S3+b,S}+b,St+ 712855 /9)"/% ,

(4.22)
where b, =98.42, b, =189, b, =201.3;
C,,(0)
=(14b,Sy+b,52)/(1+b;S,+1.5b,521/75,/2) ,
(4.23)

where b, =—1.274, b,=8.657, b;=0.7797,
Cy(0)=—2S8,/[(1+10S,+b,S3+97S3 /2]'*,
(4.24)

where b, =25.14. The interpolation formulas
(4.14)-(4.16), when checked against the direct numerical
integration of the associated double integrals, are accu-
rate to better than one-half of a percent over the entire
Cy =S, domain.

V. ANALYTIC RESULTS
A. Long-time, short-distance properties
1. General development

The long-time L >>1 and short-distance R << L behav-
ior of the theory is analyzed in this section. It was shown
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in Sec. I1I that, for these conditions, the correlation func-
tions C and C,, are given by (3.44) and (3.46), respective-
ly. The corrections to these expressions are of O(L ~*).
If these expressions are inserted into the fundamental
equation (3.4) evaluated at equal times ¢, =¢,=t, t > ¢,
and with I'=1, one obtains

%—f=—%CZO+V%¢C . (5.1)
One sees immediately that, to lowest order in powers of
L™, one can drop the left-hand side and obtain, to
o(1/L),

1 aW(b) 2

——F=V°W(b) . 5.

b ob V-W(b) (5.2)

Since this equation is independent of time one can con-
clude that in the long-time L >>1 and short-distance lim-
it R <<L, b approaches a time-independent limit. This
is the first indication of a long-time fixed point in this
problem. Thus, to leading order in L', C takes the
form (3.44) with W=W(R). Similarly, from (3.37), one
has that f=1—7b?/4L*+ - - - and therefore C(R) and
Cy(R) are determined for R <<L by the solution of (5.2)
and (3.45) for b and W(b).

2. R ¢

Consider first (5.2) in the ultrashort-distance limit
R—0 where b—0. In this limit it is convenient to ex-
press the results in terms of the second moment of C and
C,, and identify as L — « and R—0,

S,=—1Cy(R=0) . (5.3)

Using the large-S, limit of C,,(0), which follows from
(3.27), one obtains

s 1 &Ky
' 24278,
For the A=0 potential one can easily evaluate «; to ob-
tain §, =V'2/3L, and one obtains the firm prediction for
the product of observables LS, =Vv"2/3=0.471 - - - .

More generally one can determine b(R) for small R by
using the result (3.47) for b% << 1 in (5.2) to obtain

(5.4)

Vibi=2 (5.5)
which has the solution as R —0
R 2
b2: —_— .
P (5.6)
This simple result has the consequences that
R 2
R,t)=1— + , 5.7
A =1 4dS,(t) 57
R%
Wib)=— |1+
=5 ad } , (5.8)

and C is given by (3.44).
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3. §E<<R <L

In this limit b is large and, using (3.51) in (5.2), one ob-
tains

Loy .

b (5.9)

In the large-R regime where (5.9) is valid one easily ob-
tains the solution

— +R—‘1,/;[flcos(ylnR +é)]+ |,

(5.10)

where

1, d=2

VIR, d=3, (5.11)

y=148d—8—d?)'*= l
and f, and ¢, are numbers which can be determined by
numerically solving (5.9). In particular, for d=2,
f1=0.56, $;,=1.19, while for d=3, f,=0.41,
¢,=0.008. If one goes to higher order in 1/R or works
in dimension d 2 4, then higher-order terms in 1/b must
be kept from the expansion of W in powers of b .

Note that (5.10), when put back into (3.51), gives (1.7).
Using (5.10) back in (3.37) one obtains
R 2

Co(R)=S, 4(d—1)+
Note that b ~C,—S,~ R ? for both large and small R but
the coefficient of R? has the value 1/4d as R—0 but
1/[4(d —1)] as R— . One can also numerically deter-
mine (b?/R )? in the intermediate regime.

