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Correction-to-scaling exponent for self-avoiding walks
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A Monte Carlo analysis for the scaling behavior of self-avoiding walks in two and three dimen-

sions is given. We have calculated the mean-squared radius of gyration S&, the mean-squared end-

to-end distance Rz, and the total number of walks of N steps Cz to such a high accuracy that it is

possible to analyze the data to obtain the correction-to-scaling exponent 0. We find that both S&
and C& give 0= l. l, while R&- gives 8=0.6 in two dimensions. In three dimensions our data are
consistent with 0= 1.7 and v=0.597 for both R& and Sz.

I. INTRODUCTION

The self-avoiding-walk (SAW) model is one of the most
successful models of long, flexible chain polymers in di-
lute solutions. It is directly related to the n ~0 limit of
the n-vector model. ' In two dimensions, Nienhuis had
analyzed the 0 (n) model and obtained the value v= —,

' for
the exponent describing the asymptotic behavior of the
mean-squared end-to-end distance R~ or the mean-
squared radius of gyration Sz. A number of efforts have
been devoted to calculate the correction-to-scaling ex-
ponent 0. Aside from the intrinsic interest of knowing its
value, one also needs it in order to make a reliable extra-
polation for the value of the leading exponent v, In two
dimensions, Nienhuis had made the prediction 8= —,'.
The status of this exponent is, however, not clear. Both
invoking conformal invariance, Dotsenko made the pre-
diction 0=—'„while Saleur had another prediction
t9= —,", =0.687. Most numerical calculations of this ex-
ponent can be essentially classified in two categories: (i)
those using data for the total number of SAW's of N steps
C~ and (ii) those using the data for the mean-squared
end-to-end distance Rz. The first category includes the
works of Adler (C~, 8=1.0) and Guttmann (Cz,
8=1.0). The second category includes the works of
Djordjevic et al. (R~, 8= —', ), Majid et al. (R~, 8= —,'),
Privman (Rz, 8=0.65), Rapaport' (R~, 8=1.0), Hav-
lin and Ben-Avraham" (R~, 8=1.2), and Lyklema and
Kremer' (Rz, 8=0.84). One observes that in the first
category, the exponent 0 is always greater than or equal
to one while in the second category, with the exception of
Rapaport and Havlin et al. , the exponent 0 is always less
than one. The case of Havlin and Ben-Avraham can be
attributed to use of too few SAW configurations in their
simulation (only 10 ), as pointed out and corrected in
Ref. 12. Recently, Ishinabe' reported results of an
analysis using exact series of C&, R&, and Sz. He found
0=1.0 for both Cz and S+ while for R&, 0=0.63.
Therefore in two dimensions one has the conflicting situ-
ation that the correction to scaling exponent 0 can be
greater than or less than one depending on whether one
analyzes C&, S&, or R~, even though the leading ex-
ponent v is exactly known. Ishinabe' even concluded

that the leading exponent v obtained using the Sz data is
different from that obtained using the R~ data. The nu-
merical evidence for such a conclusion (v=0. 755 instead
of 0.75) is, however, not strong. In addition there is also
the prediction from field theory' based on the derivative
of the marginal coupling constant at the fixed point that
8=1.7. In this case there can be only one correction-to-
scaling exponent. However, the same theory predicts
v=0. 76, quite far from the exact value of 0.75.

In three dimensions the situation is even worse since
one does not have the good fortune of knowing the lead-
ing exponent v exactly. Field theory predicts' v=0. 589,
8=0.82. Using Monte Carlo data for Rz, Kelley et al. '

