Correction-to-scaling exponent for self-avoiding walks

P. M. Lam*

Fachbereich Physik, Universität Essen, 4300 Essen 1, West Germany (Received 9 April 1990)

A Monte Carlo analysis for the scaling behavior of self-avoiding walks in two and three dimensions is given. We have calculated the mean-squared radius of gyration S_N^2 , the mean-squared endto-end distance R_N^2 , and the total number of walks of N steps C_N^2 to such a high accuracy that it is possible to analyze the data to obtain the correction-to-scaling exponent θ . We find that both S_N^2 and C_N^2 give $\theta \simeq 1.1$, while R_N^2 gives $\theta \simeq 0.6$ in two dimensions. In three dimensions our data are consistent with $\theta \simeq 1.7$ and $v \simeq 0.597$ for both R_N^2 and S_N^2 .

I. INTRODUCTION

The self-avoiding-walk (SAW) model is one of the most successful models of long, flexible chain polymers in dilute solutions. It is directly related to the $n \rightarrow 0$ limit of the *n*-vector model.¹ In two dimensions, Nienhuis² had analyzed the O(n) model and obtained the value $v = \frac{3}{4}$ for the exponent describing the asymptotic behavior of the mean-squared end-to-end distance R_N^2 or the meansquared radius of gyration S_N^2 . A number of efforts have been devoted to calculate the correction-to-scaling exponent θ . Aside from the intrinsic interest of knowing its value, one also needs it in order to make a reliable extrapolation for the value of the leading exponent v. In two dimensions, Nienhuis² had made the prediction $\theta = \frac{3}{2}$. The status of this exponent is, however, not clear. Both invoking conformal invariance, Dotsenko³ made the prediction $\theta = \frac{2}{3}$, while Saleur⁴ had another prediction $\theta = \frac{11}{16} \simeq 0.687$. Most numerical calculations of this exponent can be essentially classified in two categories: (i) those using data for the total number of SAW's of N steps C_N and (ii) those using the data for the mean-squared end-to-end distance R_N^2 . The first category includes the works of Adler⁵ (C_N , $\theta \simeq 1.0$) and Guttmann⁶ (C_N , $\theta \simeq 1.0$). The second category includes the works of Djordjevic et al.⁷ $(R_N^2, \theta \simeq \frac{2}{3})$, Majid et al.⁸ $(R_N^2, \theta \simeq \frac{2}{3})$, Privman⁹ (R_N^2 , $\theta \simeq 0.65$), Rapaport¹⁰ (R_N^2 , $\theta \simeq 1.0$), Hav-lin and Ben-Avraham¹¹ (R_N^2 , $\theta \simeq 1.2$), and Lyklema and Kremer¹² (R_N^2 , $\theta \simeq 0.84$). One observes that in the first category, the exponent θ is always greater than or equal to one while in the second category, with the exception of Rapaport and Havlin *et al.*, the exponent θ is always less than one. The case of Havlin and Ben-Avraham can be attributed to use of too few SAW configurations in their simulation (only 10⁴), as pointed out and corrected in Ref. 12. Recently, Ishinabe¹³ reported results of an analysis using exact series of C_N , R_N^2 , and S_N^2 . He found $\theta \simeq 1.0$ for both C_N and S_N^2 while for R_N^2 , $\theta \simeq 0.63$. Therefore in two dimensions one has the conflicting situation that the correction to scaling exponent θ can be greater than or less than one depending on whether one analyzes C_N , S_N^2 , or R_N^2 , even though the leading exponent v is exactly known. Ishinabe¹³ even concluded that the leading exponent v obtained using the S_N^2 data is different from that obtained using the R_N^2 data. The numerical evidence for such a conclusion ($v \simeq 0.755$ instead of 0.75) is, however, not strong. In addition there is also the prediction from field theory¹⁴ based on the derivative of the marginal coupling constant at the fixed point that $\theta \simeq 1.7$. In this case there can be only one correction-toscaling exponent. However, the same theory predicts $v \simeq 0.76$, quite far from the exact value of 0.75.

