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Brillouin-scattering studies of the longitudinal-acoustic mode propagating along the c* axis of
K2Se04 were performed in the vicinity of the incommensurate phase transition in both 90' and 180'

scattering geometries. A theoretical derivation of the complex elastic constant C33(co) was carried
out within the mean-field approximation including both bilinear (Landau-Khalatnikov) coupling to
the amplitude mode, and anharmonic fluctuation contributions from the X2 soft mode above TI and

from pairs of amplitude modes and phase modes below TI. Comparison between theory and the
Brillouin data led to an excellent fit using free-energy parameters close to values deduced from pre-
vious static and dynamical experiments. Our measurements also indicate that the phason gap Q&(0)
is at least 100 6Hz.

I. INTRODUCTION

Potassium selenate, K2Se04, is among the most
thoroughly studied crystals exhibiting structurally incom-
mensurate phases; nevertheless a complete microscopic
picture of its phase-transition sequence has not yet been
established. ' Most experiments have been analyzed on
the basis of Landau-free-energy expansions with the
coefficients adjusted to fit the particular experimental re-
sults. An important exception is a paper by Sannikov
and Golovko who undertook a systematic evaluation of
some of these coefficients in a self-consistent analysis of
the results of several different experiments.

KzSe04 is an orthorhombic pseudohexagonal crystal
with space group Dzj, =Pnam from 745 K to the in-
commensurate transition at T1=127.5 K. Between TI
and the lock-in transition at TL =93 K, it is struc-
turally modulated with a modulation wave vector

qo= (1—5)a*/3; 5 decreases continuously from -0.07 at
TI to -0.02 at TI, where it drops discontinuously to
zero. Below TL, K2Se04 is orthorhombic with space
group C&, =Pna2, and is an improper ferroelectric with
spontaneous polarization P, ~ A crucial neutron-
scattering study by Iizumi et al. established that the in-
termediate phase is incommensurate and showed that
there is a soft optic mode with wave vector qo on a Xz
branch whose frequency approaches zero as T~TI+,
showing that K2Se04 is a soft-mode driven displacive
transition material.

Acoustic anomalies in K2Se04 in the vicinity of the in-
commensurate (Tt) and lock-in (Tt ) transitions have
been studied by many groups with ultrasonic, acoustic
resonance, and Brillouin-scattering methods. ' ' An
excellent overview of these effects can be found in the pa-
per by Rehwald et al. , who performed both ultrasonic
and Brillouin-scattering experiments. The longitudinal

constants C„and C22 show only weak anomalies at Tl,
while C33 shows a large downward step (-25%) with
rounding both above and below the transition. Of the
three longitudinal elastic constants, none show anomalies
at TL . Of the shear constants, C» shows a major anoma-
ly near TL due to phason coupling, and C44 decreases
continuously as Ti is approached from either side. To
date, however, there has been no attempt to establish
whether or not the details of the acoustic anomalies ob-
served in these experiments can be successfully explained
by the Landau free energy with coefficients determined
by independent experimental data rather than being con-
sidered as free fitting parameters. Furthermore, the two
principal components of the anomaly in the longitudinal
elastic constants, the Landau-Khalatnikov bilinear-
coupling effect and fluctuation effects, arise from the
same anharmonic coupling terms in the free energy and
should therefore be treated on an equal basis, which has
not been done in previous studies.

We have therefore undertaken a new Brillouin-
scattering study of the anomaly of the C33 LA mode that
we will analyze with most of the free-energy coefficients
fixed, in the spirit of the Sannikov-Golovko approach.
For this purpose, we have carried out a new theoretical
analysis of the elastic constant C»(co) in which all anhar-
monic terms resulting from third-order coupling between
the LA phonon and pairs of excitations lying on the soft-
mode branch are taken into account simultaneously. As
we will show, this analysis leads to excellent agreement
with our experimental data within the framework of a
self-consistent mean-field treatment of the free energy.
Because the damping of longitudinal-acoustic phonons is
strongly affected by coupling to pairs of phasons in the
incommensurate phase, the theoretical prediction is very
sensitive to the size of the q=O gap in the phason disper-
sion curve. A minimum gap value of Q&(0) = 100 GHz is
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required to produce a satisfactory fit.
This paper is organized as follows. In Sec. II, we re-

view the form of the free energy used in our analysis. In
Sec. III, we summarize the results of our third-order
anharmonic treatment of C33(o3) for which the details ap-
pear in Appendix B. In Sec. IV, we explain how numeri-
cal estimates of the coefficients appearing in the theory
can be obtained from available experimental data. In
Sec. V, we describe the Brillouin-scattering experiments
by which the temperature-dependent complex elastic con-
stant C33(oi) was determined at the City College of the
City University of New York (CCNY) and at the Univer-
site P.&M. Curie in Paris. In Sec. VI, we present a com-
parison of experiment with theory, and describe the op-
timization procedure leading to best-fit numerical values
for the free-energy coefficients that are close to those
found in Sec. IV. In Sec. VII, we compare our results
with previous studies of C33(co) and discuss the major
differences in the theoretical analysis underlying the im-

proved agreement obtained in this study. Finally, in Sec.
VIII, we summarize the principal results of our study.
We also brieAy discuss the question of a theoretical ap-
proach going beyond the mean-field approximation.
Such a theory should be based on the three-dimensional
(3D) XY model, which is the appropriate universality
class for a two-component order-parameter system like
K2Se04, and for which a number of results are already
available.

II. THE LANDAU FREE ENERGY

normal-mode coordinates. We shall use such an expan-
sion in our analysis, although this form of F cannot be ex-
tended easily to the multiple-soliton regime near the
lock-in transition, where higher-order harmonics become
increasingly important.

The relevant part of the free-energy density, expressed
directly in normal-mode coordinates, can be written as

F =F]+F,l+F, , (2.2)

F, is the part of the free energy that depends only on the
normal coordinates Q (q) on the branch where the modes
at qo (and —qo) become critical at TJ; F„ is the purely
elastic contribution, which will be expressed either in
terms of the elastic strain, e, or in terms of the corre-
sponding acoustic phonon coordinates, iq U&/Qp
where a and P are Cartesian indices, q is a wave vector,
U/Qp is the corresponding displacement, and p is

the mass density; F, is the coupling term between the

Q(q) and the e;, of which we will take into account only
the lowest-order contributions.

For the present problem, F, is given by

Fi = X -'II'(q1)Q(qi)Q(q2)~(q1+q2)
ql, q2

+ X —,'BQ(ql) Q(q4»(ql+q2+q3+q4)
q4

+ g „DQ(q, ) —Q(q6)6(q, +q2 +q6) .

ql' ' ' 'q6

(2.3)

The Landau free energy for incommensurate crystals is
most frequently written as a functional f (x) in which the
order parameter Q(x) is the complex position-dependent
amplitude of the X2 soft mode at the commensurate wave
vector q, . This form has the great advantage of describ-
ing both the incommensurate and lock-in transitions, as
well as the evolution of the modulation wave from the
sinusoidal regime near TI to the multisoliton regime near

TL, ' but does not naturally include dynamics. In Ap-
pendix A, we show how this form of the free-energy den-
sity F =(1/v) ff (x) dv can be approximated, in the tem-

perature range above and just below the incommensurate
transition temperature Tl, by

3F=—,
' A (To—TI)p + ,'Bp + ,'Dp + ,

' —g C„—e,e, —

In this expression, it is understood that Q(q), the nor-
mal coordinate of a mode on the soft branch, is con-
sidered only for q in the vicinity of qo or —qo. Further-
more, we have neglected the wave-vector variation of
both the B and D coefficients, while the q dependence of
0 is included as

n (q)=so(T Tl)+ ,' XA —p(q+qo—) (q+qo)p
a, P

(2.4)

the + sign depending on the proximity of q to +qo or
—

qo, and A
& being a symmetric tensor with the full or-

thorhombic symmetry. F„ is the usual elastic energy
[given by the fourth term on the right-hand side (rhs) of
Eq. (2.1)], while the coupling term between the principal
strains (i,j =1,2, 3) and the relevant phonons is

3 3

X hiE~p + X g(~ip (2.1) 3

F, = g g (h;e, —
g, e, )Q(q, )Q(q2)6(q, +q2) . (2.5)

where p is the amplitude of the X2 soft mode that will

condense, below TI, producing a static modulation with
the incommensurate wave vector qo, e; are the strains,
and the continuum constant amplitude approximation
has been employed.

