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Magnetic phase transitions in narrow nondegenerate energy bands
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By use of an e8'ective-medium approach for an approximate but self-consistent solution of the s-

band Hubbard model, the possibility and stability of spontaneous magnetic order in narrow energy
bands are investigated for arbitrary band occupation (0 n 2) and arbitrary Coulomb coupling
U/F. The starting point is a solid with rocksalt structure and a MnO-type sublattice decomposi-
tion. Ferromagnetic as well as antiferromagnetic solutions appear for more than half-filled bands
(n ) 1). Antiferromagnetism is stable in a small stripe close above n =1. The corresponding phase
diagram is derived and discussed. The critical temperatures Tc, T& are strongly (n, U)-dependent,
but in any case of realistic order of magnitude. A detailed physical interpretation of the results is
offered by inspecting the temperature behavior of the quasiparticle density of states. Higher expec-
tation values like (c, c, n„) turn out to be the decisive preconditions for spontaneous band
magnetism.

I. INTRODUCTION

The possibility of spontaneous magnetic ordering due
to strong electron correlations in narrow energy bands is
commonly investigated within the framework of the Hub-
bard model. ' In spite of the simple structure of the
model Hamiltonian, the general solution of the underly-

ing many-body problem is not available. Rigorous results
exist only for very few cases, concerning the one-
dimensional model, ' clusters of finite size, ' the
(T=0, U~ ~ ) case for special particle numbers

N, =N+1(Ref. 8) [N(N, ): number of lattice sites (band
electrons), U: intra-atomic Coulomb interaction], the
atomic limit W=0 (W: width of the free Bloch band),
and the trivial limit U=O. These special cases are of
great importance for testing unavoidable approximate
procedures for the general problem, yielding, however,
only restricted information about the magnetic properties
of highly correlated electron systems. Although the fun-
damental question, whether or not the simple s-band
Hubbard model may exhibit band magnetism, is not
yet assured rigorously, many convincing approximate
theories predict the existence of collective magnetism un-

der certain conditions for the basic model parameters.
The decisive terms are obviously the Coulomb correlation
U/W, the temperature T, the band occupation n =N, /N
(0&n &2, s band), and the lattice structure. The main
goal for a topical study must therefore be the derivation
of magnetic phase diagrams in dependence of these pa-
rameters.

No controversy exists about very weakly occupied en-
ergy bands (n «1), for which no collective magnetic or-
der will appear irrespective of the value of the Coulomb
coupling U. On the other hand, the intensively studied
half-filled band (n =1) should have an antiferromagnetic
ground state. ' But, what happens for partially filled
(0&n &1; 1&n &2) bands? Recently, a self-consistent
spectral density approach (SDA) has been used" to com-

pare the stability of paramagnetic, ferromagnetic, and an-
tiferromagnetic solutions of the Hubbard model. The
starting point was a simple symmetric model density of
states being thought to simulate a lattice which consists
of two interpenetrating sublattices A and B. The main
results may be gathered as follows: Antiferrornagnetism
is stable in a restricted region of n around the half-filled
band, which is broadest for intermediate coupling
strengths (U/W=1), and shrinks to the n =1 axis for
U/W-" and U/W-0+. For smaller n, which, how-
ever, have to exceed a critical value, and for couplings
U/W, being greater than a minimum value, ferromagne-
tism becomes stable, while for very low band occupations
the system is paramagnetic irrespective of U. The phase
diagram is symmetric to the n = 1 axis because of
particle-hole symmetry. The calculated critical tempera-
tures are of realistic order of magnitude. "