In three dimensions the situation is even worse since one does not have the good fortune of knowing the leading exponent v exactly. Field theory predicts¹⁴ $v \simeq 0.589$, $\theta \simeq 0.82$. Using Monte Carlo data for R_N^2 , Kelley et al.¹⁵ obtained $\theta \simeq 0.5$, $\nu \simeq 0.590$ while Majid et al.⁸ obtained $\theta \simeq 0.47$, $v \simeq 0.5857$ by analyzing exact data for R_N^2 . Rapaport,¹⁶ using exact series data for R_N^2 concluded $\theta \simeq 1.0$, $\nu \simeq 0.592$. On the other hand, Guttmann¹⁷ extended the series for the three-dimensional cubic lattice (20 terms) and reported a value v of 0.592, in agreement with Rapaport. This value is close to Flory's prediction of 0.6 and thus Guttmann's result suggests the possibility that additional terms may push the series results towards 0.6. The aim of this paper is hopefully to clarify the situation both in two and three dimensions. In two dimensions we want to check if Ishinabe's results, which are obtained by the most extended series data and most sophisticated analysis so far, also hold true for larger-size N. In three dimensions we want to check if the conflicting situation of the exponent θ obtained using C_N , S_N^2 , and R_N^2 also arises for large-size N. We do this by using a new Monte Carlo method to calculate the quantities C_N , R_N^2 , and S_N^2 , together with a new method of analyzing the data that avoids the use of ratio-type analysis which is not particularly accurate for Monte Carlo data.

II. MONTE CARLO RESULT AND ANALYSIS

The Monte Carlo method used here, called the incomplete enumeration method had been described before and will only be briefly described here. It is a direct extension of the exact series expansion method^{18,19} and had been applied to enumerate configurations of linear and branched polymers.²⁰⁻²³ In the exact enumeration method, the SAW configurations are classified into a tree

42 4447

structure according to their lineage and then enumerated using the backtracking method.²⁴ In the incomplete enumeration method for a N-step walk, one deletes with probability $(1-p_r)$ where $0 < p_r < 1$ and $r = 2, 3, \ldots, N$, all r-step configurations and their descendants from the genealogical tree. The remaining N-step configurations are then systematically enumerated using the backtracking method. Since the set $\{p_i\}$ is prechosen, the probability that a particular r-step SAW will be enumerated in a given trial is $p_2 p_3 \cdots p_r \equiv P_r$ and is the same for all configurations with the same r. The algorithm thus generates an unbiased sample of configurations. We have chosen here $p_1 = 1$, $p_i = \lambda^{-1}$ for $i \ge 2$, where $\lambda = 2.5, 4.0$, and 4.5 for the square, triangular, and simple cubic lattices, respectively. The exact enumeration method is recovered by choosing $p_i = 1$ for all *i*.

Let $X^2(n)$ denote either R_n^2 or S_N^2 . Then asymptotically one has

$$X^{2}(n) = An^{2\nu}(1 + B'n^{-\theta}) .$$
 (1)

Furthermore, define Q_n as

$$Q_n \equiv X^2(n) / n^{2\nu} = A + Bn^{-\theta}$$
 (2)

Integrating Eq. (2) from M to N one has

$$I_{1}(M,N) \equiv \int_{M}^{N} Q_{n} dn = (NQ_{N} - MQ_{M})/(1-\theta) - A(N-M)\theta/(1-\theta) .$$
(3)

The second term on the right-hand of Eq. (3) can be eliminated by integrating Eq. (2) from another initial point K < M and subtracting the resulting equation from Eq. (3). Then one has a N-dependent θ given by

$$\theta_{N} = 1 - \frac{N(M-K)Q_{N} - M(N-K)Q_{M} + K(N-M)Q_{K}}{(N-K)I_{1}(M,N) - (N-M)I_{1}(K,N)}$$

The advantage of Eq. (4) is that we only have to integrate over our data and have thus avoided ratio-type analysis applied to neighboring data points such as that used by the authors in Ref. 12 on their Monte Carlo data. Such an analysis is fine for exact series data, but perhaps not accurate enough for Monte Carlo data.

We first discuss the results in two dimensions. We have calculated R_N^2 , S_N^2 , and C_N^2 for the square lattice up to N = 100 using 120000 trials. The results for θ_N as a function of 1/N, calculated using Eq. (4) are shown in Fig. 1 for both R_N^2 and S_N^2 . The Q_N values in Eq. (2) are obtained using the exact exponent $v = \frac{3}{4}$. In calculating the integral $I_1(M, N)$ we have used Simpson's rule. Depending on the value of N, we have to choose the lower limits in the integral, K and M, such that (N-M) and (N-K) are even integers. For any K we can always find an integer M > K so that the resulting θ_N values obtained using Eq. (4) become stable. Then plotting these θ_N values versus 1/N we find that asymptotically the θ_N values using different K are independent of K. Therefore in all our analysis we have chosen K = 5 or 6 and M = 15or 16. For large N, the values of θ_N obtained from the S_N^2 data become quite stable and they seem to approach the asymptotic value $\theta = 1.1$. On the other hand, the values of θ_N obtained form the R_N^2 data show larger fluctuations but they seem to approach the asymptotic value $\theta \simeq 0.6$ for very large N. To check these results we have also calculated R_N^2 and S_N^2 for the triangular lattice up to N = 50 using 12 000 trials. These results are also shown in Fig. 1 by crosses. They are consistent with the results for the square lattice.