obtained t9=0. 5, v=0. 590 while Majid et al. obtained
0=0.47, v=0. 5857 by analyzing exact data for R&. Ra-
paport, ' using exact series data for Rz concluded
8=1.0, v=-0. 592. On the other hand, Guttmann' ex-
tended the series for the three-dimensional cubic lattice
(20 terms) and reported a value v of 0.592, in agreement
with Rapaport. This value is close to Flory's prediction
of 0.6 and thus Guttmann's result suggests the possibility
that additional terms may push the series results towards
0.6. The aim of this paper is hopefully to clarify the situ-
ation both in two and three dimensions. In two dimen-
sions we want to check if Ishinabe's results, which are ob-
tained by the most extended series data and most sophis-
ticated analysis so far, also hold true for larger-size X. In
three dimensions we want to check if the conflicting situ-
ation of the exponent 9 obtained using C&, S&, and Rz
also arises for large-size N. We do this by using a new
Monte Carlo method to calculate the quantities C~, Rz,
and Sz, together with a new method of analyzing the
data that avoids the use of ratio-type analysis which is
not particularly accurate for Monte Carlo data.

ii. MONTE CARLO RESULT AND ANALYSIS

The Monte Carlo method used here, called the incom-
plete enumeration method had been described before and
will only be briefly described here. It is a direct extension
of the exact series expansion method' ' and had been
applied to enumerate configurations of linear and
branched polymers. In the exact enumeration
method, the SAW configurations are classified into a tree
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Furthermore, define Q„as

Q„=—X (n)/n "=A +Bn

Integrating Eq. (2) from M to N one has

I, (M, N) = J Q„dn = (NQ~ —MQM )/(1 —8)

(2)

—2 (N —M)8/(1 —8) . (3)

The second term on the right-hand of Eq. (3) can be elim-
inated by integrating Eq. (2) from another initial point
E &M and subtracting the resulting equation from Eq.
(3). Then one has a N-dependent 8 given by

N
N(M —K)Q M(N —K)Q—+K(N —M)QN I K

(N K)I I (M, N) —(N M)I, (—K, N)—

(4)

structure according to their lineage and then enumerated
using the backtracking method. In the incomplete
enumeration method for a N-step walk, one deletes with
probability (1—p„) where 0 &p„( 1 and r =2, 3, . . . , N,
all r-step configurations and their descendants from the
genealogical tree. The remaining N-step configurations
are then systematically enumerated using the backtrack-
ing method. Since the set [p; I is prechosen, the probabil-
ity that a particular r-step SAW will be enumerated in a
given trial is pzp3 p„=P, and is the same for all
configurations with the same r. The algorithm thus gen-
erates an unbiased sample of configurations. We have
chosen here p, =1,p;=A, ' for i ~2, where A, =2.5, 4.0,
and 4.5 for the square, triangular, and simple cubic lat-
tices, respectively. The exact enumeration method is
recovered by choosing p; =1 for all i.

Let X (n) denote either R„or Sz. Then asymptotical-
ly one has

X (n)=An '(1+B'n s) .

The advantage of Eq. (4) is that we only have to integrate
over our data and have thus avoided ratio-type analysis
applied to neighboring data points such as that used by
the authors in Ref. 12 on their Monte Carlo data. Such
an analysis is fine for exact series data, but perhaps not
accurate enough for Monte Carlo data.

We first discuss the results in two dimensions. We
have calculated RN, SN, and CN for the square lattice up
to N =100 using 120000 trials. The results for ON as a
function of 1/N, calculated using Eq. (4) are shown in
Fig. 1 for both Rz and Sz. The Qz values in Eq. (2) are
obtained using the exact exponent v= —,'. In calculating
the integral I, (M, N) we have used Simpson's rule. De-
pending on the value of N, we have to choose the lower
limits in the integral, K and M, such that (N —M) and
(N —K) are even integers. For any K we can always find
an integer M & K so that the resulting ON values obtained
using Eq. (4) become stable. Then plotting these 8&
values versus 1/N we find that asymptotically the 8N
values using different K are independent of K. Therefore
in all our analysis we have chosen K =5 or 6 and M =15
or 16. For large N, the values of ON obtained from the
SN data become quite stable and they seem to approach
the asymptotic value 8=1.1. On the other hand, the
values of 8~ obtained form the R~ data show larger fluc-
tuations but they seem to approach the asymptotic value
0=0.6 for very large N. To check these results we have
also calculated RN and SN for the triangular lattice up to
N =50 using 12000 trials. These results are also shown
in Fig. 1 by crosses. They are consistent with the results
for the square lattice.