Although this form of the free energy can be extended
to analyze the interactions of acoustic phonons with the
order-parameter dynamics, ' it is more consistent for
dynamical analysis in the vicinity of TI to proceed from a
free-energy density written directly as an expansion in

I=l q, , q

The above free energy is written in the variables
relevant to T & TI. A complete treatment of Eq. (2.2)
and the corresponding exact behavior of the elastic con-
stant is impossible to obtain. Therefore, in the present
study, we shall neglect the role of D [Eq. (2.3)] and g [Eq.
(2.5)] except for the modifications they produce in the
static properties of the incommensurate phase. Further-
more, the term proportional to B [Eq. (2.3)] will be used
for stabilizing the incommensurate phase and modifying
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3 3

+ —,
' g C,,e, e~

—g (h, e; g;E—; }p
ij =0

(2.6)

Comparison of Eq. (2.6) with Eq. (2.1) shows that the two
expressions for F,~

are identical, since Q (qo)=A&(T
—TI ), as shown in Eq. (2.4).

III. DERIVATION OF THE ELASTIC ANOMALY

the dynamics of the corresponding mode, but its
influence on the anharmonic properties of the crystal will

be neglected.
The free energy of Eqs. (2.2)—(2.5) contains both equi-

librium and dynamical components. The equilibrium
components can be obtained by dropping all terms in the
sums except those for which all q; are equal to + qo and
setting Q(qo)=(1/&2)pe'~, from which (neglecting all
strains except e„e2, and e3) one obtains

F, = ,'Q (q—o)p + ,'Bp —+,'Dp—
4h 3po( T)

C33 (co ) =C
Q (T) i coI—co— (3.2)

where Q( T) is the temperature-dependent soft-mode fre-
quency Q(0).

In the static limit co=0 this leads to the usual jump of
C33 at To [see Eq. (4.10) below]. At Brillouin frequencies,
if the soft mode is overdamped (co &Q & I ), one obtains
the classical Landau-Khalatnikov result'

term in Eq. (3.1) yields a linear coupling proportional to
the order parameter between the elastic strain and the
soft mode. Furthermore, due to ordinary anharmonic in-
teractions between this soft mode and all other phonon
branches, this soft mode has a linewidth I, which can be
assumed to be wave-vector independent in the vicinity of
qo=0, and is also noncritical at To. Its value is propor-
tional to T if third-order anharmonicity is predominant.
The frequency-dependent elastic constant can then be
written, including this coupling to a damped oscillator, as

The three longitudinal strains e&, ez, and e3 are cou-
pled to the order parameter p through the term
(h;e; —g;e; )Q(q)Q'(q) in our free-energy expansion [Eq.
(2.5)]. Experimentally, however, only the e3 LA mode
shows a major anomaly near TI, a rounded step in

C33(co), whose value decreases by approximately 25% in
the immediate vicinity of the transition.

Such an effect is not unusual: it has been found in
many other structural transitions in which bilinear cou-
pling of strains to the order parameter is forbidden by
symmetry, and is often associated with improper ferroe-
lasticity. Nevertheless, even within the simplified frame-
work of a mean-field theory, a complete treatment of the
effect has never been given in the case of a normal-
incommensurate phase transition, and the acoustic-
phonon —phason coupling has never been completely ana-
lyzed. Therefore, in this section, we shall first briefly re-
view the salient features of the acoustic anomaly for the
case of an ordinary second-order commensurate-
commensurate phase transition, and then sketch the new
aspects for a commensurate-incommensurate transition.
The details of the calculation are given in Appendix B.

For an ordinary phase transition, with the same free
energy [Eqs. (2.2)—(2.5)], the acoustic anomaly has two
origins that can be summarized as follows. Neglecting,
for clarity, the g term in Eq. (2.5), concentrating on e3,
and considering a zone-center transition (qo=0), Eq.
(2.5) can be reduced to

F, =h e Q (0)+ g' Q(q)Q*(q)
q

(3.1}

One of the two origins of the acoustic anomaly is that,
below the transition temperature To, (a) (Q(0)) =po is
different from zero, and close to To, proportional to
(To —T)', while e3 is proportional to po. (b) The soft
mode frequency Q(0) is renormalized, due to the nonzero
values of po and e3, and also becomes proportional to
( To —T)'~ in the vicinity of To.

Replacing one of the two normal-mode coordinates
Q(0) in Eq. (3.1) by its thermal mean value po, the first

C33(co)=C33—
4h 3po( T) 1

Q'(T)
Q (T)

(3.3)

(3.4)

involving the soft-mode dispersion curve and damping
constant. Note that in Eq. (3.4), the main contribution to
the integral (often designated as the fluctuation integral)
comes from the vicinity of qo=0, where Q(q) is a
minimum. ' ' Equation (3.4) is also valid below the
phase transition, where the frequency of a11 the phonons
of the soft branch are renormalized by the nonzero values
of po and e3. Equations (3.2) and (3.4) thus describe the
two effects that produce the elastic anomalies in the vi-
cinity of To for an ordinary phase transition.

The situation in the vicinity of a commensurate-
incommensurate phase transition at TI is more complex.
First, since qo&0, the star of qo consists of at least two
distinct wave vectors, qo and —

qo (the case to which we

which shows that the experimental result is indistinguish-
able from a coupling of e3 to a simple Debye relaxational
mode of relaxation time a=[I /Q (T)], with r diverging
at To. Well below To, co~~O, and the static result is
recovered. Note that Eq. (3.3) does not lead to any effect
above To, contrary to experimental evidence, indicating
the presence of a second effect.

The origin of this second effect is the second term in
Eq. (3.1). Above To, as Q(T) tends to zero, the amplitude
of the phonons on the soft branch close to qo=o in-
creases enormously, giving a rapid increase in the weight
of this anharmonic term summed over all wave vectors of
this branch in the vicinity of the Brillouin-zone center.
As shown by Levanyuk et al. ,

' this second contribution,
which depends on the same coefficient h 3, is given by

263
bC33(co)= —(ksT) 3 I(2m )

Q (q) Q (q) —ico—
2
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shall restrict ourselves), involving two soft modes (and
two critical regions in the soft phonon branch) above rl.
Below Tl these two soft modes give rise to two other ex-
citations, the amplitudon (which is the usual soft mode)
and the phason which, to lowest order in (T~ —T), has a
temperature-independent dispersion curve that is linear
in K=q —qo.

The phase mode, with its ~K~-linear dispersion, is of
odd parity like an acoustic phonon, but has the same
damping as the soft mode above TI or the amplitude
mode below TI, and is thus always overdamped for small
K.

The influence of the phason on the Landau-
Khalatnikov term has been frequently considered.
Since an acoustic strain has even parity while the phase
mode has odd parity, the corresponding phase-mode-
coupling coefficient, h (, is equal to zero for K=0. When
considered as a function of K, it can be written as h](K)
and expanded in powers of K. For the present case, the
term corresponding to Eq. (3.2) now adds a contribution:

(T)—4[h'f (K)]
0&(K ) i coI —co—

with, to first order in K,

Il&(K)= V(K/IK )IK,

(3.5)

(3.6)

(3.7)

In the co~0 limit, Eq. (3.5) has a nonzero value for
~K ~

~0 with the direction of K fixed, and adds to the
static elastic constant a term that is different from the
Landau-Khalatnikov contribution discussed in Eq. (3.2).
While the corresponding term is allowed for a LA pho-
non propagating along a* and gives a contribution to
C», in the present case where K=E3c*, the coefficient
h f3 is equal to zero by symmetry, and we can ignore Eq.
(3.5) in the case of C33.

The anharmonic contribution, which led to Eq. (3.4),
cannot be ignored. Below TI, coupling to both the ampli-

tudon and the phason must be considered; the longitudi-
nal strain can be coupled to two amplitudons, to one am-

I

plitudon and one phason, or to two phasons. The first
case (two amplitudons} is identical to the coupling to the
two soft modes given in Eq. (3.4).