The total number of walks of n steps C_n behaves asymptotically as

$$C_n = a n^{\gamma - 1} \mu^n (1 + b' n^{-\theta}) , \qquad (5)$$

where the universal exponent $\gamma = \frac{4}{3}$ (Ref. 2) is known ex-

(4)

FIG. 1. The exponent θ_N as function of 1/N, calculated using both S_N^2 and R_N^2 data. The dots and crosses represent results for the square and triangular lattices, respectively.

(7)

actly in two dimensions and μ is a lattice-dependent connectivity. For the square lattice Derrida obtained $\mu = 2.6382 \pm 0.0002$ (Ref. 25) using a phenomenological renormalization scheme. Since this approach makes no assumption about the exponent γ , it is expected to be a reliable unbiased estimate. From Eq. (5) one can define

$$G_n \equiv C_n / (n^{\gamma - 1} \mu^n) = a + bn^{-\theta}$$
(6)

The same analysis leading to Eq. (4) then gives an N-dependent expression for θ

$$\theta_{N} = 1 - \frac{N(M-K)G_{N} - M(N-K)G_{M} + K(N-M)G_{K}}{(N-K)I_{2}(M,N) - (N-M)I_{2}(K,N)}$$

with

$$I_2(M,N) \equiv \int_M^N G_n dn \quad . \tag{8}$$

The results for θ_N obtained using Eq. (7) and the C_N data are shown in Fig. 2. These results are very sensitive to the value μ used in calculating G_n . One sees that the θ_N values approach the asymptotic value $\theta \simeq 1.1$ or 1.2 for large N. Unfortunately lacking a corresponding accurate value of μ for the triangular lattice we cannot calculate the θ_N values for the triangular lattice using the C_N data, because of their sensitivity to the connectivity constant μ .

Thus our results in two dimensions are in good agreement with those of Ishinabe.¹³ Even our numerical values for θ are similar to his: $\theta \simeq 1.1$ obtained using S_N^2 and C_N^2 data and $\theta \simeq 0.6$ obtained using R_N^2 data.

In three dimensions, since we do not have an exact value for the leading exponent v, we try to calculate θ using Eq. (4) for various values of v in the range of known approximate values. The resulting values of θ_N obtained using S_N^2 data are shown in Fig. 3 and those using R_N^2 data are shown in Fig. 4. We have used v values ranging from 0.592 to 0.600 in steps of 0.001. One sees that the resulting θ_N values are very sensitive to the v values.

From Fig. 3 we see that the θ_N values obtained from the S_N^2 data are becoming more and more sensitive to the v values as the latter decrease from 0.595 to 0.592. At v=0.592, the resulting θ_N values are already quite erratic. On the other hand, from Fig. 4 we see that the θ_N values obtained from the R_N^2 data are getting more and more sensitive to the v values as the latter *increase* from 0.598 to 0.600. At v=0.600 the θ_N values obtained from the R_N^2 data are already quite erratic. So we can say that the v values giving good results for θ_N values for both R_N^2 and S_N^2 are in the range 0.595–0.598. In particular, for v=0.597, the extrapolated value of θ_N to $N \rightarrow \infty$ is 1.7 for both R_N^2 and S_N^2 data. In the lack of an exact value for v we can only conclude that our data are consistent with $\theta \simeq 1.7$ for both R_N^2 and S_N^2 with $\nu \simeq 0.597$. Had we taken v to be 0.592, we would have obtained $\theta \simeq 0.5$ from our R_N^2 data, in agreement with that of Kelley et al.,¹⁵ also using R_N^2 data. But then the same value for v would have given $\theta > 3.3$ for our S_N^2 data. Also the large fluctuations in the θ_N values at this value of v for the S_N^2 data would suggest that we have made a bad choice for the exponent v. Lacking the knowledge of both the exponent γ and the connectivity constant μ , we did not attempt to calculate the correction-to-scaling exponent using our C_N data.