The total number of walks of n steps C„behaves
asymptotically as

C„=an ~ 'p"(1+b'n ),
where the universal exponent y =—', (Ref. 2) is known ex-
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FIG. 1. The exponent 0~ as function of 1/X, calculated using both Sz and Rz data. The dots and crosses represent results for the
square and triangular lattices, respectively.
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actly in two dimensions and p is a lattice-dependent con-
nectivity. For the square lattice Derrida obtained
p=2. 6382+0.0002 (Ref. 25) using a phenomenological
renormalization scheme. Since this approach makes no
assumption about the exponent y, it is expected to be a
reliable unbiased estimate. From Eq. (5) one can define

G„=C„/(nr 'p")=a +bn (6)

with

I2(M, N) = J G„dn .
M

The results for 8~ obtained using Eq. (7) and the Cz
data are shown in Fig. 2. These results are very sensitive
to the value p used in calculating G„. One sees that the
8& values approach the asymptotic value 8=1.1 or 1.2
for large N. Unfortunately lacking a corresponding accu-
rate value of p for the triangular lattice we cannot calcu-
late the 0~ values for the triangular lattice using the C&-

data, because of their sensitivity to the connectivity con-
stant p.

Thus our results in two dimensions are in good agree-
ment with those of Ishinabe. ' Even our numerical
values for 0 are similar to his: 0=1.1 obtained using S~
and C~ data and 8=0.6 obtained using R~ data.

In three dimensions, since we do not have an exact
value for the leading exponent v, we try to calculate 0 us-
ing Eq. (4) for various values of v in the range of known
approximate values. The resulting values of 8& obtained
using Sz data are shown in Fig. 3 and those using R~
data are shown in Fig. 4. We have used v values ranging
from 0.592 to 0.600 in steps of 0.001. One sees that the
resulting 0& values are very sensitive to the v values.

The same analysis leading to Eq. (4) then gives an N
dependent expression for 0

0~ =1-N(M K)G— M(N —K)G—+K(N —M)GN I K

(N K)I2—(M, N) (N —M)Iq(—K, N)

From Fig. 3 we see that the 0& values obtained from the
Sz data are becoming more and more sensitive to the v
values as the latter decrease from 0.595 to 0.592. At
v=O. 592, the resulting 0& values are already quite errat-
ic. On the other hand, from Fig. 4 we see that the 0~
values obtained from the Rz data are getting more and
more sensitive to the v values as the latter increase from
0.598 to 0.600. At v=0. 600 the 0& values obtained from
the Rz data are already quite erratic. So we can say that
the v values giving good results for 0& Values for both Rz
and S& are in the range 0.595—0.598. In particular, for
v=0. 597, the extrapolated value of 0& to X~~ is 1.7
for both Rz and Sz data. In the lack of an exact value
for v we can only conclude that our data are consistent
with 0= 1.7 for both R& and Sz with v=0. 597. Had we
taken v to be 0.592, we would have obtained 8=0.5 from
our Rz data, in agreement with that of Kelley et al. ,

'

also using R~ data. But then the same value for v would
have given 8& 3.3 for our Sz data. Also the large fluc-
tuations in the 8& values at this value of v for the Sz data
would suggest that we have made a bad choice for the ex-
ponent v. Lacking the knowledge of both the exponent y
and the connectivity constant p, we did not attempt to
calculate the correction-to-scaling exponent using our Cz
data.

To get an idea of the error estimates, let X ( n ) from
Eq. (1) be given by X (n)(1+@),where e denotes the frac-
tional error in X (n). Then the quantity Q„ in Eq. (2)
will be given by Q„=Q„(1+a). If we assume that the er-
rors in Q„do not affect the integrals I, (M, N) and
I, (K,N), then the exponent 8~ is given by

8~ =8~+@(8~+1)=8~+a(8~+ 1) .