We think that the theory of Ref. 11 has left behind
some challenging questions, concerning, e.g., the
inhuence of the lattice structure on the magnetic state.
There is some evidence that the results of Ref. 11 will
substantially modify, if one uses, e.g., a nonsymmetric
Bloch density of states (BDOS), excluding therewith
particle-hole symmetry. In particular for antiferromag-
netic systems we have to expect a remarkable structure
dependence. The quasiparticle density of states (QDOS),
derived in Ref. 11 for an antiferromagnetic solid, is
characterized by two energy gaps. One is the so-called
Hubbard gap, which appears for strong enough couplings
U/W in para- and ferromagnetic systems, too, being a
typical consequence of the electron correlations. The
other gap is due to the antiferromagnetie ordering giving
rise to a reduced magnetic Brillouin zone. This so-called
Slater gap opens for all temperatures below Tz, at least
for model densities of states like that used in Ref. 11.
For the special case T=0 it has also been found for more
realistic systems, its existence being, however, strongly
dependent on details of the antiferromagnetic order-
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In this paper we want to derive the magnetic phase dia-
gram for a correlated electron system on a lattice with a
realistic rocksalt structure. One aim is to demonstrate in
comparison with the results of Ref. 11 the strong struc-
ture dependence of the magnetic properties of the Hub-
bard model. We compare paramagnetic, ferromagnetic,
and antiferromagnetic spin structures, assuming that
neighboring (ill) planes of the fcc lattice belong to
different sublattices A and B. In the case of antifer-
romagnetism each sublattice orders ferromagnetically,
but with an alternating NSNS magnetization sequence
(MnO-type antiferromagnetism). In particular, we shall
expect consequences of the asymmetry of the free Bloch
density of states (BDOS) which prevents particle-hole
symmetry. For an approximate solution of the underly-
ing many-body problem an effective-medium approach is
used, which for para- and ferromagnetism turns out to be
equivalent to the SDA, " being, however, very much
simpler in the case of antiferromagnetic spin structures.

Besides the magnetic phase diagram the most weighty
criteria for the trustworthiness of a theoretical approach
to band magnetism are the transition temperatures Tz
and T~, respectively. The success of the SDA pro-
cedure" lies mainly in yielding realistic T& N values, con-
trary to the frequently applied Stoner model. The multi-
band SDA (Ref. 14) resulted in an excellent description of
magnetic and spectroscopic data of the prominent band
ferromagnet Ni. ' ' . In the same spirit it belongs to the
most important intentions of this work to provide the
basis for a forthcoming study on the antiferromagnetic
Mott-Hubbard insulator NiO. For this purpose we need
a many-body approach, which fulfills two conditions. It
must be, on the one hand, mathematically on a tractable
level, i.e., simple enough, but, on the other hand, also
realistic enough, to promise a quantitative description of
NiO when combined with a reliable one-electron band
structure calculation for the BDOS. The SDA of Ref. 11
appears to be too complicated to be successfully applied
to antiferromagnetic systems like NiO.

II. MODEL

Strongly correlated electrons in narrow, nondegenerate
energy bands are usually studied within the framework of
the well-known Hubbard model. ' Since we intend to
study simultaneously the possibility of paramagnetism,
ferromagnetism, and antiferromagnetism, we presume a
lattice, which can be decomposed into two chemically
equivalent sublattices A and B. We refer to the total lat-
tice as a "magnetic" Bravais lattice (R; ) with a two-atom
basis (r ). The space vector of any lattice site is then
given by

R; =R;+R (i=1,. . .,N) (a=A, B}.

N denotes the number of sites in the magnetic Bravais lat-
tice. 2N is then the total number of sites in the real,
chemical lattice. Translational symmetry can be assumed
for the magnetic structure. The thermodynamical aver-
age of any site-dependent operator 0,

is surely R, independent. A dependence on the sublattice
index a, however, may happen, in particular in antiferro-
magnetic phases. Fourier transformations between real
space and k space are therefore restricted to the magnetic
lattice and the magnetic Brillouin zone, respectively:

ik R,.0; =, ge 'Oq
~'N

N

Oq = ge '0;

(3)

(4)

Taking into account the sublattice structure the Hamil-
tonian of the Hubbard model reads

l,J,O, Q, P
(T;J~ p5—;J5 , tt)c; cjtt

+—g n; n;
U

(&)
i,a, cr

c; (c; ) is the creation (annihilation) operator of an
electron with spin cr at site R; . n; =c; c; is the
number operator, p the chemical potential, U the intra-
atomic Coulomb-matrix element, and TJ~ the hopping
integral between sites R; and R &. The latter express the
kinetic energy of the band electrons and the influence of
the periodic lattice potential. In a tight-binding approxi-
mation we restrict the electron hopping to nearest neigh-
bors (b,~) in the chemical lattice:

To~ if R; =R&

ij f t j~ J'P

0, otherwise .