(5.12)

4. Time dependence

At O(1/L) the fundamental equation (5.1) generates a
fixed-point solution which is independent of the details of
the driving dynamics. In particular, one obtains the same
results for a COP or an NCOP. Thus, one need only as-
sume that S, becomes large as t— . Looking at the
equation satisfied by S, one has

aS,(1)

[C11(0)+Can(0)]—

Focusing on the left-hand side one has, for the case of
large S, that

as _ i
9S8,  25,127S,

C,,(0)+Cp(0)= (5.14)

plus higher-order corrections. Since Sy < 0, as Sg— ©
one sees that the left-hand side of (5.13) is of order
Sy 3/28,. It was shown in Sec. V A 1 that the right-hand
side of (5.13) vanishes to O(L ~') which is just a restate-
ment of (5.3). Thus, one is able to determine b(R) in-
dependent of the particular time dependence of Sy(1). If
the right-hand side of (5.13) is evaluated to O(Sy*/?),
one must keep the next order correction to (3.37) of
O(S; %) which introduces another unknown function
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b'?(R) analogous to b(R). In that case, (5.13) reduces to
an equation relating the unknown constant S, and
bP(R). This tells one that S,~¢ for long times and one
recovers the Lifshitz-Cahn-Allen® results L ~¢'/2. While
the same approach used to determine b(R) can be used to
evaluate b'*(R), one finds that it is a function of S,.
Thus, the number S, remains undetermined. Under-
standing why this is so will emerge in the next section.

B. Scaling regime

1. Scaling equation

Consider again the fundamental equation of motion
(5.1). It was shown in Sec. III for R >>§ and L >>¢§ that
C, can be expressed in terms of C using (3.34). Inserting
(3.34) into (5.1) one obtains

aC _ 1
—— =—>tan

T =~ 25
—C |+VC, 5.15
o L2 2 ( )

where, for large times, L is given by (1.4).

Equation (5.15) is very interesting since it directly ad-
mits a scaling solution. Assume a solution of the form
(1.9). If x=R/L, then

O p(x)=V,F(x) X =— L v Fix), (5.16)
ot ot L?

where the parameter
p=r9b _LdL” _m¢ (5.17)

dt 2 dt 2

can be taken to be a constant since L ~¢'/2. Using (1.8)
and (5.16) in (5.15) one arrives at the fundamental scaling
equation

—ux-V, F(x)=tan +V2F . (5.18)

T
—F
2

2. Small-x limit

Equation (5.18) can be solved analytically in the small-
and large-x limits. The key point in the small-x expan-
sion is that, for small x, F=1—(2/m)g, where g is small
and tan[(7/2)F]~1/g blows us as g~ ' as g—0. One
then obtains, after a straightforward calculation (assum-
ing the system is isotropic),

172
—1— _lptms6x?
F(x)=1 x{l 202d +1) +

m(d—1)
(5.19)

Note that the leading term, Porod’s law, agrees with the
results (3.44), (3.51), and (5.10) in the regime £ <<R <<L.

3. Large-x limit

In the large-x limit, F becomes small, one can replace

tan[(ﬂ/Z)F]z-;lF
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in (5.18), and one must consider the linear equation
oF = (d—1)
—ux—=—F+F'4+——F'. 5.20
px dx 2 X ( )

One can then find solutions to (5.20) of the form
F=Fyx e **" with y>0 and directly obtains two
solutions. The first solution has y=2, 4=pu/2, and
v=d —(m/2u) and leads to a Gaussian decay of the
structure factor for large x. The second solution has
¥ =0 and v=m/2u. This leads to a power-law decay at
long distances.

Note, however, for 2ud >, the power-law behavior
leads to a nonintegrable structure factor. Since the in-
tegral of the structure factor is just the ¢ =0 component
of Fourier transform of the structure factor, we know
that this must be finite for any finite time. Indeed, for
any finite time after the quench,

Clq=0,1)= [dRC(R)=L%1)4} [ d‘xF(x)

is assumed to be well behaved. That u falls into the range
u>1/2d comes from the realization that S, =S for ear-
ly times and one expects u to grow as (7/2)S,. Once u is
larger than 7/2d, the system will pick out the Gaussian
solution. In Sec. VI it is shown that the Gaussian solu-
tion is unambiguously selected by the direct numerical
solution of (4.11).