We have for the square lattice e ~ 0.001, 0.002 for S& and

Rz, respectively. For the triangular lattice we have
e ~0.001, 0.0005 for Sz and Rz, respectively, and for the
simple cubic lattice we have e ~0.001, 0.0005 for Sz and

Rz, respectively. For the C& data, if we have
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FIG. 2. The exponent 0& as function of 1/X, calculated using C& data for the square lattice.
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FIG. 3. The exponent 8N as function of 1/N, for the simple cubic lattice, calculated using the S& data and for various values of the
leading exponent v ranging from 0.592 to 0.600.

C&=C&(1+@),with e a fractional error in the data C~,
then a similar analysis results also in an error for the ex-
ponent 8&=8k@(8+1). We have for the square lattice
@&0.007 for the CN data.

In order to show that our data for RN and SN are con-
sistent with the leading exponent v= —,

' in two dimensions
and v=0. 597 in three dimensions, we have plotted these
exponents in Figs. 5 and 6 as a function of 1/N The N-.
dependent exponent vN are obtained in the following
way. From Eq. (2) for large N, we have

X (n)=An '
(9)

where I denotes either R or S . Taking the logarithm
on both sides of Eq. (9) and integrating the resulting
equation from M to N one obtains

Nf lnX (n)dn =NX (N) MX (M) —2v(N —M—) . (10)
M

Defining the integral on the left-hand side of Eq. (10) as

I3(M, N)= f lnX (n)dn, (11)
M
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FIG. 4. Same as Fig. 3, but using the R& data.
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FIG. 5. The leading exponent v as a function of 1/N, calculated using both S& and RN data, for the square lattice.

one obtains a N-dependent exponent vz as

vN=[N lnX (N) M lnX (M—) —I3(M, N)]/[2(N —M)] .

(12)

The integral I3(M, N) is calculated using Simpson's rule.
The lower limit M is taken to be either 1 or 2 such that
(N —M) is an even integer. From the results of vN
shown in Figs. 5 and 6 we see that in the asymptotic limit
v is consistent with the values —,

' and 0.597 in two and

three dimensions, respectively, for vz calculated from
both S~ and R~ data.

III. DISCUSSIONS AND CONCLUSION

How are we going to understand the results presented
above, especially for the different values of the exponent
8 in two dimensions? In general, the critical quantities
Rz or S~ obey the following asymptotic scaling law:
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FIG. 6. Same as Fig. 5, but for the simple cubic lattice.
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X = A N "(1+aN '+a'N +b N

+b,'N "-+c,'N "-+"+ . ), (13)

where X (N) and i =R or S represent either R~ or S~.
The analytic correction terms with unprimed coefficients
are due to nonlinear scaling fields, the nonanalytic terms
with primed coefficients arise from the marginal scaling
field, and 6 is a universal exponent. The coefficients in

Eq. (13) are in general different from those introduced in
Sec. II. In two dimensions, we found for the mean-
squared end-to-end distance R~=AaN "(1+BN ).
This means that the largest correction term is the nonan-
alytic term a N, with 6=0.6. For the mean-squared
radius of gyration Sz, we found Sz = AsN "(1
+B'N ").This implies that either as =0 and the larg-

est correction term is the analytic correction term a&N
or that both coefficients a& and az are zero and the larg-
est correction term is the nonanalytic correction term
bzN, with 25=1.1, 5=0.55, in agreement with that
found using Rz data.

In three dimensions, our result

X (N)= A N '(1+B,N '
)

for both the mean-squared end-to-end distance and the
mean-squared radius of gyration would imply that the
coefficient a, =0 for both i =R and i =S and the largest
correction term is the nonanalytic correction term
a,'X, with 6=1.7.

The critical quantity Cz obeys the asymptotic scaling
law

C~= A Nr 'Iu (1+acN '+acN +bcN

+bcN + 'N "+ '+ .
) (14)

Our result that the exponent 8 calculated from the Cz
data agrees with that calculated from the Sz data implies
that either ac =0 o ac =ac =0
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