The second case involves the coupling of an even vari-
able E3 to the product of an even variable (amplitudon)
and an odd variable (phason). This coupling, as in the
case discussed before Eq. (3.5), is equal to zero for K=0,
and has to be developed in successive powers of K [cf.
Eq. (3.7}]. In K2Se04, only hf, is different from zero;
nevertheless, in the summation over K, i.e., in the vicini-

ty of qo, the most important contribution comes from the
points where both the amplitudon and the phason have a
small frequency, i.e, for small ~K . As the coupling term
corresponding to h3 in Eq. (3.4) would be (h f,K, ),
which is quadratic in the wave vector, we shall neglect
this anharmonic contribution.

The situation is different for the third case (anharmon-
ic coupling between e3 and two phasons). The product of
two phason coordinates is even, and the calculation
shows that the coupling coefficient is the same as for the
case of two amplitudons. This contribution has thus to
be considered on the same basis as that due to the ampli-
tudons. Furthermore, as the phason frequencies do not
vary with temperature, this term can play a much more
important role than the amplitudon contribution a few
degrees below TI. It has thus been introduced, for the
first time, in our present study of the acoustic anomaly of
C33(co).

The details of the relevant calculations are given in Ap-
pendix B, where the complete free-energy form of Eqs.
(2.2)—(2.5) was used. The detailed expressions for the
complex elastic constant C33(co) are given in Eqs. (B18)
and (B19). For the analysis of Brillouin-scattering data,
we will use the Brillouin shift bee~ =q3[C33(~)/p ]'
and linewidth (full width at half maximum) (FWHM)
$33(co)= (q, /p )[C33(cu )/co] (which are also the fre-

quency and damping constant of the acoustic phonon
with wave vector q3c'/~c'~), where p is the mass densi-

ty. We give here the expressions for C33(co) and y33(co).
After adding a "background" acoustic-mode damping

7 33 and assuming that co ((0„(0 ), the theoretical pre-
dictions for the temperature dependence of C33(co) and

y33(co) found from Eqs. (B18) and (B19) are

16k~ T

(2') 402(K)+co I 2(K)
(3.8)

8q3 k~ T I 2(K)dK

p (2m. )3 0 (K)[404(K)+co2I ~(K)]
(3.9)

4(h3 —2g3e3) pod„(0)
C33(co) =(C33+2g3PO) n'„(0)+~'r'„(0)

Sk T

(2') 4Q„(K)+aPI 2„(K) 404&(K)+co I &(K)
(3.10)
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4q3 (h3 2g3E3) poI g(0)
r»(~) =7'»+

p n'„(0)+~'r'„(0)
4q', k, T r„(K)dK I ~(K)dK

p (2ir) Q„(K)[40„(K)+oi'r'„(K)] Q&(K)[4Q&(K)+oi I &(K)]
(3.11)

In Eqs. (3.8)—(3.11), Q2, I 2, 0„, I „,0&, and I
&

are the
frequencies and damping constants of the X2 soft-mode,
the amplitude-mode, and the phase-mode branches, re-
spectively. Expressions for 0,2, Q~, and 0& are given in

Eqs. (2.2), (4.14), and (4.16). For clarity, we have used
different symbols for the three linewidths and indicated a
wave-vector dependence, although, as mentioned previ-
ously, we shall consider them as equal and K independent
in carrying out the analysis.

Finally, because the dispersion curves of Q„(K) and

Q&(K) are only known in the vicinity of their minima, a
definite procedure has to be defined for their evaluation.
This question will be discussed in Sec. VI, after we have
explained how the coefficients appearing in Eqs. (2. 1) and
(2.4) have been extracted from experimental data.

The predictions of Eqs. (3.8)—(3.11), using free-energy
coefficients evaluated in Sec. IV, are shown in Fig. 5.

IV. FREE-ENERGY COEFFICIENTS

Many of the coefficients appearing in the full free-
energy expansion [Eqs. (Al)—(A4)] can be determined

I

from the existing experimental literature on KzSe04 as
discussed by Sannikov and Golovko. Here, however, we
will only consider the coefficients A p, B, D, C;~
(i,j =1,2, 3), h „h„h&, and g& appearing in the reduced
free energy of Eq. (2.1) (ignoring all g; except g3) as well

as the three components of the diagonal tensor
A =5 &A &in Eq. (2.4).

(1) Ao. The coefficient Ao, which is related to the
soft-mode frequency above Tz by Qz(qo)=Ao(T Tt),
can be determined from the inelastic-neutron-scattering
data of Iizumi et al. ' Their Fig. 7 shows the squares of
the X2 soft-mode phonon energies at qo=(0. 31,0,0) from

Tz to 250 K. A linear fit to these points gives
[ih'02(qo)] =0.07(T —Tj) meV K ', from which
Ap=1 ~ 6X10 s K

(2) C;~: We have estimated the "bare" values of the
elastic constants C; by extrapolating the results of previ-
ous ultrasonic and Brillouin-scattering studies to Tz. '
We find for [C ] in units of dyn cm and [S ] in units of
dyn ' cm~,

[C ]=
5.8X10" 1.7X10" 1.5X10"

5.4X 10" 2.0X10"
4.0X 10"

0.20 X 10 " —0.045 X 10 " —0.045 X 10

0.23 X 10 " —0. 10X 10

0.32X10 "

p+ —,
' Ap +—'Bp +—,'g,.

,
" .—,.g,.p (4.1)

(3) B and h;: These coefficients can be evaluated from
the observed jumps in the specific heat (ECp) and
thermal expansion coefficients (b a; ) at Ti.

The specific heat of KzSe04 has been measured by
several authors. The most recent results of Flerov
et al. are EC~ =10.1 J K ' mol '. This value, togeth-
er with the molar volume of 72.1 cm mol '

(p =3.05

gem, 1 mol=221 g) gives

ACp =1.4X 10 erg cm K

The thermal expansion of KzSe04 has also been stud-
ied by several authors. ' ' The results of Flerov
et al. show anomalies ha, , A+2, A+3 in the n, at T~ of
3.4X 10, 8.1 X 10, —19.1 X 10 K ', respectively.

Very close to T~, the approximate free energy of Eq.
(2.1) can be further reduced by ignoring the sixth power
and biquadratic terms, giving

where summation over repeated indices is assumed, and
1 i j 3.

The spontaneous strains at zero stress, found by
minimizing Fwith respect to e„are

~';=[C '];,h, po. (4.2)

F(T Ts, cr; =0)=Fo+ ~ Apo+ ~B p (4.3)

where

B'=B —2h, [C '], h (4.4)

The equilibrium value of the order parameter near Tz
(from BF/Op=0) is po=0 (T) Tz) and po= —A/B'
(T & Tj) so that

Using this result to eliminate the e, , the free energy at
zero stress is
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F =Fo (T )TI),

Q A
F(E; =e;,p=po)=F0 —,(T~ Ti) .

The specific heat C = —T(r) F/dT ), is then
(e, ,po)

Cp=Cp (T) TI),

(4.5)

(4.6a)

TIA8 =— +4h, [C '],,h,
p

Evaluating Eqs. (4.8) and (4.9) gives

8 =2. 1X10 g 'cms

[h &, h z, h 3 ]= ( —0.42, —0.80, 3.8 ) X 10 s

(4.9)

TAQ
Cp = C~+, ( T ~ TI ), (4.6b)

where C~ = —T(B Fo/BT ), is the background

specific heat due to other degrees of freedom. The jump
in Cp at TI is therefore

An auxiliary check of these values is supplied by the
downward step in C33 at Tl, which experimentally is ap-
proximately 11X10' dyncm . From Eqs. (3.8) and
(3.10), the static elastic constant C33(0) of the free crys-
tal, modified by the cubic coupling to the order parame-
ter, is

BC'= Ti Ao/28' . (4.7) C33 (0)=C33 ( T ) Ti ), (4.10a)

Similarly, the thermal expansion coefficients a;
=(Geo/BT) are, from Eq. (4.2), a, =[C '],,hj(Bpo/ BT),
so that

4h 3po 2h 3
C33(0)=C33 C33 (T (T,), (4.10b)

Q„(0)

a;=a; (T )TI),

a;=a; —[C ']Jh~, (T&TI),

and thejump in a; at TI is

—Ao
ba, =, [C '],,h, .