4. Determination of : A nonlinear eigenvalue problem

From the analysis of the small-x behavior of F, one
knows that F(0)=1 and F'(0)=—V2/7(d —1). There-
fore, one can treat (5.20) as a standard second-order
differential equation and, given F(0) and F’(0), integrate
it out from the origin. From the large-x analysis one has
that F must match onto

FA :F0x|d<ﬁ/l,ule'(u/llxz_%le*n/Z,u . (5.21)

But as explained above, for the band of y values of in-
terest, the term proportional to F, is nonintegrable and
unphysical. Therefore, the branch of F determined by
F(0) and F'(0) must match onto F , with F; =0. Clearly
this reduces to a nonlinear eigenvalue problem where p
must be selected to give F;,=0. Thus problem can be
solved relatively simply numerically and one obtains the
selected values

1.104..., d=2
p,=10.5917..., d=3. (5.22)
0.4144. .., d=4

This result has far-ranging implications. If the only ac-
ceptable solution to (5.20) is for a selected set of
p=p,(d), then the resulting scaling function is univer-
sal. This universal scaling function F(x ) is shown in Fig.
1 for d=2, 3, and 4. This has the further implications
that S,,L and 1—S are completely determined by this re-
sult for long times. One has, for example,

S=1—(u,2Tt) V24 -+ . (5.23)
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A very interesting consequence of this result is that the
behavior of the C(R,t) at R=0 given by (5.23) is deter-
mined by asymptotically matching to the long-distance
behavior.

These results raise some interesting and difficult ques-
tions about boundary and finite-size effects. The asymp-
totic matching necessary to select the value of u requires
going to large values of x=R /L. Clearly, for L >§,
this may require going to very large values of R. For
finite-size systems with periodic boundary conditions one
eventually leaves the regime where F(x,,) is small and
it is difficult to guess the selection mechanism in this case.
For finite-size systems the integrability is guaranteed and
the selected u, may be chosen differently (or not at all).

VI. NUMERICAL ANALYSIS
OF BASIC EQUATIONS OF MOTION

A. Preliminaries

The results of the direct numerical solution of the fun-
damental set of equations (4.11) and (4.12) are presented
in this section for the A=0 potential. The first system
studied is defined on a two-dimensional square lattice us-
ing the interpolation equations for C(R), C;;(R), and
C,o(R) given by (4.14), (4.15), and (4.16). These must be
supplemented by the interpolation equations for the one-
point quantities L,, S, C,;;(0), C,(0), etc., also given in
Sec. IVB. When implementing a numerical solution
there are various practical questions one must answer.
The first concerns the size of the system and the bound-
ary conditions. Since these numerical results will be com-
pared with simulations carried out on lattices with
periodic boundary conditions, it is clear that periodic
boundary conditions should be used here. The Laplacian
on the square lattice is given by

VIf(R)= 3 [f(R+8,)—f(R)], (6.1)

where a labels the vectors 8, connecting R to its four
nearest neighbors. These results for this system will be
referred to as the n2fl calculation (nonconserved, two-
dimension system, using the full set of equations, on a
lattice ) to distinguish it from other calculations described
below.

The equations of motion (4.11) and (4.12) were solved
using a straightforward time-step algorithm. It is found
that there is a numerical instability in the simplest nu-
merical analysis of these equations if the time step is
chosen too large. It was found that for a time step
Ar=0.01 there is no such instability for the time range of
interest.

The role of finite-size effects were investigated in some
detail. The main result is that finite-size effects tend to
make the order grow faster and go to a final value of
S <1. Thus, S, L, and S hit a final fixed value while S,
develops oscillations.

Most of the calculations are for systems of size N XN
where N=100. In the time regime 0<t <400 it was
found that there is rno significant (or visible) change from
the N =60 results for the quantities S, S,, or S.
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TABLE I. Numerical fits of theory to (6.2). The various cal-
culations n2fl, etc., are defined in the text.

