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An isolated ferromagnetic bond replacing an antiferromagnetic link in the spin- —Heisenberg an-

tiferromagnet on a square lattice is investigated within the linearized spin-wave theory. As a func-

tion of the ferromagnetic coupling K, quantum fluctuations on neighboring sites are first reduced,

which increases the sublattice magnetization. Larger couplings suppress the sublattice magnetiza-

tion and increase the transversal correlations between nearest neighbors close to the impurity link.

Our simple approach breaks down for ~IC~ )
~
J~ (J being the antiferromagnetic coupling). The in-

teraction between two such ferromagnetic links depends on their relative position and its sign oscil-

lates as a function of distance.

I. INTRODUCTION

The discovery of numerous high-temperature super-
conductors has renewed the interest in the two-
dimensional Heisenberg antiferromagnet. Several mecha-
nisms for high-T, superconductivity invoke properties of
the two-dimensional Hubbard model, ' in particular the
strong antiferromagnetic correlations within the CuO
planes. Properties of the high-T, compounds are be-
lieved to be related to defects in the planes, e.g. , static va-

cancies, ferromagnetic bonds, and mobile holes. It is
then important to investigate the effects of isolated de-
fects on the magnetic properties of the two-dimensional
antiferrornagnet.

Previous studies were devoted to static vacancies ' and
dynamic holes. In this paper we consider the effects of
isolated ferromagnetic links on an otherwise antiferro-
magnetic square lattice. The addition of holes in

La2Cu04, e.g. , by doping with Sr, introduces a local fer-

romagnetic exchange coupling between Cu spins. The
resulting frustration affects the antiferrornagnetic correla-
tions in the neighborhood of the ferromagnetic link. In
Ref. 6 it is argued that these ferromagnetic defects are
the origin of the spin-glass and superconducting phases
of La~ ~Sr Cu04.

In two dimensions the quantum fluctuations prevent
the long-range magnetic order of the spin- —,

' Heisenberg
antiferromagnet at nonzero temperature. The nature of
the ground state, i.e., if nonmagnetic of the resonant-
valence-bond-type or magnetic with broken symmetry as
in the Neel state, " for a square lattice, however, is still
controversial. Based on the numerical results presented
in Refs. 9—11 we adopt the Neel ground state as our
working basis. Quantum fluctuations reduce the sublat-
tice magnetization to an ordered moment of about 0.3.
Surprisingly, the linear spin-wave approximation' ' is
remarkably successful in reproducing quantitatively exact
results for finite-size systems and those of more elaborat-
ed approaches (see, e.g., Ref. 14}.

We assume that the simple linearized spin-wave theory

provides a reasonable description of the two-dimensional
square lattice spin- —,

' Heisenberg antiferromagnet. The
problem of a single ferromagnetic bond embedded in an
otherwise antiferromagnetic square lattice (nearest-
neighbor coupling only} can be solved exactly within the
spin-wave approximation. The scattering potential aris-
ing from the ferromagnetic bond is local and hence fac-
torizable. The procedure is similar to the one employed
in Refs. 4 and 5.

Our main results are the following. There are two
competing interactions affecting the sublattice magnetiza-
tion: The longitudinal terms, involving S„ tend to
enhance the ordered staggered magnetic moment, while
the transverse terms, involving S, and S, represent the
quantum fluctuations that suppress the sublattice magne-
tization. We have analyzed the interplay between these
two effects as a function of the ferromagnetic coupling
strength K. For small K the quantum fluctuations are re-
duced in the neighborhood of the impurity link and the
local magnetic moment is enhanced in agreement with re-
sults by Bulut et al. for a static vacancy. This process is
reversed with increasing K, i.e., the staggered magnetiza-
tion is gradually suppressed close to the impurity link.
The perturbation caused by the ferromagnetic bond falls
off as R with the distance from the defect. We also
calculated the correlation (S;"S") for neighboring sites
and the interaction energy of two distant ferromagnetic
bonds.