Combining Eqs. (4.7) and (4.8),

Ao TI Aa
i 2 jIgCP

while from Eqs. (4.4) and (4.7),

(4.8)

e, =[C ']„(h,—25,3g, e, )po, (4.11b)

from which po( T) and e;( T) can, in principle, be deduced

from which b, C» (0)= —2h 3 /8 = —14 X 10' dyn cm
in reasonably good agreement with observation.

(4) D and g3. The coefficients of the p term and the bi-
quadratic term in Eq. (2.1) (D and g3 ) cannot be properly
evaluated from existing experimental data, but their
values can be estimated from the temperature depen-
dence of the spontaneous strain t. 3 in the incommensurate
phase, as determined from x-ray-diffraction data by Kudo
and Ikeda. The equilibrium conditions obtained from
Eq. (2. 1) are

Ao(T —TI )+Bp„+Dpo—2h3e3+2g3(E3) =0, (4.11a)

Coefficient

Ao (s K ')

8 (g 'cms ')

D(g cm s )

[C ] (dyn cm ')

h, (s ')
h~ (s )

g, (s ')
A (THz'A )

Ay:A (THZ A )

r (THz)
Og(0) (GHz)

TABLE I. Free energy coefficients.

Value found from
previous experiments'

1.6x10"

2. 1x10"

0.42 X 10 (with g3 =0)

5.8x10" 1.7x10" 1.5x10"
5.4X 10" 2.0X 10"

4.0x 10"
—0.42x10"
—0.80x10"

3.8X 10
1.8X10 (with D =0)

3.2
17

0.0027( T —Tl )+0.34
60+25

Best fit of C33(co) and y33(~) to
present experiments (mean field)

2. 1 X 10 (with D =0)
2.0X10 ' (with g3=0)

0.36X 10 (with g3 =0)

3.5 X 10'
1.2X10 (with D =0)

'As described in Sec. IV of the text. The values found by Sannikov and Golovko (Ref. 2) are given in

Ref. 35.
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I = [ 00 02 7(T —T )+0.34] THz . (4.13)

Having evaluated all the relevant free-energy coeffi-
cients, and rewriting Eqs. (Bl lb) and (Bl lc) as

Q„(K)=2Bpo+4Dpo+ i A„K„+,'A, (K +K—,), (4.14)

Q~(K.) = ,'A„K, + ,'—A,(Ky+K—,), (4.15)

we are now in a position to compute C33(co) and y33(co)
[Eqs. (3.8)—(3.11)]as functions of temperature.

Currat and Quilichini have verified, in their inelastic-
neutron-scattering experiments on the phason dispersion,
that I, A„, and A, deduced from Eq. (4.15) are consistent
with the values obtained above TI as we have assumed.
However, their data indicate a nonzero phason frequency

if g3 and D are known. Treating D or g3 as a fitting pa-
rameter and fitting e3 to the experimental data, one can
deduce the best value of either D or g3, setting the other
one equal to zero. If D =0, a best fit is obtained with
g3=1.8X10 s . Conversely, if g3=0, we find

D =0.42X10 g cm s
(5) A, : The dispersion of the X2 soft optic branch near

K=0 can be represented by

Q2(q) =Q2(qo)+ ,' A„K—„+,'Ay K—y+ ,
' A, K—, . (4.12)

From Iizumi et al. (at 130 K), A„=3.2 THzA, A, =17
THz A . A was not determined, so we assume that
Ay A We also assume that A and A, are tempera-
ture independent and have the same value above and
below Tl.

(6) I: In agreement with Quilichini and Currat, for
the whole temperature range under study, we assume a
K-independent damping constant and represent its tem-
perature variation by

at K=O, Q&(0)=(60+25) GHz, contrary to Eq. (4.15).
We shall therefore add a phason-gap term, Q&(0), to this
equation and rewrite it as

QI(K) =Q~(0)+ —,'A„K„+ ,'A,—(K +K, ) . (4.16)

The values of all the coefficients evaluated in this sec-
tion are given in the second column of Table I.

V. BRILLOUIN-SCATTERING EXPERIMENTS

The K2Se04 crystals used in our experiments were
grown by Hauret at the Universite d'Orleans from 99%
stock material (Alfa Products, Danvers, Massachusetts)
that was recrystallized twice for purification.

(1) New York: 90' scattering experiments were per-
formed with a crystal approximately 6 mm on each side,
cut with faces perpendicular to b, a+c, and a —c. The
scattering geometry used was (a+c)[b, T](a—c). The
crystal was mounted on the cold finger of a Cryotip
continuous-Aow nitrogen cryostat controlled by an Ox-
ford ITC-4 platinum resistance temperature controller
with accuracy —+0. 1 K. A Spectra-Physics 165 single-
mode argon-ion laser provided 100 mW of incident v-

polarized light at 488 nm. Scattered light was analyzed
with a six-pass (3 X 2) Sandercock tandem Fabry-Perot in-
terferometer with finesse -70. 7- or 16-mm plate separa-
tions were used, and the interferometer was scanned at 2
scans per second. A schematic illustration of the experi-
mental apparatus is shown in Fig. 1.

Data were acquired with an AT-type computer
equipped with an EG&G multiscalar board. 1024 (or
3072) data channels were stored, typically for 3000 scans
near Tl and 1200 scans far from Tl, where the Brillouin

Sandercock Tandem
Fabry- Perot 6 pass Te lescope

Oscilloscope

Tandem
Controller

Cryostat

NO
il ter

Pinhole

R

Beam
Spl i t ter

OXF Temperature
Controller

Discriminator = PMT h r'i

Pinhole

Seam
Split ter

Argon-Ion
Laser

AT
Computer

Shutter
Cont ro lier

FIG. 1. Schematic illustration of the CCNY six-pass tandem interferometer Brillouin scattering apparatus. {ND denotes neutral
density filter. )
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lines are narrow. Data were subsequently transferred to
the CCNY Science Division Vax 780 for analysis with a
nonlinear least squares fitting program.

Figure 2 shows three Brillouin spectra, at T =300,
127.5, and 81 K. Note the evident broadening at 127.5
K.

(2) Paris: Experiments were carried out in the back-
scattering 180' geometry with a crystal cut parallel to the
crystallographic axes. The scattering geometry was:

laser Ar+

Gould

Comlnodore 64

counter

PZT controller

8, poser supply

discriminator-

Shutter
Controller

c~

reference

beam

neutral

density
= filter

sample

beam

400
(a)

AE ~ R ~ RP

cryostat

Ch

C
O
O

300 FIG. 3. Schematic illustration of the DRP six-pass tandem

interferometer.
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(c)
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c[b, T]c. The crystal was tnounted in a homemade cryo-
stat with helium-gas flow cooling. The temperature was

automatically controlled with a thermocouple sensor po-
sitioned close to the crystal, but out of the laser beam. A
coherent single-mode argon-ion laser provided 200 mW
(at the sample) at 514.5 nm. Scattered light was analyzed
with a six-pass (4+2) homemade Sandercock-type tan-
dem Fabry-Perot interferometer constructed in the
D.R.P. shop. The piezoelectric-transducer scanning ele-
ments were controlled by a Commodore 64 microcom-
puter that was also used for storage of the data. The
aperture used for collecting the scattered light was 2'.
The plate separations (10, 11, 12, and 13 mm) were
chosen so that the Brillouin lines were clearly visible in
backscattering geometry even with intense scattered elas-
tic light. The experimental setup is shown in Fig. 3.

2 500 data channels were stored for 200 scans far from
TI and 400 scans near TI. Data were transferred to a
Gould minicomputer for subsequent analysis.

Figure 4 shows Brillouin spectra for three different

temperatures: above, around, and below Tl. The
broadening of the Brillouin lines near TI is clearly visible.