(6)

one finds with (6}

s(k)—:s „„(k)= saa(k) =T0+ T,f(k),

t(k)—:s„q(k)=sa„(k)=T,g(k) .

f(k) and g(k) are determined by the lattice structure:

f(k)= g e
gA A

1

g(k)= g e
gAB

I

We consider a fcc structure with lattice constant a. The
(111)planes belong in an alternating sequence to sublat-
tice A and sublattice B, respectively. Each atom has
twelve nearest neighbors, six from the same and six from
the other sublattice:

In the single-band case we can choose for simplicity
To =0. For the k-dependent Bloch energies

s p(k)= g T ~e
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f(k)=2 cos —(k„—k ) +cos —(k —k, }
a a

+cos —(k —k )
Q

Z X

g(k}=2 cos —(k„+k~) +cos —(k~+k, )
a a

+cos —(k, +k„) (12)

ity of paramagnetism, ferromagnetism, and antifer-
romagnetism in a solid with the previously described
structure. We investigate this question in terms of tem-
perature T, Coulomb interaction U, and band occupation
n (0 n ~ 2). A key quantity will be the sublattice mag-
netization

nt„=(n„, ) —(n„, ) =rn .

Since we assume each sublattice to be either para- or fer-
romagnetic, it holds,

mg =my

T, is closely related to the width 8'of the Bloch band: for a para- or ferromagnet, and

8'= —16T, . (13) my = 7?fg

The band structure and the total Bloch density of states
(BDOS) po(E) for the noninteracting electron system,

po(E)= g g 5(E—s(k) —pit(k}l)
1

2%
(14)

are plotted in Fig. 1. We stress once more that the k
summation runs over the first Brillouin zone of the mag-
netic lattice. In the case of the free system the decompo-
sition into sublattices is of course meaningless. po(E} is
therefore nothing else than the well-known fcc-tight-
binding BDOS.

The main goal of our study concerns the relative stabil-

(n )=—I dE f (E)S;; (E—)(t),

1

&P(E—P)+ 1
f (E)= (19)

which can be derived from the one-electron spectral den-

sity:

Sap(E )
— d( t t ~

)e (i /s)E(t —t')
IJO' 2'

for an antiferromagnet. The sublattice-magnetization is
determined by the spin-dependent average particle num-
bers

X ( [c; (t ), cjt) (t')]+ } . (20)

[. . . , . . . ]+ denotes the anticommutator. The knowledge
of S),t (E ) as its k-dependent Fourier transform,

0.0
0I

0
I
C
4J

-2.0

-3.0

1.00—

X Vf

(21)

solves the full problem. Closely related to this function is
the quasiparticle density of states (@DOS),

p (E)= QS;;~(E p)= —ggS& (E p), —1 1

a a k

(22)

which is thought of being built up by the two sublattice
@DOSp (E):

0.75—
p (E)= „gS)", (E—

)M) .1
(23)

0.25—

For para- and ferromagnetic systems p (E) and p (E)
are of course identical, while for antiferromagnets the re-
lation p„(E)=pt) (E) holds. Sometimes it may be
convenient to start the calculation with the retarded
one-electron Green function,

-3.0 -2.0 -1.0
Energy (eV)

0.0 1.0
Gg(t, t'):—((c, (t);cjtt (t')))

—= —iB(t —t')([c...(t),c,',.(t')] & (24)

FIG. 1. Tight-binding Bloch band structure and density of
states po(E) for the fcc lattice.

[B(t—t') is the step function], the imaginary part of
which is directly connected to the spectral density:
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S, P(E)= ——Im[G; P(E+i0+)] .1
(25) g [(E+P)5; 5 y

—T, "]GyP (E)=55,,5~
m, y

The fundamental spectral density is not exactly deriv-
able for the general Hubbard model. Approximations
must be tolerated. Our proposal is exposed in the next
section.

III. EFFECTIVE-MEDIUM APPROACH

By use of the commutator

+ Vraaa;p(E )ill, JCT

(27)

On the right-hand side appears the higher Green function

rimnjcr E } ((cia u—cmy a—cnscr~ jpo ))p

which prevents a direct solution of the problem. If we
define via

[c;,%] = g (T y p5, —5 y)c +Vn, c,
m, y

(26)

Vr;, ;.;.'P(E)= y M;y. (E}GyP.(E}
m, y

(29)

we get the equation of motion of the energy-dependent
one-electron Green function G, P(E):"

the electronic self-energy M p(E), then the formal solu-
tion of (27) is easily found:

Cg (E)=
E+p, e(k)—Mf, —(E)

t '(k) +M f,
"(E )

t(k)+Mq~ (E)

E+p —s(k) —Mz "(E) (30)