We noticed the formation of a localized mode that is
due to the impurity link. Within our formulation this
mode gets soft as IC ~

~ J~ and our approach breaks down.
Because of the relatively strong local perturbation caused
by K, interactions between spin waves should be taken
into account (beyond the linear spin-wave approxima-
tion), which then would prevent the softening of the local
mode and stabilize the staggered magnetization.

The rest of the paper is organized as follows. In Sec. II
we introduce the model and present its exact solution
within the linear spin-wave approximation. Our results
are discussed in Sec. III, followed by concluding remarks
in Sec. IV.
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II. MODEL AND CALCULATION

We consider the two-dimensional spin- —, Heisenberg
antiferromagnet on a square lattice with nearest-neighbor
coupling only. One antiferromagnetic link in the lattice
is replaced by a ferromagnetic one of strength E. The
Hamiltonian then has the following form:

with J &0 and the impurity bond links the neighboring
sites labeled 0 and 1. For K =0 Eq. (1) corresponds to a
missing bond. Here we adopt the usual convention of
& ij ) meaning a single term for each pair.

Within the spin-wave theory the square lattice is divid-
ed into two interpenetrating sublattices denoted by a and
b, respectively, and the spin operators are replaced by
two sets of boson operators by means of the Holstein-
Primakoff transformation. ' ' We denote these opera-
tors a;,a,. and b, b, respectively. In this way the Hamil-
tonian contains products of operators to a11 orders.
Keeping only up to the bilinear terms we obtain the so-
called linear spin-wave approximation (LSWA)

The standard equation of motion for Ck k. (z) yields

0 J+K 0k, k'(z) ~ k(z)~k, k' ~ k(z)r Tk, k"~k",k'(z)
4N k"

where 0 „(z) is the Green's function for the lattice in the
absence of impurity bonds

0 „(z)=[JI Jyk—a„—zo, ]I[z —J (1 —y„)]

and Tk k. is the reduced scattering matrix given by

I

I 0 1 e
Tk k

— —ikxd 0 0 0e
(9)

Here I,&„and 0', denote the identity and the respective
Pauli matrices. Since f'k „ factorizes [see Eq. (9)], Eq. (7)
is not a real integral equation and can be solved analyti-
cally,

Ck k (z) —Ck(z)5k k 0 k(z)Tk k, C k.(z),J+K 1 p p

(10)

J
Hp J X[yk(akbk+b„a„)+(atak+b„bk)] — N, —

k 2
where

J+K J+K Z'

2J 2JN ~z' —J' 1 —y'„

where N is the number of sites of one sublattice, the k
summation is over the N points of the reduced Brillouin
zone and

y„=—,'[cos(k„d )+cos(k d )], (3)

—ik d+e "
t2kbk )+—,'(J+K) . (4)

The spin operators in terms of the magnon creation and
annihilation operators are given by (LSWA)

with d being the lattice parameter. The perturbation due
to the ferromagnetic link oriented in the x direction is
given by

J +g y
—i(k„—k')d ) ik'd

g(t2kt2k+e " bkbk+e "akbk
k„k'

Due to the k and k' dependence in Eq. (10) the local
magnetization is a function of the relative position of the
site with respect to the ferromagnetic bond. On the a
sublattice, the magnetization is obtained via [from Eq.
(5)]

I=
—,'+ —&

e'" "'"'f" Im«ak, ak )& +;, ,
0 7T

(12)

where Im denotes the imaginary part and the Green's
function is given by Eq. (10). In the absence of impurity
bonds we obtain

1/2

ikx + $ /kx(S 1= —Qe 't2k, Sbt = —Qe 'b
&N „

K (x)=0.3034, (13)

ik.x y 1 ik-x(S J
— —ge Qk, Sb( pe bk~N,

i(k —k') x
S;J=-,' ——g e 'a„ak,

k, k'

—i (k —k') x
Sbt = —

—,
' +—g e 'b kbk

k, k'

We introduce the standard advanced and retarded
one-particle Green's functions in matrix form

in agreement with previous LSWA results. ' ' Here
K(x) is the elliptical integral of the first kind. The site
dependence is introduced by the last term in Eq. (10).
The magnetization involves then two k sums and a fre-
quency integration, i.e., a fivefold integration. By means
of a contour integral the real-frequency integration is
transformed into one along the imaginary axis by rescal-
ing co=iyJ. The following identity is useful to decouple
the k and k integrations:

(~2+ 1 y2)
—1 1( 1+~2)—1/2 dre

—t l tv+)
2 0

'

« t2 k, t2k, )), « a k, b k, )),"'' = «b„;.„», «b„;b,')&,
X(e "+e "),

(14)
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so that they can be carried out giving rise to modified
Bessel functions of integer order I„. The position of the
lattice site X, relative to the left corner of the impurity
bond, is denoted by XJ =d(n„x+n y), where x and y are
unit vectors. In this way the ferromagnetic link is given

by the vector d x. Asymptotically for
~ X, ~

~ ~ the mag-
netization on the sublattice a reaches the value 0.3034
[see Eq. (13)]. The deviations from that value at finite X
can be expressed as

5(S; ) = —5(a a ) = — f dy
J+E

64m 0

X (3I „'~ I „'—
z~

I [„'—,
~

I ~„'—&[) (4yI—~„' ) ]/[ —,'(J —K)(1+y )

+ —,'(J+E)y (1+y )' I 0(y)],

(15)

where

I „(y)=f dt I„—I„—exp[ t(1+—y )'~ ] .

(16)

1= ——g exp[i(k x, —k' x, )]
jL, jL'

X f Im((a„;b„, )) +,,
0 2K

(17)

The first term in Eq. (10) yields the correlation in the
absence of impurity link, i.e.,

(S,"S")'=— dx(1 —x'}'"K(x)= —0. 1378 .

(18}

The second term in Eq. (10) again yields the position-
dependent deviations from the asymptotic value, which
can be brought into a form similar to expression (15).
The t and y integrations are then performed numerically.
The results are presented in Sec. III.

III. RESULTS

Our results for the magnetization and the spin-spin
correlation function are summarized in Figs. 1(a)—1(d).
From the symmetry of the problem only the sector n & 0
and n 0 needs to be considered. If K+J=O the im-

purity link has the same antiferromagnetic coupling
strength as all other bonds, so that it is actually not an
impurity. Under these circumstances all spin-spin corre-
lations between neighbors are equal to —0.1378 and the

In a similar fashion the nearest-neighbor spin correla-
tions (S,"SJ") can be calculated using the Green's func-

tion, Eq. (10),

(SxSx) —|(gtbt)

staggered sublattice magnetization has an ordered mo-
ment of 0.3034.

When K is increased, two competing interactions affect
the neighborhood of the impurity link. The modified lon-
gitudinal term tends to reduce the magnetic moment,
while the change in the transversal terms suppresses
quantum fluctuations; this latter effect should lead to an
increase of the magnetization. The case E =0 just corre-
sponds to a missing link. Here the sites with the
unsatisfied bond have a larger magnetic moment than the
asymptotic value, i.e., the reduction of the quantum Auc-

tuations is more important than the missing Ising interac-
tion. This is similar to the findings by Bulut et al. , who
solved the vacancy problem within the LSWA, i.e., four
missing bonds with one cornrnon vertex. This trend is re-
versed for most of the other sites, where the local mo-
ment is reduced (with respect to the one of the pure anti-
ferromagnet). This general increase in the transversal
fiuctuations is consistent with the enhanced (SfSJ". )
values we obtained from our calculation. As expected the
correlation across the missing bond is strongly reduced.

The trend towards a planar antiferromagnet in the
neighborhood of the impurity bond increases with grow-
ing ferromagnetic coupling E. This development can be
seen by comparing the sequence of Figs. 1(a) through
1(d), where E monotonically increases from 0 to 3J/4.
Almost all the magnetic moments are now smaller than
the one of the pure antiferromagnet and the transverse
correlation is systematically enhanced with K (except for
those bonds corresponding to a translation of the impuri-

ty link into the y direction). Not unexpectedly the
strongest reduction of the magnetic moment occurs at
the sites linked by the ferromagnetic coupling. Note that
for K =3J/4 the transversal correlation across the fer-
romagnetic bond has already inverted its sign, i.e., the
spins are weakly ferromagnetically correlated.