SO S
n2fl —5.78 0.761
n2fi —5.87 0.758
n3fi 0.237 0.384

B. Time dependence

The basic picture presented earlier is confirmed by the
direct numerical solution of the basic equations of
motion. Most importantly, as shown in Fig. 2 for
N =100, At=0.01, and S(0)=1, S, grows monotonical-
ly with time. Indeed one sees that S is linear with time
after a rather short “waiting time.” An excellent fit is
given by the form

So=SMt+Ssy, (6.2)

where Si'’ and S’ are given in Table I. According to

the analytic work in the last section
Te _ T
Pa=7S0=5 Sy
Using the value for Si'’ from Table I we obtain a value of
1, =1.195 in fair agreement with the theoretical result
t,=1.104.
Turning to the direct observables S is shown in Fig. 3

for the same set of parameters. We see that it properly
orders by approaching the value of 1 as t—o. The

300

250

200

150

100

50

[} 100 200 300 400

time

FIG. 2. S, vs time for the n2fl calculation defined in Sec. VI.
Also plotted are L [defined by (1.4)] and L, the half width at
half maximum, for n2f.
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TABLE II. Numerical fits of theory to (6.3).

LIOJ LtI/Z» Lr—~|/2)
n2fl 1.12 1.51 —13.3
n2sl 1.18 1.50 —12.7
n2fi 0.65 1.52 —10.0
n2si 1.34 1.49 —13.6
n3fi 0.871 1.08 —6.55
n3si 0.678 1.08 —4.99

growth law L, defined by (1.4) with ¥)y=1 and £=2 for
the A=0 potential, is plotted in Fig. 2. L is fitted to the
form

L:Ltl/?.)t1/2+L(0)+L(‘l/2)t“1/2 (6.3)

with the parameters given in Table II. A more refined
treatment involves the quantity p defined by (5.17). Since
the ¢!/? behavior of L is not in question, it is convenient
to analyze p in the form y=%L2/t. u is shown in Fig. 3,
and fit to the form

H:#(O|+Nl*1/2)t*'1/2+‘u'l*l)t*1 (6.4)

with the parameters given in Table III. The value
w,(0)=p'"=1.14 in good agreement with the analytical
value p, =1.104. Since p'~""= —16.1 there is a relative-
ly slow transient in the problem. As discussed in Sec.
V A 2, the quantity LS, should approach a constant. L
and S, were numerically determined separately and their

product fit to the form
A:LS2:A(0)+A(—1/2)t*l/2+A(*l)t*1 (6.5)

over the time range 100=t =400 with coefficients are
given in Table IV. In particular, 4'”=0.471 in good
agreement with the analytic result.

C. Spatial dependence

The spatial structure of the n2fl system has also been
studied. The scaled structure factor C(R,?) is plotted as
a function of the scaled distance R /L in Fig. 4 for vari-
ous times after the quench. One clearly sees the develop-
ment of scaling. For larger x, F(x ) seems a bit more con-
verged than for small x. A fit of F(x) for “large” x (> 1)
to the theoretically predicted form (1.9) gives an excellent
fit with the parameters F; and u given in Table V. It is
reassuring that the value of u determined here agrees well

TABLE III. Numerical fits of =1L/t to (6.4).

1.2

(] 100 200 300 400

time

FIG. 3. Ranging from the top of the curve to the bottom
uZ%th, S [defined by (1.1)], S9, and S, [defined by (1.6)] are
plotted for the calculation n2fl.

with the direct numerical determination of u using (5.17)
and from the nonlinear eigenvalue problem discussed in
Sec. V. There is a linear regime from about x =0.2 to 0.7
where F(x ) can be fit to the linear form

F(x)=F'94F"Mx (6.6)

with the parameters shown in Table VI. For d =2 the
analytic prediction is F'!’= —0.798 which agrees reason-
ably well with the numerical result.

D. Other calculations

Several other numerical calculations have been carried
out to check several points. One interesting calculation is
to numerically solve the “sharp interface” equation (5.15)
directly assuming again initial conditions of the form
(4.13). Thus, the calculation n2sl refers to the noncon-
served, two-dimensional, sharp interface equations solved
on the square lattice. Another point of interest is the
dependence of the results on the underlying lattice. Both
of the previous cases were therefore reanalyzed assuming

TABLE IV. Numerical fits of LS, = A4 to (6.5).