Here we have written for abbreviation

hi ~(E )=[E—R '+'(k, E )][E—R ~ '(k, E)),
R' '(k, E)=e(k)+ —,'[Mi", "(E)+Mg (E)]%I—,'[M~ "(E)—Mi, (E)] +~t(k)+Mk (E)~ ]'

(31)

(32)

The remaining problem rests on an approximate deriva-
tion of the electronic self-energy. The idea of our ap-
proach may be sketched as follows. First we suppress the
off'-diagonal part Mi", (E) of the self-energy, which sure-

ly plays only a minor role with respect to the possibility
of band magnetism. In the case of para- and ferromagne-
tism this quantity is even exactly zero. For antiferromag-
netic systems it is effectively spin independent and of cer-
tainly less importance than the decisive sublattice self-
energies Mz "(E) and Mi, (E). For an explicit deter-
mination of these self-energy parts we switch off for the
moment the intersublattice hopping t(k) in the model
Hamiltonian (5), in order to avoid a double counting of
such a term, which enters explicitly the formal solution
(30}—(32). That means, in a sense we treat the two fer-
romagnetic sublattices separately, by applying to the rest
Harniltonian the moment-equating spectral density ap-
proach (SDA) of Ref. 11. Proceeding strictly along the
line exposed in Ref. 11,one finally gets

M (E):M(E)—
E+p —8=v(n. .) E+p B —V(1 —(n — ))

(33)

(n )(1—(n ))B = g g e p(k)hfy~,
k P, y

where

(35}

hi,Py =I dE f (E) —[E5y —
Ey (k)]—5y

tions, which turn out to be necessary for the appearance
of a spontaneous spin ordering in the partially filled ener-

gy band:

(n )(1—(n ) )B

=—g T,,P(c,t c,p (2n, 1)) . —1

l,J,P

(34)

The crucial point of our procedure is that the expectation
values (n, ) and B are to be determined self-
consistently within the full model (5). This is possible,
since the band shift B,although consisting of higher
correlation functions, is nevertheless expressable by the
one-electron spectral density only. Using Eqs. (3.30) and
(3.31) of Ref. 11 expression (34) may be rewritten as:

This expression contains two important expectation
values, the average spin-dependent particle numbers
(n ), and, most decisively, the spin dependent band
shift 8 . The latter is composed of higher correla-

XSPi,y (E—
iu, ) . (36)

Equations (18)—(21), (24), (25), and (30)—(36) build a
closed system of equations, which can be solved self-
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consistently for the average occupation numbers
(n t), (n, ).

Under certain conditions there may exist more than
one mathematical solution of our closed system of equa-
tions. Then the internal energy Eo(T),

Eo(T)= =— g TJ~(c; c~& )
&a)

i,a,j,p, o'

+—y (n...n.. .),U

i,a, cr

(37)

or better the free energy F( T),

I"(T)=ED(0) Tf— [Eo(T')—Eo(0)],
T dT'

(38)

may be used to sort out the physically stable solution.
The first expectaion value in (37) follows directly via the
spectral theorem from the one-electron spectral density
S,'~(E) The .second expectation value (n, n, ) is
obviously a special case of the higher correlation function
needed in (34). Therefore we can take it as a by-product
of the transition from (34) to (36):

IV. RESULTS

The main parameters of the Hubbard model are the
coupling constant U/8' the band occupation n, the tem-
perature T, and, last but not least, the lattice structure.
For the lattice we have chosen a realistic fcc structure
with a sublattice decomposition as described in Sec. II. It
should be pointed out that all wave-vector summations
have been done explicitly over the first Brillouin zone
of the magnetic Bravais lattice without further
simplifications. The Bloch bandwidth 8' has been fixed
at 4 eV, so that the final results of our theory appear in
terms of U, T, and n.

Figure 2 shows the T=0 magnetic phase diagram in
dependence of U and n. For a less than half-filled band
(n ( 1) we do not find any solution with nonzero magneti-
zation m. This changes for band fillings n & 1. In wide
regions of the phase diagram additional ferromagnetic
and antiferromagnetic solutions appear besides the ever-
existing paramagnetic one. Equation (39) for the internal

Eo(T)= g g I dE f (E)[E5. +pe~(k)]
n, a,P

XS~q (E—p) . (39)

We stress once more that the relations between the fun-
damental spectral density and the average particle num-
bers (18), the spin-dependent band shift (35) and (36), and
the thermodynamic potentials (38) and (39) are rigorous
expressions. The unavoidable approximation within our
procedure concerns excludingly the self-energy ansatz
(33). The self-consistent procedure, proposed previously,
will certainly remove a great portion of the insufticiencies
being due to (33).
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FIG. 2. Phase diagram for T=O. The lines indicate the
phase boundaries between the paramagnetic (PM), ferromagnet-
ic (FM), and antiferromagnetic (AFM} phase.