The crystals used in the experiments in Paris and New
York were subsequently exchanged and the experiments
were repeated to insure the consistency of the results. In
both experiments, the elastic constant C33(co) and
linewidth y»(co) were obtained from damped harmonic-
oscillator fits after deconvolution of the instrument func-
tion. In the analysis, we used n&

=2.539 and p =3.05
g cm . The results for the 90' experiment are shown in
Fig. 5.

—0 F 80 —0 F 40 0.00 0 ~ 40 0 ' 80

Frequency Shift (cm ')

FIG. 2. Brillouin spectra of K2Se04 in the
(a+c)[b, T](a c) scattering —geometry with 8=90' at (top to
bottom) (a) T=300 K, (b) 127.5 K, and (c) 81 K showing the
C33 longitudinal-acoustic mode.

VI. COMPARISON OF THEORY WITH EXPERIMENT

The data obtained in our Brillouin-scattering experi-
ments described in Sec. V can now be compared with the
mean-field theory predictions for C33(co) and @33(co)
given in Eqs. (3.8)—(3.11). We begin by evaluating these
equations using the free-energy coefficients derived in
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Sec. IV. For the acoustic frequency co in these equations
we used the approximate value

p
' 1/2

33 COL

nb sin(8/2),
C

(6.1)

where coL is the laser frequency, c/nb is the speed of light
in the crystal, and 0 is the scattering angle. This value of
cu corresponds to the "bare" frequency of the acoustic

phonon without including coupling.
We evaluated the equations both with g33=0, DAO,

and vice versa. The results for the two cases were some-
what difFerent for C33(co) but were essentially identical
for y33(co).

Evaluation of the integrals appearing in the equations
was carried out in several different approximations. For
T ) TI, we first used the dispersion curve of Q2(q) deter-
mined by Iizumi et al. and integrated over the full Bril-

s r s r s r

I I I

0 i~ ~-ra- .+~A- ~UIA

S r s

Lk)I Ib g Iq! iaiIJ'~gga(i uuiiiaiIEII(Li~l
ILI !ISIWII15IRm~iF I

FIG. 4. Brillouin spectra of KzSe04 in the (c)[b,T]( —c) scattering geometry with 0= 180', at (top to bottom) (a) T = 134 K, (b)

124.5 K, and (c) 117.5 K. (a): 100 channels=0. 1566 cm ' (FSR=0.4545 cm '), (b) and (c): 100 channels=0. 1373 cm
(FSR=0.4255 cm '). b indicates the Brillouin components, s the elastic scattering from the sample. For a count rate exceeding a
computer-defined value, the shutter is closed; a reference beam is still present producing the features labeled R.
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(c) s r si

FIG. 4. (Continued).
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FIG. 5. Temperature dependences of (a) C33(cu) and (b)

f33( co ) deduced from the 90' Brillouin-scattering data with

damped harmonic-oscillator fits.

louin zone. We then used the parabolic approximation
[Eq. (4.12)], integrated over a cylindrical volume with its
axis along a, equal to one-half the volume of the Brillouin
zone, and multiplied the result by 2. These two pro-
cedures gave results that were indistinguishable, and were
insensitive to changes in the integration volume demon-
strating that the integral is dominated by a small volume
element centered at the minimum. Consequently, we
used the second procedure for T & TI, and also for
T & Ti, without multiplication by 2.

The results of the evaluation are shown in Fig. 6 with
C 33 ( co ) on the left and y 33(co ) on the right. The top pair
of figures [Fig. 6(a)] are the first terms of Eqs. (3.8)—(3.11)
( C 33 +2gpo and y 33 ), the second pair [Fig. 6(b)] are the
Landau-Khalatnikov terms, and the third pair [Fig. 6(c)]
are the anharmonic contributions found from the in-
tegrals. For reasons to be discussed below, we performed
this calculation with three diff'erent values of the phason
gap Q&(0) =0, 60 GHz, and 160 GHz. The bottom pair
[Fig. 6(d)] are the total C33(co) and y33(m) found by add-
ing these three contributions. Clearly the size of the
phason gap has only a minor effect on C33(co), but causes
major changes in the value of y33(co) with a saturation
effect for large values of Q&(0) that totally suppresses the
phason contribution.

A comparison of Figs. 5 and 6 makes clear the impor-
tance of using a consistent theory. The rounding of
C 33 ( co ) and y 33(co ) above TI, which is very distinct in the
experimental data (Fig. 5), cannot be obtained without in-
cluding the fluctuation terms [Fig. 6(c)]. Conversely,
once the contribution of both the phason and the ampli-
tudon are taken into account, y33(co) is too large below

TI in Fig. 6(c) if a phason gap is not introduced in the
phason dispersion curve.
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FIG. 7. Comparison of the 90' Billouin data of Fig. 5 with
the theoretical predictions of Fig. 6 for '(a) 33

~ ~

(a) C' (co) and (b)
alf33(co ). Solid lines, D =0. Dotted lines, g3 =0. The theoretica

coefficients used were those computed from the results of other
experiments, listed in the second column of Table I.

FIG. 8. Same as Fig. 7, but with the coefficients adjusted to
simultaneously produce a best fit to bot h a C' (co) and (b)33

p 33( co ). The resulting adjusted values of the free-energy
coefficients are listed in the third column of Table I ~ Note that
fits are shown using either D =0 (solid lines) or g3=0 (dashed
lines) withe the g3 =0 fits giving better agreement.
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FIG. 9. Experimental (a) C33(co) and (b) @33(co) values from
0= 180 backscattering experiments, together with theoretical
curves computed with the same parameters used in Fig. 8. Data
points are (6 ) Paris, (D) New York.

In Fig. 7, our 90 results are compared with these
theoretical predictions using 160 GHz for the phason
gap. This value has been obtained indirectly by Topic in
a recent NMR study of K2Se04. The agreement is fair,
which is already important in view of the uncertainties in
some of the numerical values we have used, but certainly
not totally convincing.

Subsequently, we carried out a nonlinear least-squares
fit in which 8 and h3 as well as D (with g3=0) or g3
(with D =0) were varied in order to optimize the fit to
the 90' data. In Fig. 8, we show the optimized fits ob-
tained either with g3=0 (D@0) or with D =0 (g3%0).
As can be seen, a better fit is obtained for the g3=0
(DAO) case. The resulting values of the parameters are
given in the third column of Table I. The small resulting
changes in 8, h3 and D or g3 are within the experimental
accuracy.

The fits presented here have been obtained with
Q&(0) =160 GHz; other values larger than approximately
100 GHz would also be acceptable, producing only minor
changes in the three adjusted parameters. Lower values
would lead to too large values of y33(co) at low tempera-

ture, in disagreement with our experimental data. Note
that this lower limit on Q&(0) deduced from our experi-
ments is slightly above the upper limit of 85 GHz de-
duced from Fig. 5 of Quilichini and Currat.

We have further checked our theoretical results against
the 180' C33(co) and y33(co) data that has been measured
by both groups. The comparison, shown in Fig. 9, is
again quite convincing in the g3 =0 (DAO) case, showing
that a consistent mean-field theory can explain all our ex-
perimental results, a nontrivial conclusion in view of the
previous studies of this acoustic anomaly, as we shall see
in Sec. VII.

VII. COMPARISON WITH PREVIOUS STUDIES

As mentioned in the Introduction, the C33(co) anomaly
in K2Se04 has been the subject of several previous experi-
mental investigations. However, the analysis of the effect
in all of these investigations was incomplete.

Yagi et al. " were the first group to study the C33
anomaly near TI in their Brillouin-scattering determina-
tion of C33 (co). In their theoretical analysis they used the
same free-energy expansion given in Eq. (2.1), adding a
term 53m~ for completeness.

Their analysis included both the bilinear-coupling con-
tribution [Eq. (3.2) in the static limit] and the anharmonic
contribution, but with all coefticients treated as adjust-
able parameters. In their evaluation of the second contri-
bution, they did not consider either the qo,

—
qo degenera-

cy of the soft mode above TI, or the role of phasons
below TI. In their analysis they assumed that the soft-
mode dispersion curve is isotropic, and that po(T) is al-

ways small enough so that all equations can be linearized
in (T —TJ ).