(0) (—=1/2) (-1

© p p
n2fl 1.14 1.67 —203
n2sl 1.12 1.87 —203
n2fi 1.16 0.99 —15.0
n2si 1.11 1.99 —20.2
n3fi 0.58 0.99 —17.52
n3si 0.58 0.75 —5.56

40 4 4D
n2fl 0.471 0.0236 1.25
n2sl 0.45 0.0071 —1.12
n2fi 0.471 0.0289 —1.29
n2si 0.45 —0.0006 —1.05
n3fi 0.471 0.0069 —1.33
n3si 0.45 —0.0026 —1.3
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FIG. 4. Scaled structure factor C(R,t)/C(0,¢) vs R, /L
(with L=Vv2/[1—C(0,t)]) for various times t=25, 50,
75, ...,400 after the quench.

the structure factor is isotropic and replacing (6.1) by

¥ d—1) 3
STt R 3R |CR) (6.7)

VixC(R)=
in d dimensions. The calculations n2fi and n2si therefore
reproduce the n2fl and n2sl calculations but with the
periodic lattice replaced by an isotropic continuum.
Clearly it is straightforward in this case to generalize
these calculations to three dimensions. The results of
these calculations are given by n3fi and n3si.

The comparison of n2fl and n2sl were carried out for
N=100. The results shown in Fig. 5 for S or L from the
two calculations, as expected, are very different for early
times (¢ <15). However, in the range 50-150, the plots
for S and L merge. In comparing the structure factors
(see Fig. 6) (for t =400) one sees that there is excellent
agreement for x >0.8. In the “linear” regime there is a
small, constant discrepancy between the two in the range
0.1<x =0.9.

In principle, the continuum isotropic limit could be
quite different from the lattice model. There is strong
evidence however that n2fl and n2fi agree at long times.
As shown in Fig. 7, S agrees in detail at long times. Any

TABLE V. Numerical fits of F(x) to (1.9).

TABLE VI. Numerical fits of F(x) to (6.6).

Flﬂl Fl n
n2fl 1.06 —0.754
n2sl 1.06 —0.772
n2fi 1.05 —0.762
n2si 1.04 —0.751
n3fi 1.05 —0.547
n3si 1.04 —0.546

F, K
n2fl 0.651 1.10
n2sl 0.597 1.10
n2fi 0.591 1.11
n2si 0.608 1.12
n3fi 0.702 0.606
n3si 0.694 0.603

differences can be ascribed to finite-size differences at
long times. The spatial dependence looks quite similar
for the two cases. Plots of F(x) shown in Fig. 8 for
t =400 show close agreement for x >1 and reasonably
good agreement for small x.

The variation of results with the initial conditions were
checked for the n2fi system. The cases S(0)=¢;=1,
0.274, 0.084 were analyzed and there was no dependence
of S or S, on S(0) at long times.

Fundamentally, as shown in the tables, the long-time
structure, including u, depends only on the dimensionali-
ty of the system, not on initial conditions, lattice struc-
ture, or on whether one uses the full or sharp interface
limit for the driving equations.

VII. SIMULATION

A direct numerical simulation of the original Langevin
model with A=0 was also carried out. This was accom-
plished using the same initial conditions given by (4.13)
with €;=1. Most of the results were for a 100X 100
periodic lattice. The results were averaged over 350 runs.

In Fig. 9 the simulation results are compared with the

time

FIG. 5. Comparison of calculations for the full set of equa-
tions [defined by (4.11)] and n2fl vs the sharp interface set of
equations [defined by (5.15) and n2sl] for S=C(0,t) vs time
after the quench.
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FIG. 6. Same as Fig. 5 but for the scaling function F vs
scaled distance x =R, /L.

numerical solution of the theory. It can be seen that
there is excellent agreement for early and intermediate
times. For longer times the simulation lies below the
theory and is very well fit by

Som=0.995—1.25V'r +0.656/1 . (7.1)

This long-time behavior will be discussed below.
Similarly, the second moment S, was determined in
the simulation. The result for S, from the simulation lies
consistently below the result from the theory at long
times. However, the quantity LS, determined from the

0 20 40 60 80 100
t

FIG. 7. Comparison of calculations for the full set of equa-
tions [defined by (4.11)] set on a lattice (n2fl) or on an isotropic
continuum (n2fl).
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FIG. 8. Same as Fig. 7 but for the scaling function F vs the
scaled distance x =R /L.

simulation can be very well fit to the form

LS,=0.488+0.028/V'1 —0.734/1 . (7.2)