FIG. 3. Upper part: (Sublattice) magnetization m as function
of band occupation n for T=O. Solid lines indicate the magne-
tization of the ferromagnetic solutions, while dashed lines be-

long to the antiferrornagnetic solutions. Lower part: Internal
energy Eo as a function of band occupation n for T=O. For
n & 1 the values plotted are Eo —2 U(n —1). Solid line:
paramagnetic solution, dashed line: ferromagnetic solution,
dashed-dotted line: antiferromagnetic solution.
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energy has been used to sort out the most stable
configuration. In a small stripe to the right of the n =1
axis the system is antiferromagnetic, while for higher
band fillings ferromagnetism becomes stable. This phase
diagram exhibits some characteristic deviations from that
presented in Ref. 11, which all point to a remarkable
structure dependence of the magnetic data of the Hub-
bard model. The asymmetry of the present phase dia-
gram with respect to the n =1 axis is of course a direct
consequence of the asymmetric BDOS (Fig. I). It is,
however, worthwhile to mention that the Nagaoka limit
for fcc lattices (ferromagnetic ground state for
N, =N+1, paramagnetic ground state for N, =N 1) is-
exactly reproduced by our theory, if we take the limit
U~ ao. With increasing U the antiferromagnetic stripe
to the right of the n = 1 axis becomes smaller and smaller,
practically disappearing for U) 100 eV, and the area of
stable ferromagnetic solutions approaches the n =1 axis.
For U~ac antiferromagnetism is restricted to the half-
filled band case, n & 1 allows only paramagnetism, while
for n ) 1 ferromagnetism is stable. Our approach obvi-
ously indicates that the Nagaoka theorem is strictly
correct excludingly in the U~ao limit and cannot be
generalized to finite U.

FIG. 4. Quasiparticle density of states for the ferromagnet at
T=O K for three different band fillings n. Solid lines belong to

p ~ and dashed lines to p ~. Bars mark the position of the chemi-
cal potential p.
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FIG. 5. Quasiparticle density of states for the antiferromag-

net at T=O K for three different band fillings n. Solid lines be-

long to p& ~ and dashed lines to p& ~ =p&~. Bars mark the posi-

tion of the chemical potential p.

FIG. 6. {Sublattice) Magnetization m as function of band oc-
cupation n for the ferromagnet (upper part) and the antifer-

romagnet (lower part). The lines belong to different tempera-

tures: a, T=O K; b, T=1500 K; c, T=2000 K; d, T=2100
K; and e, T=2200K.
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Furthermore, we observe that in an fcc lattice antifer-
romagnetic solutions exist for a fixed n only if the
Coulomb coupling U exceeds a critical value U, " (n),
but contrary to Ref. 11 U, " (n) remains finite for n ~1.
A further striking difference lies in the fact that fer-
romagnetism is stable up to n =2, where the critical
Coulomb correlation U," (n ) even decreases to zero for
n —+2. The latter is, however, an artifact caused by the
singularity of the tight-binding fcc BDOS at the upper
band edge (Fig. 1). The simple Stoner criterion for fer-
romagnetism [Up, (p) ) 1] may give a plausible hint, why
for n ~2, i.e., when p approaches the upper band edge,
an arbitrary small U already suf6ces to favor ferromagne-
tism. For nondiverging densities of states, however, it is
to be expected" that ferromagnetisrn needs a minimum
particle as well as a minimum hole concentration, below
which ferromagnetism is unstable irrespective of the
magnitude of U.

Callaway' investigated for the same fcc lattice struc-
ture the possibility and stability of ferromagnetic spin
waves by evaluating a T-matrix approach of Edwards. '

The nearest-neighbor hopping T&(G) is assumed to be
positive, so that his BOOS is practically the re6ection of
our pa(E) in Fig. 1. The somewhat artificial singularity
is changed into a finite, but pronounced peak by taking

into account the next-nearest-neighbor hopping T2. The
peak appears at the bottom of the band, and consequently
ferromagnetism is favored by /ow particle densities n. As
to the stability of ferromagnetism the results in Ref. 17
for n «1 for which the T matrix procedure should be a
reliable approach, are qualitatively very similar to ours
for 2 n—(n «1). Antiferromagnetism is not considered
in Ref. 17.