They found reasonable agreement between their
theoretical expressions and their experimental results.
However, in view of the assumptions made in deriving
their equation for C33(co) [Eq. (11) in their paper] and the
fact that the linewidth was not analyzed, the values they
found for the coeScients cannot be expected to be physi-
cally significant.

Rehwald et al. compared ultrasonic and Brillouin
data for C33(co) and were the first to measure y33(cl)).
They also presented a careful theoretical analysis of the
harmonic contributions to C33(co). They pointed out a
further coupling of C33 to the phason and to the amplitu-
don at K=6a' arising from a p3e~ term, linearized to

p 3e~~ below TI . They concluded that this effect was

presumably too small to be measured and did not attempt
any fit.

Hauret and Benoit' determined both C33(co) and

33( co ) in a 90 Brillouin-scattering experiment. They an-

alyzed their data in the framework of Eq. (2.1) setting
D =0, but considered only the Landau-Khalatnikov
term, ignoring anharmonic effects. Since this procedure
did not enable them to take into account the rounding off
of C33(co) above Ti, they deduced a value for TI from
their data and assumed that the analysis is valid below
that temperature. Fitting their results to Eq. (3.3), they
deduced a relaxation time r= ro( TI —T) ' with
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Tp =2.6 X 10 ' s, in fair agreement with our value
rp=2. 1X10 ' s obtained from Table I. Having set
D =0, they could not explain the downward curvature of
C33(co) below Tz in the cur ((1 regime, and had to use a
non-mean-field critical exponent for pz(T) (2P-0.75) in
order to achieve a reasonable fit through the g3p~( T)
term of Eq. (3.10). This group' subsequently performed
additional Brillouin-scattering experiments at 45, 90',
and 135', which illustrated the co dependence of C33(co).
They confirmed their previous value of so=(2. 85
+0.20)10 ' s.

Esayan and Lemanov performed ultrasonic measure-
ments, and were the first to take into account the role of
the K=O phason. Remaining again within the Landau-
Khalatnikov approximation, they simply mentioned the
absence of coupling of the strain e3 to this excitation.

Finally, we note that a recent Brillouin-scattering
study of Rb2ZnBr& and RbzZnC14 by Horikx et al. em-

ployed an analysis very similar to that presented here.
They included both the Landau-Khalatnikov and anhar-
monic fluctuation terms, but did not include phason con-
tributions. Since inelastic-neutron-scattering studies of
these materials have not shown any propagating soft
modes, their fits could not be carried out using in-
dependent dynamical data as inputs. Furthermore, the
elastic anomalies in these materials are very weak com-
pared to the strong C33 anomaly in K2Se04 making the
analysis much less significant.

VIII. SUMMARY AND DISCUSSION

In this paper, we have presented a reanalysis of the
anomaly of the elastic constant C33(co) of K2Se04 in the
vicinity of the normal-incommensurate second-order
phase transition at T& =127.5 K. This analysis has been
performed in the framework of a consistent mean-field
theory. Having developed the relevant dynamical free
energy, we have systematically treated the most
significant coupling terms between the elastic strain e3
and the dynamical variables belonging to the X2 phonon
branch that becomes soft at T~ at the incommensurate
wave vectors +qp. We have found that the anharmonic
coupling of e3 with two excitations in the vicinity of
q =

qp in the incommensurate phase had not been proper-
ly considered previously: coupling to two phase modes
has to be taken into account on the same basis as cou-
pling to two amplitude modes. Both effects give rise to a
decrease of C33(co) and contribute to y33(co); the phason
coupling is particularly important for y33(co).

We evaluated the various coefficients appearing in the
free-energy expansion using available static and dynami-
cal data, and analyzed all of them in the same mean-field
Spll lt.

A detailed analysis of the values of C33(co) and y33(co)
determined from our 90 and 180 Brillouin-scattering ex-
periments has shown an excellent agreement with the
theoretical predictions. This agreement was achieved
with only minor adjustments of some of the free-energy
coefficients. It was nevertheless necessary to include a
phason gap that we took as temperature independent.

I „= —0.089( Ti —T) +9.6+ 300

(Ti —T) +21
cm '.

(8.1)

To proceed with our analysis beyond the mean-field ap-
proximation would require a complete theory that does
not yet exist, although some ingredients are already avail-
able. Because K2Se04 is a 3D system with a doubly de-
generate soft mode, its critical properties should be those
of the 3D XF ferromagnet for which theoretical estimates
are available. Le Guillou and Zinn-Justin, for example,
have found for this (d =3, n =2) universality class,
y =1.316, P=0.3455, and v=0. 669, in good agreement
with the results of Andrews and Mashiyama. The ex-
tent of the critical region and the importance of correc-
tions to scaling in this class of materials has not yet been
investigated, nor have the consequences of non-mean-
field behavior for the lattice dynamics been explored.

Some of the groundwork for a scaling analysis of the
acoustic anomalies in incommensurate crystals has been
developed by Schwabl and his co-workers (also see
Luthi and Rehwald ), and some ultrasonic studies of
phase transitions have already been analyzed with scaling
arguments, such as the NaNO2 experiments reported by
Hu et al. " Schwab1 has also noted that the separation of
the acoustic anomaly into Landau-Khalatnikov and
anharmonic contributions may not be correct in the con-
text of a scaling theory.

In the absence of a complete theory, there is no
straightforward way to carry out an analysis of the acous-
tic anomaly beyond the mean-field approximation. In
general, one cannot modify the temperature dependence
of any property without simultaneously changing others.

We found a lower limit for this gap of —100 GHz that is
slightly above the value found from neutron-scattering
experiments. We stress that a K=0 gap in the excitation
spectrum of the phason is not predicted by the mean-field
theory, it had to be inserted as an additional assumption.

Furthermore, there is extensive evidence of other devi-
ations from the mean-field approximation. For instance,
Majkrzak et al. ' analyzed the temperature dependence
of the primary neutron-diffraction modulation satellites
of K2SeO~, which they fit to I ( T) ~ ( T~ —T) ~ and found
2P—=0.75. The temperature dependence of the soft-mode
frequency in E2Se04 (Fig. 7 of Ref. 3), which should
behave as 02(qc) ~(T—T~)r, clearly shows upward cur-
vature indicative of y & 1 rather than the y =1 behavior
used in our mean-field analysis [Qz(qp)= 2 Ao(T Ty)].
Andrews and Mashiyama studied diffuse x-ray scatter-
ing in the K2Se04 isomorph Rb2ZnC14 and found critical
exponents P=0.345, y=1.26, and v=0.693. These re-
sults are in clear disagreement with the mean-field predic-
tion P= —,', y= 1, and v= —,'. In the incommensurate
phase of KzSe04, Unruh et al. have found that the
dielectric anomaly behaves as bg-( Tz —T) , while 'the
amplitude-mode frequency 0„(0)—( T~ —T) . They
also found that I „,the damping constant for the ampli-
tude mode deduced from Raman data, increases strongly
near Tz. We found their results to be well described by
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As an example, we repeated the analysis shown in Fig. 8

with the amplitude-mode damping constant I z found by
Unruh et al. [Eq. (8.1)] rather than the T-linear form

[Eq. (4.13)] used previously, with Qz(0) given by Eq.
(4.14}, and with the free-energy coefficients adjusted to
optimize the fit. The resulting fit showed very poor
agreement with the data as shown by the solid curves in

Fig. 10. We therefore also included a nonclassical ampli-
tudon frequency 0„(0)~ ( Ti —T)» in the Landau-
Khalatnikov term [the second term in Eq. (3.10)] with y
as a free parameter. The result, also shown in Fig. 10 by
the dotted lines, is in much closer agreement with experi-
ment, but the fit gave y =0.66 rather than y =0.52 found

by Unruh et al.
Finally, we note that in our formulation of the theory,

the anharmonic terms are treated in lowest order through
cubic coupling of acoustic phonons to pairs of soft modes
above TI or to pairs of amplitudons or phasons below TI
[first term in Eq. (2.5)]. Recently, however, Levanyuk '

has found that the higher-order anharmonic terms in Eq.
(2.3) also contribute significantly in the incommensurate

phase, leading to renormalization of the temperature-

41

dependent coupling coefficients that multiply the fluctua-

tion integrals in Eqs. (3.10) and (3.11). Although such
effects may well modify some of the conclusions of our
analysis, their formulation is not yet sufficiently complete
for carrying out a quantitative analysis of the experimen-
tal data.