To get an idea of the error estimates, let $X^2(n)$ from Eq. (1) be given by $\overline{X}^2(n)(1\pm\epsilon)$, where ϵ denotes the fractional error in $X^2(n)$. Then the quantity Q_n in Eq. (2) will be given by $Q_n = \overline{Q}_n(1\pm\epsilon)$. If we assume that the errors in Q_n do not affect the integrals $I_1(M,N)$ and $I_1(K,N)$, then the exponent θ_N is given by

$$\theta_N = \overline{\theta}_N \pm \epsilon (\overline{\theta}_N \mp 1) \simeq \overline{\theta}_N \pm \epsilon (\overline{\theta}_N + 1)$$

We have for the square lattice $\epsilon \le 0.001$, 0.002 for S_N^2 and R_N^2 , respectively. For the triangular lattice we have $\epsilon \le 0.001$, 0.0005 for S_N^2 and R_N^2 , respectively, and for the simple cubic lattice we have $\epsilon \le 0.001$, 0.0005 for S_N^2 and R_N^2 , respectively. For the C_N data, if we have

FIG. 2. The exponent θ_N as function of 1/N, calculated using C_N data for the square lattice.

FIG. 3. The exponent θ_N as function of 1/N, for the simple cubic lattice, calculated using the S_N^2 data and for various values of the leading exponent ν ranging from 0.592 to 0.600.

 $C_N = \overline{C}_N(1 \pm \epsilon)$, with ϵ a fractional error in the data C_N , then a similar analysis results also in an error for the exponent $\theta_N = \overline{\theta} \pm \epsilon(\overline{\theta} + 1)$. We have for the square lattice $\epsilon \le 0.007$ for the C_N data.

In order to show that our data for R_N^2 and S_N^2 are consistent with the leading exponent $v = \frac{3}{4}$ in two dimensions and v=0.597 in three dimensions, we have plotted these exponents in Figs. 5 and 6 as a function of 1/N. The *N*-dependent exponent v_N are obtained in the following way. From Eq. (2) for large N, we have

$$X^2(n) = An^{2\nu} , \qquad (9)$$

where X_n^2 denotes either R_n^2 or S_n^2 . Taking the logarithm on both sides of Eq. (9) and integrating the resulting equation from M to N one obtains

$$\int_{M}^{N} \ln X^{2}(n) dn = N X^{2}(N) - M X^{2}(M) - 2\nu(N-M) . \quad (10)$$

Defining the integral on the left-hand side of Eq. (10) as

$$I_3(M,N) \equiv \int_M^N \ln X^2(n) dn$$
, (11)

FIG. 4. Same as Fig. 3, but using the R_N^2 data.

FIG. 5. The leading exponent v as a function of 1/N, calculated using both S_N^2 and R_N^2 data, for the square lattice.

one obtains a N-dependent exponent v_N as

$$v_N = [N \ln X^2(N) - M \ln X^2(M) - I_3(M,N)] / [2(N-M)] .$$
(12)

The integral $I_3(M,N)$ is calculated using Simpson's rule. The lower limit M is taken to be either 1 or 2 such that (N-M) is an even integer. From the results of v_N shown in Figs. 5 and 6 we see that in the asymptotic limit v is consistent with the values $\frac{3}{4}$ and 0.597 in two and three dimensions, respectively, for v_N calculated from both S_N^2 and R_N^2 data.

III. DISCUSSIONS AND CONCLUSION

How are we going to understand the results presented above, especially for the different values of the exponent θ in two dimensions? In general, the critical quantities R_N^2 or S_N^2 obey the following asymptotic scaling law:²⁶

FIG. 6. Same as Fig. 5, but for the simple cubic lattice.

$$X_{N}^{2} = A_{i}N^{2\nu}(1 + a_{i}N^{-1} + a_{i}'N^{-\Delta} + b_{i}N^{-2} + b_{i}'N^{-2\Delta} + c_{i}'N^{-(1+\Delta)} + \cdots), \quad (13)$$

where $X^2(N)$ and i = R or S represent either R_N^2 or S_N^2 . The analytic correction terms with unprimed coefficients are due to nonlinear scaling fields, the nonanalytic terms with primed coefficients arise from the marginal scaling field, and Δ is a universal exponent. The coefficients in Eq. (13) are in general different from those introduced in Sec. II. In two dimensions, we found for the meansquared end-to-end distance $R_N^2 = A_R N^{2\nu} (1+BN^{-0.6})$. This means that the largest correction term is the nonanalytic term $a'_i N^{-\Delta}$, with $\Delta \simeq 0.6$. For the mean-squared radius of gyration S_N^2 , we found $S_N^2 = A_S N^{2\nu} (1 + B'N^{-1.1})$. This implies that either $a'_S = 0$ and the largest correction term is the analytic correction term $a_S N^{-1}$ or that both coefficients a_S and a'_S are zero and the largest correction term is the nonanalytic correction term $b'_S N^{-2\Delta}$, with $2\Delta \simeq 1.1$, $\Delta \simeq 0.55$, in agreement with that found using R_N^2 data.