To give an illustration we have plotted in Fig. 3 the n

dependence of the T=O sublattice magnetization m for
U=8 eV, i.e., for a rather strongly correlated electron
system. In wide regions for the particle density n we find
five mathematical solutions for our model, two antiferro-
magnetic, two ferromagnetic, and one paramagnetic
(m=0) solution. In cases where two solutions of the
same magnetic configuration appear, always that with the
higher magnetization turns out to be more stable. In
what follows we therefore restrict our considerations ex-
cludingly to these solutions. Figure 3 shows also the
internal energy Ea(T=O) =(I ) /N as a function of the
band filling n. One gets the usual parabolic behavior,
where, except for very small regions, the magnetically or-
dered phases are lower in energy than the paramagnetic
phase. The evaluation of Eo(T) nplots -like that in Fig. 3
leads to the magnetic phase diagram in Fig. 2. It is a spe-
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[QDOS, Eq. (23)]. The sublattice QDOS is plotted in Fig.
4 for ferromagnets [p„(E)=pz (E)=p (E)] and in
Fig. 5 for antiferromagnets [p„(E)=ps (E)=p (E)].
Both figures show three examples for three different band
occupations, in order to illustrate the remarkable
influences of electron correlations on the energy spectra.
First they split the original Bloch band into a low- and a
high-energy Hubbard subband separated by an energy
amount of order U. This splitting happens irrespective of
the magnetic configuration (paramagnetism, ferromagne-
tism, or antiferromagnetism). Qualitatively speaking, the
low-energy subband refers to an electron hopping over
empty sites, while in the high-energy part the electron
propagates mainly via lattice points that are already oc-
cupied by another electron of opposite spin. The sub-
bands are characterized by spectral weights, which are
strongly temperature, carrier-concentration, and possibly
even spin dependent. A spectral weight has the physical
meaning of a probability quantity being directly given by
the area under the respective QDOS curve. It expresses
the probability that the itinerant electron will enter an
empty or an occupied site, respectively. The weight of
the lower (a, cr) subband therefore scales roughly with
(1—(n, ) ), that of the upper band with (n, ). Fer-
romagnetic saturation in a more than half-filled (n &1)
Bloch band means that all holes are from the $ spectrum
((n„t)=(nst)=(nt)=1). This has the two interest-
ing consequences, that the lower J, subband exhibits van-
ishing spectral weight and the upper $ subband has ex-

cial feature that the relevant ferromagnetic T=O solution
is always saturated (see Fig. 3). Because of n & 1 this
means m =2—n, and is of course again a consequence of
the BDOS singularity at the upper band edge.

The magnetic properties of the Hubbard system, as
presented so far, find a natural explanation by the respec-
tive behavior of the quasiparticle density of states
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k T stoner UmB C (40)

For U=8 eV and m =0.63 this means a T~""'"of about
6X 10 K. In our theory, however, only the spin splitting
of the two Hubbard bands has to be removed, while the
Hubbard gap (of order U) persists to temperatures above
Tc (see Fig. 9). The spin splitting of the two subbands is
excludingly due to the spin-dependent band shift B
which is of course a independent for ferromagnets. As
an example we have plotted B~ and B~ in Fig. 10 for
U=8.0 eV, 8'=4.0 eV, n =1.4 as functions of tempera-
ture. One may roughly estimate as an upper boundary

magnetization disappears, defines the (Neel) Gurie tem-
perature, which turns out to be strongly dependent on the
Coulomb coupling U and the particle density n. Figure 8
shows that for a fixed U the Curie temperature Tc runs
as function of n through a maximum at about n =1.35.
As can be read off from the phase diagram in Fig. 2, the
system needs a minimum occupation n in order to be-
come ferromagnetic or antiferromagnetic. This
minimum occupation is U dependent, approaching 1 for
U~ 00 and 2 for U~O. As already explained, the latter
is a consequence of the singular behavior of the BDOS at
the upper band edge (Fig. 1). The maximum of the
T~ —n curve in Fig. 8 occurs also very close to n =1.35,
but generally the region where antiferromagnetic solu-
tions exist is smaller. Note that in Fig. 8 the critical tem-
peratures are plotted as functions of n for various U ir-
respective of whether or not the considered magnetic
configuration is really the most stable one. One has to
combine Fig. 8 with Fig. 2. In any case the critical tem-
peratures increase monotonically with increasing U,
reaching finally, however, a saturation value. Contrary
to the simpler Stoner model, the Tz N values are of realis-
tic orders of magnitude for all parameter-sets. This is a
direct consequence of the temperature behavior of the
QDOS. In the ferromagnetic Stoner model the thermal
energy of order k~ T~ has to bridge a shift of order U be-
tween the o = 1 and o = 1 spin bands:

out of Ref. 11, which is called "heat magnetization. "
This denotes the phenomenon that the sublattice-
magnetization of an antiferromagnet with increasing tem-
perature in certain temperature regions. We think that
this pecularity is connected with the opening of a Slater
gap for T & T~. For our MnO-type antiferromagnet we
do not observe such a heat magnetization, probably be-
cause we found no Slater gap. To demonstrate the
phenomenon we have so1ved our system of equations for
the same symmetric model BDOS, which has been used
in Ref. 11. The BDOS is plotted as inset in Fig. 12. A
self-consistent antiferroinagnetic solution for the sublat-
tice magnetization m appears for n )0.82. The m versus
n plot is now symmetric to the n=1 axis because of
particle-hole symmetry. For four values of the band oc-
cupation n, marked by solid dots in Fig. 12, we have cal-
culated the temperature dependence of m (Fig. 12). We
observe regular behavior with a second-order transition
for n =0.84, but a drastic heat-magnetization for
n ~0.85 with an abrupt breakdown of the spontaneous
magnetic order at T~. The temperature behavior of the
QDOS, plotted in Fig. 13 for n =0.85, illustrates the un-
derlying mechanism. For low temperatures the chemical
potential p lies in a region of high minority-spin density
of states (DOS). With increasing temperature the corre-
sponding subband shifts to higher energy, so that p,
changes into regions of less minority-spin DOS. This
means of course a higher magnetization with increasing
temperature, being especially drastic when p enters the
Slater gap. This gives evidence that the heat magnetiza-
tion is not an artifact of the theoretical approach, but
most probably an inherent property of the s-band Hub-
bard model. The appearance of heat magnetization in the
antiferromagnetic phase in Ref. 11 turns out to be caused
by special features of the antiferromagnetic lattice struc-
ture.

V. SUMMARY

0.35 eV=4200 K,1

k~
(41)

which is at least one order of magnitude smaller than the
Stoner value. As already discussed in detail, the antifer-
romagnetic sublattice QDOS does not exhibit an ex-
change splitting in the usual sense. Majority (minority)
spins are produced by different 1- and 1-state densities,
where the difference decreases when T approaches Tz
(see Fig. 11). In this case B cannot be interpreted as a
direct shift of the center of gravity of any subband. Anti-
ferromagnetic quasiparticle energies contain both terms
B„and 8& =8„.The spectral weights, however,
depend either on 8~ or 8&, therewith producing the
antiferromagnetic ordering. This can be read off already
from the formal solution (30) for the one-electron Green
function.

Let us finally comment on an interesting feature, born

We have used the s-band Hubbard model to investigate
the possibility of magnetic order in narrow nondegen-
erate energy bands. To study the stability of different
magnetic configurations we started from a realistic rock-
salt structure with a two-sublattices decomposition of the
frequently realized MnO type. We used an effective-
medium approach for an approximate, but self-consistent
solution of the underlying many-body problem.

Ferromagnetic as well as antiferromagnetic solutions
appear for more than half-filled bands and for Coulomb
interactions U, which exceed an n-dependent critical
value U, (n). Decisive for spontaneous magnetic order
are certain higher equal-time correlation functions of
type ( c; cj n; ), which give rise to a spin-dependent
subband shift in the ferromagnetic quasiparticle density
of states or to spin-dependent state densities of the energy
spectra in an antiferromagnetic system. Such higher
correlation terms do not appear in Hubbard I or coherent
potential approximation (GPA) treatments of the Hub-
bard model. Our finite-temperature results predict an op-
timum band filling of n =1.35 for the critical tempera-
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tures T& and T~. These transition temperatures appear
for all parameter constellations (U, n ) in realistic orders
of magnitude. They increase as a function of the
Coulomb coupling U, tending, however, to saturation for
U~ oo.
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