Note: Recently, a paper by Chen appeared [Phys. Rev.
B 41, 9516 (1990)] in which the KzSe04 specific-heat data
was reanalyzed and shown to agree very closely with the
predictions of the 3D XY model.
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APPENDIX A: THE LANDAU FREE-ENERGY
FUNCTIONAL f (x)

The Landau free-energy functional f (x) for K2Se04
can be expressed as a sum of three parts:

f (x)=f&(x)+f,(x)+fp(x), (Al)

29
110 120 130 140 150

where f&(x) includes terms only in the order parameter

Q, which is the complex position-dependent amplitude of
the X2 mode at the commensurate wave vector q, =a'/3,
f,(x) includes terms in the strains E, (i =1—6}both alone

and in combination with Q, and fp(x) includes terms in

the polarization P3 both alone and in combination with

2
N

fg(x) =
—,'crgg*+ —,'P '(Qg')'+ —,'y'((Qg*)'

. cr dg ~ dQ v dQ* dQ
2 dx dx 2 dx dx

+ i l( Q6+Qg )6 (A2)

110 120 130 140 150

fp(x)= P ++P Qg*+i(P(g Q* ) PE—, —1

2+o 2

{A3)

FIG. 10. Fits to (a) C33(co) and (b) @33(co) using Unruh's am-

plitudon damping constant from Eq. (8.1). Solid lines: best fit

with mean-field amplitudon frequency. Dotted lines denote best
fit obtained with Q „(0)~ ( T, —T) . The fitting results were
y=0.66, g =2.5X].0 '

g 'cms ', h3=3. 8X10'6 s ' and

g3=0.72X10 ' s (with D =0).

6 3

f,(x)= —,
' g C;, 6;6', —g hje,.gg*

/, j=l j=1
3 6

+ g g;, 6;6'J.QQ + g g;e;Qg
i=4

6

+—,'a, e,(g'+Q* )
—g e, o, (A4)
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where a=ao(T —To) and all other coefficients are as-
sumed to be temperature independent. To simplify f (x),
we first make the usual transformation to polar coordi-
nates Q =pe'~'"', and invoke the continuum constant-
amplitude approximation dp/dx =0. Since we will not
consider the polarization I' we minimize the average
free-energy density F = ( I /L ) J of (x ) dx with respect to
P to find its equilibrium value, and eliminate it from F(x )

assuming that the electric field E and the stresses cr, are
zero. This process modifies the coefficients y', y'„and P '.

Minimization of the resulting expression with respect
to P shows that near TI, where p is small, dP/dx is a
constant independent of x, which we take as q

—
q, . Ig-

noring all strains except e1, e2, e3, and the off-diagonal

components of g;J then gives an approximate form for
f (x):

3

F =
—,
' Ao( T —TI )p + ,'B—p + ,'D—p + ,' g—C;,e;e

3 3—g h, e,p + g g,.e, p (A7)

The complex elastic constant C33 (co } can be obtained
from the free energy given in Eqs. (2.2)—(2.5) using stan-
dard techniques of anharmonic phonon theory. The 3 X 3

dynamical matrix for acoustic phonons may be written as

IIM pll=
1 2g C ps(a))qrqs co 5 p

Pm r,

which is the approximate form of the free energy given in
Eq. (2.1) in the text.

APPENDIX B

3 3 3

+
2 Q C~~E, E~ Q h;6;p + g g;E(~p (A5)

f(x)-=—,'[a —2o(q —
q, )+jr(q —

q, ) ]p + ,'Pp + ,'—yip— g C &sq qs+ X &(q, co) —co fi p
Pm

(Bl)

This is just the incommensurate-plane-wave limit; p is
the amplitude of a Xz mode at the (still unspecified) wave
vector q, and f (x) of Eq. (A5) is thus the free-energy den-
sity of a single mode. Minimization of f (x) with respect
to q gives

0
q =qo=q +

where p is the mass density and X &(q, ro) the self-

energy tensor whose origin is related to the coupling term
[Eq. (2.5)]. This term, as stated in Sec. III, does not play
the same role above and below TI, and we need to discuss
the two situations in turn.

1. The T & TI case

so that, with q =qo,

f (x)=——a—1

2 p + —,'Pp + —,
' g C; e;e

ij =1

At the lowest order in perturbation and for harmonic
Q(q) phonons, since the frequency of an acoustic phonon
is always much smaller than Q(q), the only damping
mechanism is related to the first term of Eq. (2.5):

3 3—g h, e,pz+ g g, e,'p'. (A6) F,'= g h (
—q, —q„—qz)q U (

—q)

X Q (
—q, )Q (

—qz)5(q+q, +qz),
(82)

where we have made explicit the wave-vector dependence
of the elastic strain and used the acoustic-phonon coordi-
nates. This damping mechanism is one in which an
acoustic phonon with wave vector q and a q, (or qz) oth-
er phonon are simultaneously destroyed and a third pho-
non with wave vector —

qz (or —qi) is created, with
wave-vector conservation, followed by the reverse pro-
cess. Such a mechanism may be represented by the usual
bubble diagram and leads to the well known result:

Note that the Lifshitz invariant term i (0./—
2)[Q (dQ'/dx) —

Q (dQ/dx)] in Eq. (A2) shifts the
minimum in the part of f (x ) quadratic in p from

q, =a"/3 to qo, and also increases the transition temper-
ature from To, where a=ao(T —To)~0 (the virtual
paracommensurate transition) to TI = To+(a /aolc),
where [a—(a'/a)]~0.

Finally, replacing [a—(cr /a)] by 2 = Ao(T —TI)
and 13 by 8 and noting that f (x) is no longer dependent
on x and is therefore identical to the average free-energy
density F, we have (approximately, neglecting shear
strains)

I

h..(
—

q —
ql

—q2)q. h pp(q ql qz)qp
X p(q, co)= ——g

1 2

X [n (Qz) —n (0, )]
1

Cu+ 0, Q2

1

0,+02 (83)

where II, (resp. Qz} is the phonon frequency associated
with the wave vector q1 (resp. q2) and n (0) the corre-
sponding Bose-Einstein factor.

The situation is more complex in the case where Q(q)

I

corresponds to soft phonons the frequencies of which go
to zero at T=TI, for q=eqo, a=+1.

First, in Eq. (83), the main contribution comes from
wave vectors q1, which are in the vicinity of a minimum
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of the soft phonon dispersion curve: q&
=E'qo+ K,

( ~Ki & iqoi); due to the 5(q+q, +q2) term, —
q2 is also in

the vicinity of eqo, while, if one neglects the wave-vector
dependence of h in the vicinity of such a minimum,

X p(q, to)= —2k&T(h q )(hppqp)

X
1

fl (K) 0 (K)— I (K}
2

(B6}

h (qe, qo+ K—, eqo —K—q)

(q, —eqo+K, eqo —K—q) =h—:h, . (B4)

Consequently, the summation over q, in Eq. (B3) is
equivalent to twice a summation over K in the vicinity of
one of the two minima only.

Second, as explained in Sec. III, the phonons on the X2
branch are always damped, with a damping constant I
much larger than the acoustic-phonon frequency, and
also larger than the soft-mode frequencies in the vicinity
of TI, close to E'qo. The bare phonon propagators,

P (q, co)= 1

0 (q) —co
(B5a)

which entered in the bubble diagram and led to Eq. (B3),
have to be replaced by propagator s related to
(over)damped phonons:

P(q, to) = 1

fI'(q) itoI —(q) co'— (B5b)

If one neglects, in the equations leading to Eq. (B3), the
difference between Q(q& } and Q(q2} (because of the small
value of iq~), replaces the Bose Einstein factor n (0) by
its classical limit, (kpT/A'II), and integrates over the
whole frequency spectrum implied by P(q, )c,oone ob-
tains the simplified result given by Levanyuk, ' and
Ginsburg et al. which in the present case reads:

In obtaining this expression, we have supposed that the
acoustic phonon frequency co is much smaller than the
soft-mode frequency and damping constant [co «Q(K),
I (K)]; also, K stands for q, —eqo and the result has to be
multiplied by 2 to take into account the existence of the
two minima.