In three dimensions, our result

- *Present address: Department of Physics, Emory University, Atlanta, Georgia 30322.
- ¹P. G. de Gennes, *Scaling Concepts in Polymer Physics* (Cornell University Press, Ithaca, NY, 1979).
- ²B. Nienhuis, Phys. Rev. Lett. 49, 1062 (1982).
- ³V. L. S. Dotsenko, Nucl. Phys. B235, 54 (1984).
- ⁴H. Saleur, J. Phys. A 20, 455 (1987).
- ⁵J. Adler, J. Phys. A 16, L515 (1983).
- ⁶A. J. Guttmann, J. Phys. A 17, 455 (1984).
- ⁷Z. V. Djordjevic, I. Majid, H. E. Stanley, and R. J. dos Santos, J. Phys. A 16, L519 (1983).
- ⁸I. Majid, Z. Djordjevic, and H. E. Stanley, Phys. Rev. Lett. **51**, 1282 (1983).
- ⁹V. Privman, Physica A 123, 428 (1984).
- ¹⁰D. C. Rapaport, J. Phys. A 18, L201 (1985).
- ¹¹S. Havlin and D. Ben-Avraham, Phys. Rev. A 27, 2759 (1983).
- ¹²J. W. Lyklema and K. Kremer, Phys. Rev. B 31, 3182 (1985).
- ¹³T. Ishinabe, Phys. Rev. B 37, 2376 (1988).

 $X^{2}(N) = A_{i}N^{2\nu}(1+B_{i}N^{-1.7})$

for both the mean-squared end-to-end distance and the mean-squared radius of gyration would imply that the coefficient $a_i = 0$ for both i = R and i = S and the largest correction term is the nonanalytic correction term $a_i'N^{-\Delta}$, with $\Delta \simeq 1.7$.

The critical quantity C_N obeys the asymptotic scaling law

$$C_N^2 = A_C N^{\gamma - 1} \mu^N (1 + a_C N^{-1} + a'_C N^{-\Delta} + b_C N^{-2} + b'_C N^{-2\Delta} + c'_C N^{-(1+\Delta)} + \cdots) .$$
(14)

Our result that the exponent θ calculated from the C_N data agrees with that calculated from the S_N^2 data implies that either $a'_C = 0$ or $a_C = a'_C = 0$.

ACKNOWLEDGMENTS

This work was supported by the Sonderforschungsbereich 237 Unordnung und grosse Fluktuationen of the Deutsche Forschungsgemeinschaft.

- ¹⁴J. C. LeGuillou and J. Zinn-Justin, J. Phys. (Paris) Lett. 46, 137 (1985).
- ¹⁵K. Kelley, D. L. Hunter, and N. Jan, J. Phys. A 20, 5029 (1987).
- ¹⁶D. C. Rapaport, J. Phys. A 18, 113 (1985).
- ¹⁷A. J. Guttmann, J. Phys. A 20, 1839 (1987).
- ¹⁸Y. S. Yang and P. M. Lam, Commun. Theor. Phys. (Beijing, China) 4, 497 (1985).
- ¹⁹D. Dhar and P. M. Lam, J. Phys. A 11, L1057 (1986).
- ²⁰P. M. Lam, Phys. Rev. A 34, 2339 (1986); 35, 349 (1987); Phys. Rev. B 41, 2257 (1990).
- ²¹P. M. Lam and A. Hansen, J. Stat. Phys. 52, 447 (1988).
- ²²P. M. Lam, J. Chem. Phys. 92, 3136 (1990).
- ²³P. M. Lam, J. Phys. A Lett. 23, L325 (1990).
- ²⁴S. Redner, J. Stat. Phys. **29**, 309 (1982).
- ²⁵B. Derrida, J. Phys. A 14, L5 (1981).
- ²⁶A. Aharony and M. E. Fisher, Phys. Rev. B 27, 4394 (1983).