The magnetic moment of the sites joined by the impur-
ity bond is shown in Fig. 2 as a function of E/J. For
K =0 we notice the slightly increased value already dis-
cussed above, but for K )0 (ferromagnetic coupling)
(S, ) drops monotonically. It is evident from this figure
that the magnetic moment within our approach breaks
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down around K-0.85J. The mathematical reason for
this breakdown can be understood from the integral in

Eq. (15). As K-+J the weight in the denominator is
shifted towards the second term, which for small y is pro-
portional to y . The numerator, on the other hand, is
finite as y ~0, so that if K~J the integral diverges. This
argument is independent of n„and n, so that for K =J
the Neel state for the entire lattice breaks down. Similar-
ly the corresponding integrals giving the transversal
correlation (S;"S")also diverge. This result is of course
unphysical and an artifact of our treatment. The denomi-
nator in Eq. (15), which arises from the scattering of spin
waves off the impurity link, corresponds to a localized
mode. This mode becomes soft as E~~J~. Due to the

strong local perturbation a large number of spin-waves is
generated and interaction effects among the spin waves
have to be taken into account, which probably prevent
the mode from becoming soft. In other words, if K is
large the two spins linked by the impurity bond are likely
to form a triplet state, which is not adequately treated
within our approach and leads to a frustration of the
spins.

Inserting Eq. (10) into Eq. (12) it can be shown that
asymptotically for large distances (EC &

~
J~ ) the perturba-

tion due to the impurity bond falls off with distance asR, i.e., 5(S')-R . With increasing E the ampli-
tude of the perturbation grows and the asymptotic region
is shifted to larger R. The amplitude diverges as E~

~
J ~.
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FIG. 1. Magnetic moment (SI) and transversal correlation (S;"SJ ) around an isolated impurity bond of coupling strength E in

the lower left corner as given by the LSWA. For the pure lattice ~(S;) ~

=0.3034 and (S;Sj") = —0. 1378. The values of the fer-
romagnetic coupling are, respectively (a) E =0, (b}E =J/4; (c) k =J/2, and (d) K =3J/4.



4430 KONG-JU-BOCK LEE AND P. SCHLOTTMANN

N 0

0.4

0.3-

0.2—

0.1-

0.0

—0.1—

-0.2—

-0.3—

-0.4
0.4

K/J

0.8

interactions a6'ect the ordered magnetic moment 1ocally,
namely the z component of the interaction (Ising terms)
and the transversal terms (fluctuations). With increasing
coupling E, the transversal interaction becomes more im-

portant and our approximation scheme breaks down as E
approaches ~J~. For K & ~J~, the two spins linked by K
are expected to form a triplet state. A similarly profound
change in the nature of the ground state has been found
for the frustrated x-y model in two dimensions. ' The
quantitative changes of the magnetic moment and the
transversal correlations in the neighborhood of the im-

purity link are presented in Figs. (la) —(ld).
Finally we would like to summarize our results for the

interaction energy of two distant ferromagnetic bonds.
Without loss of generality we place one ferromagnetic
bond parallel to the x axis. We denote with R the vector
joining the two links and call 0 the angle R forms with
the x axis. The second bond can be parallel to the x axis
or to the y axis, i.e., the bonds are parallel or perpendicu-
lar to each other. We calculated the asymptotic interac-
tion energy for large R from second-order perturbation in
J +K within the Debye approximation for the spin-wave
spectrum

E,„,~ (3 cos 0—1)R ~ cos(qDR ),

E,„,~ ~sin28~R cos(qDR ),
FIG. 2. Magnetization at the sites joined by the ferromagnet-

ic bond as a function of IC. As X~~ J~ our approximation
scheme breaks down. The local magnetization at the impurity
bond disappears at about E -0.9J.

where qD -&2mld is—the Debye cutoff. The amplitude
depends on the relative position of the bonds, falls off as
R with distance and the sign of the interaction oscil-
lates with the distance.
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