2. The T (T& case

Below the phase transition, the situation becomes more
complex for two different reasons. Both ( Q (qo) ) and

(e;) (i =1,2, 3) have nonzero values, which can be, at
each temperature, obtained from the minimization of Eq.
(2.1). Furthermore, the dynamics of the soft mode is
more complex, since it involves the amplitudon and the
phason, and the diQ'erent role of these two variables has
to be taken into account.

a. Harmonic part of the free energy

Once the equilibrium values po and e, are obtained, the
harmonic part of the free energy may be easily computed
by first taking the second derivatives of the free energy
with respect to the dynamical variables that appear in
Eqs. (2.2)—(2.5) and, second, replacing in these second
derivatives all the remaining variables by their equilibri-
um values. Taking into account the equilibrium condi-
tion (BF„„/Bpo)=(BF,~/Be;)=0, after some tedious but
straightforward manipulations, one obtains:

F„„=-,g [N( —eqo
—K, eqo+K)Q( —eq, —K)Q(eqo+K)+R (eqo K eqo+K)Q(eqp K)Q(eqo+K)

+ gH ( —q, eqo+K)U ( —q)Q(eqo+K)5(q —K)]
q, a

1+ g (C ps+2g p5 P spo)q qsU, (
—q)Up(q)

pm q&, . . . , Z

(B7)

with

N( —eqo —K, eqo+K)=co (p)+ —,
' g A pE Kp,

a, P

R (eqo —K, eqo+ K) =to (p )e

to (p) =Bpo+2Dpo,

H (
—q, eqo+K)

(B8a)

(B8b)

(B8c)

A„O 0

=i +2/p (h —2e;5; g )q poe "~, (B9)

with a=+1,

(Q(q, ))= "".
0 (Blob)

Equations (B7)—(B9) make clear that the excitations at
—qo+K and q„+K are still degenerate, with positive
frequencies, but are coupled through R (eqo —K, eqo+K)
while, through the third term of Eq. (B7), the acoustic
phonons are now coupled to the soft modes. As it is well
known, the part of Eq. (B7), which contains only the
soft-mode variables may be trivially decoupled through a
canonical transformation into amplitudon and phason
modes:

Ap=— 0 A 0

0 0 A,

(B10a) A (K)= —[Q(qo+K)e '"+Q( —qo+K)e'r],

(B11a)
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~(K)= —[Q(qo+K)e '+ —Q( —qo+K)e'~],

yielding

Q2„(K)=2') (p)+ —,'gA pK Kp,
a, P

(Bllb)

A„(K)=—,'gA pK Kp.
a, P

Note that because, in the incommensurate phase, qo is
another reciprocal-lattice vector, we have dropped the in-
dex qo in Eq. (Blla)—(Bllc), writing simply A(K), y(K),
Q„(K), and Q„(K). Furthermore, as stated in Sec. III,
the phason and amplitudon have the same damping con-
stant I (K) that we assume to be smoothly temperature
dependent.

Finally, due to the appearance of the +(resp. —) sign
I

in Eq. (81 la) the amplitudon (resp. phason) is essentially
even (resp. odd) in the vicinity of K=O. As an elastic
strain is an even quantity, one could naively think that,
through the third term of Eq. (87), the acoustic phonon
would couple only to the amplitudon. When the q depen-
dence of Eq. (89) is properly taken into account, the situ-
ation turns out to be more complex, as has been shown,
e.g. , by Bruce and Cowley, Poulet and Pick, Cowley
and Mayer, " and briefly discussed in Sec. III: in general
the elastic strain also couples to the phason. This term
appears when one develops H ( —q, eqo+q) not in first
orderinq [aswehavedoneintherhsofEq. (89)]butin
second order in q q . As this term does not exist when
we restrict ourselves to the propagation of the e3 strain,
we shall simply write the contribution of the harmonic
couplings to X p(q, co) as:

4[(h —2e;5; g )q ][(hpp 2''5)—pgpp)qp]po
X"p(q, co)=- +X"p(q, co)0„(K=0)—icoI (K=0) (812)

where X'-p(q, m) represents the harmonic coupling of the
acoustic phonons to the phason. In this expression, we
have again supposed co «Q„(T), I (T), to be consistent
with Eq. (86).

b. Anharmonic interaction and the self-energy term

As in the high-temperature case, let us consider first
that the only relevant part of the self energy (which con-
tributes to the anharmonic term) comes from the first
term of Eq. (82). Even in this simple case, one has to
take into account the fact that, in the incommensurate
phase, the dynamical variables are no longer Q(q), but
A (K) and y(K).

More precisely, let us first consider the case where

q, =qo+K (e=+ I). Inverting Eq. (Bl la) yields

Q(eqo+K) = [A (K) ieq&(K—)]e"~1

v'2 (813)

so that the replacement of the phonon coordinates by the
amplitudon and the phason coordinates transforms Eq.
(82)into

Conversely, if one considers the e= —1 case
(q, = —qo+K), Eqs. (82) and (813) yield

i g (
—q, qo

—K, —qo+K+q}q U (
—q)

, q, x 2V'p

X [A (
—K)—ig( —K)][A (K+q)+iy(K+q)],

(814b)

while this second term is not related by a q& q2 i~te~-

i g (
—q, —

qo
—K,qo+K+q}q U (

—q)
, q, rc 2V'p

X [A (
—K)+i~( —K)][A (K+q) —iy(K+q)] .

(814a)

change to Eq. (814a). As, by definition

h..(q, q, , q, )=h..(qq, ,q, ) (815)

if, in Eqs. (814) one neglects the dependence of h on q
and K (~q~ and ~K+q~ being always smaller than ~qo~),

the sum of the two terms finally leads to the third-order
interaction term

h q U( —q)[A( —K)A(K+q)QQ CI CZ

xg
Q,(K) Q,(K)—iso

with Q+(K) —=Q„(K);0 (K):—Q'(K).
(817)

+q&( —K)y(K+q)] (816)

the summation being over all the vectors K in the vicini-
ty of the origin. In analogy with Eq. (82), Eq. (816) de-
scribes now the simultaneous destruction of an acoustic
phonon with vector q, and of an amplitudon (resp.
phason) with wave vector K, and the creation of an am-
plitudon (resp. phason) with wave vector K+q. There
will now be two bubble diagrams, contributing to
X'p(q, co), one for the amplitudon, and one for the
phason; they just replace, with the same weight for each
of them, the two (identical) soft-mode bubble diagrams
corresponding to the two minima at eqo.

In fact, as e; is different from zero below TI, the elastic
strain couples to two soft-mode variables, not only
through h, but also through 2e;5; g [cf. Eq. (89—)].
The total contribution of the two bubble diagrams is
thus:

&'p(q, co)= —2keT[(h 2e;6; g }q —]
X[(h pp 2e 5 @pp)qp]—
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Below Tt, the self energy is the sum of Eqs. (B12) and

(B17),while it is given by Eq. (B5) above T, . When one is

interested simply in phonons propagating along c*,
M tt(q, ro) is diagonal in aP; also for symmetry reasons

discussed in Sec. III, there is no coupling between the
phason and the longitudinal strain. One can thus extract
from M ~(q, co) a frequency-dependent elastic constant

C33 ( co ) which may be expressed as

C33(Co) C33 4ktt Th 3 3 f(2m. )
Q (K) Q (K)—i—I (K)

2

(B18)

4(h3 2g3—e3) Po oz
C33(co) =C33+2g,p(')—, —2ktt T(h, —2g, e,)', fQ'„(o)—t ~r(o) (2m. )

d K

Q„(K) Q„(K)—i—1 (K)

d E

Q (K) Q (K)—i—f'(K)
2

(B19)
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