Comparing this result with the predictions of the theory
LS,=V2/3=0.471. .. one finds excellent agreement.
The scaling function F(x) has also been determined in
the simulation. The comparison with the theory is shown
in Fig. 10. The simulation lies consistently above the
theoretical result but the overall agreement is quite
reasonable since the time (=100) for which F(x) was
determined is rather modest. Indeed for large x the

200

time

FIG. 9. Simulation results for V=100 and 200 and n21l for u
(dashed curves) and S (solid curves).
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FIG. 10. Simulation results for N =100, t =100 vs n2fl re-
sults for the same parameters for the scaling function F vs
scaled distance x =R, /L.

agreement is quite good.

In order to gain some understanding of why there is
some discrepancy between the long-time theoretical and
simulational results for S(¢), it is useful to compare the
theoretical results for y=%L2/t with those for the simu-
lation. In Fig. 9, u is shown for the theory and for simu-
lations with N =100 and 200. While theory and “‘experi-
ment” agree for early to intermediate times, there is a
definite break at a time of about 20. Clearly the simula-
tions of u are sensitive to finite-size and boundary effects.
u grows to a larger value for N =200 before turning
around.

It is possible that S(¢) is very sensitive to finite-size
effects. For the N =100 system there are strong finite-
size effects in the tail of F(x) even for t =100. Thus, it
appears that more careful simulations on much larger
systems are necessary to check this point. As was clear
in the development of the theory, u, can be determined
in two ways. One can use LL or one can look at the tail
of the scaling function and the coefficient in the Gaussian
in (1.9). Looking at the simulation one finds for
x >3, t=100, and N =100 that the effects of the finite-
size and periodic boundary conditions are already sub-
stantial in the tail since F is a nonzero (increasing with
time) constant in x. This behavior clearly influences the
nonlinear matching process described in Sec. V. If, how-
ever, one looks directly at the structure factor in the re-
gion 2=<x <2.6 and fits F(x) to the form (1.9), one ob-
tains F;=0.784 and p=1.05. The agreement of this
value for p with the theoretical value is encouraging.
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VIII. CONCLUSIONS

The theory presented here supports the notion that the
scaling properties of growth kinetics are universal. A
rather general class of field-theoretical models have been
treated and the scaling functions obtained depend only on
the spatial dimensionality of the system. Somewhat
surprisingly, even the growth law, when measured in
units of the equilibrium interfacial width (a quantity
which can be rigorously defined), has the universal form
(1.5). Whether the fixed-point solution is unstable to yet
undiscovered perturbations is an important open ques-
tion.

It is worthwhile pointing out the range of the results
developed here. The growth kinetics of a system de-
scribed by a single nonconserved scalar order parameter
with a degenerate double-well potential with quadratic
minima have been treated. For this model the nature of
the lattice and the details of the potential are unimpor-
tant for the determination of the universal features. It is
reasonable to conjecture, as is suggested in MVZ, that
nonzero-temperature effects will not change the basic
universal features except to replace ¥3—M?*T) and
E—E(T), where M and & are the temperature-dependent
magnetization and interfacial widths which can be com-
puted in equilibrium. One may ask what happens if the
field ¥(R) is replaced by fixed-length (Ising) spin. This is
an interesting and open question. The answer may be
through the mapping of the kinetic Ising model onto a
functional integral representation as in Ref. 19.

It is interesting to try and extend these results to other
systems. Some extensions are probably simple: the treat-
ment of nonsymmetric degenerate wells or to include
higher-order gradients in the equation of motion are ob-
vious checks. From the work of Lai’ one expects the case
of competing scalar order parameters to generate new
universality classes. The new element in these cases is the
competition between different types of walls and anisotro-
py-

The most pressing immediate problem of interest is the
application of these ideas to the same model but with a
conserved order parameter. As indicated in Ref. 7 and in
the Introduction, much of the analysis goes through as in
the NCOP case. The significant difference is the ex-
istence of a long-time competition between the ordering
field and the process of bulk diffusion which leads to a
crossover from a t!/# to a ¢!/ growth law. This will be
discussed in detail in a companion paper.

The ideas developed here also have application in the
problems of front propagation and nucleation. These will
be discussed elsewhere.
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