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To obtain an unusually large set of exact solutions for even-number localized correlations of the
standard square Ising model, a method is developed that combines traditional Pfaffian techniques
with linear-algebraic systems of correlation identities having interaction-dependent coefficients.
Two eight-site clusters (subclusters of the “Greek cross” cluster) are studied, and altogether sixty
different even-number correlations are determined exactly at all temperatures. Besides demonstrat-
ing the existence of degeneracies within the set of exact solutions, the solution curve for an eight-site
correlation is evidently the first of such large order to be displayed for an Ising model on any regu-
lar planar lattice. Significant time as well as labor efficiency of the method is clearly demonstrated
since relatively few correlations need to be actually calculated by Pfaffian techniques in order to ob-
tain large additional numbers of multisite correlation solutions using much simpler linear-algebraic

procedures.

I. INTRODUCTION

Of all the models in statistical mechanics on which ex-
act calculations have been performed, the two-
dimensional Ising model is the most investigated.! The
model was originally introduced as one for ferromagne-
tism, but later was applied with even more success to
binary alloys,” and subsequently to “lattice gases,”’ fer-
roelectric crystals, DNA,* and many other physical sys-
tems. A quantitative statement about the existence of a
phase transition in the two-dimensional model was first
given in 1941 by Kramers and Wannier,> and Montroll.®
The most remarkable development was made in 1944 by
Onsager’ who was able to compute the free energy and
“boundary tension” of the Ising model on the square lat-
tice in the absence of magnetic field, and the spin correla-
tion was first derived in 1949 by Kaufman and Onsager.®
The spontaneous magnetization was announced without
derivation by Onsager in 1949, and a derivation was pub-
lished in 1952 by Yang.® The methods of Onsager, Kauf-
man, and Yang are very complicated but by the 1960’s,
through the efforts of many researchers, the analyses be-
came more tractable and, since then, these and other
methods are actively being used for computing many
more quantities of physical interest.

The study of correlation behaviors among the various
degrees of freedom comprising an interacting many-body
system in thermodynamic equilibrium has leading impor-
tance for the basic understanding of the cooperative
effects exhibited by such systems. Since correlations are
the thermal expectation values of the product of spin
variables, they offer a more detailed description than
thermodyanmic for the order and symmetry present in
the system. It is well known from statistical-mechanical
fluctuation theory that certain thermodynamic observ-
ables, like spontaneous magnetization, magnetic suscepti-
bility and specific heat, to mention a few, can convenient-
ly be represented in terms of correlations. There are
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varieties of problems where localized correlations can be
utilized e.g., exact analyses of local magnetizations and
correlations in the vicinity of an isolated defect perturb-
ing an otherwise isotropic Ising system,'? in the theory of
various transport coefficients as that of superionic con-
ductivity in solid electrolytes like the layered crystalline
compound AgCrS,,!! to find local magnetic field proba-
bility distributions'? that, in turn, can be used for calcu-
lating the inelastic neutron-scattering cross section as
well as thermodynamic quantities, and to calculate joint
configurational probabilities of Ising variables with use,
e.g., in percolation theory, and indeed many other exam-
ples of application.

Planar Ising-model even-number multispin correlations
have traditionally been calculated by Pfaffian tech-
niques'® giving exact and explicit solutions. The connec-
tion between the Ising problem and Pfaffians was first no-
ticed by Hurst and Green, and then Kasteleyn,13 in
showing the correspondence between Ising and dimer
problems, expressed the partition function in terms of a
Pfaffian. McCoy, Tracy, and Wu'* have obtained exact
integral-form solutions for arbitrary n-site Ising correla-
tions on the square lattice, where their expressions are
more useful for studying large-distance behaviors of
correlations rather than the short-distance behaviors of
localized correlations. Various correlations of the square
Ising model have more recently been calculated by
several authors such as Au-Yang and Perk, Ghosh and
Shrock, and Yamada.!* More specifically, Au-Yang and
Perk used quadratic difference equations of Hirota’s Toda
lattice form to conveniently obtain exact values for the
pair correlations at the critical temperature, Ghosh and
Shrock developed and analyzed exact and explicit solu-
tions for diagonal, row, and off-axis spin-spin correlations
in terms of elliptic integrals, and Yamada expressed the
pair correlation in a simple determinantal form called a
“‘generalized Wronskian.”

The present paper considers a spin-1 Ising-model fer-
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romagnet having only nearest-neighbor couplings on a
square lattice and in zero magnetic field. Exact solutions
are obtained for select even-number correlations associat-
ed with spatially compact clusters of lattice sites, i.e.,
where relative distances between sites of the cluster are of
the same order of magnitude as the lattice spacing. In
this paper, we attempt to develop a comprehensive plan
to more efficiently obtain the exact solutions for large
numbers of even-number multispin correlations. Two
different methods are combined in the present calcula-
tions: the Pfaffian techniques and linear-algebraic sys-
tems of correlation identities having interaction-
dependent coefficients.'® In Sec. II we define the basic
generating equation for the linear-algebraic correlation
identities, and in Sec. III the even-number-correlations
calculations and results are discussed in detail. Finally,
in Sec. IV we summarize and make comments about the
analysis and results.

II. THE SQUARE ISING MODEL AND THE
BASIC GENERATING EQUATION FOR ITS
LINEAR-ALGEBRAIC CORRELATION IDENTITIES

Consider a lattice consisting of N sites labeled
j=0,1,...,N—1. At each site there is an atom or ion
possessing a magnetic moment (spin) which can only
point in two directions, “up” (+) or “down” (—). The
two possible cases are described by a state variable,
denoted by o; for the spin at the site j, which is +1 for
an ‘“‘up” spin and —1 for a “‘down” spin. The states of
the whole system are, therefore, described by all possible
realizations of the set of Ising variables
{0001, ...,05-1}. The Hamiltonian of the Ising model
is defined by

H=-J 3 0,0, (2.1)
(1,j)

where ¥ (; ;) ' designates summation over all distinct

nearest-neighbor pairs of lattice sites, and J, the interac-

tion parameter, is a positive (negative) quantity for a fer-

romagnetic (antiferromagnetic) system. The magnetic

canonical partition function Z is given by the usual trace

formula over all degrees of freedom of the system
ZzZ = Tr e BH

0gOy- TNy

2.2)

where B=1/kyT, kp being the Boltzmann constant and
T the absolute temperature. Let [f] be any function of
the Ising variables excluding the origin-site variable o,
One then constructs the canonical thermal average

(ool f]) as
(ool /D=L  Tr

Zoo,al,...,oN7]

e PHg o[ f]

Bloyo,to,+o,+0,)
Tre 071 2 3 40_

==+l

=(tn™ -

gp=%1

0

(2.3)

eBJao(a]+az+a3+a4) > ’

where the final expression (2.3) has been obtained after
some algebraic and partial-trace manipulations, and
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where the definition of thermal average has been used (see
Fig. 1 for enumeration of lattice sites). Within the
thermal average symbol, one may write

Tr eBJUO(Ul+02+”3+‘74)

oy==l1

Oo

Tr eBJoo(al+UZ+a3+04)

op=1*l1

=tanhK (o, +0,+0;+0,), (2.4)

where K =fJ is the (dimensionless) interaction constant.
Since tanhK (o0, +0,+03+0,) is an odd function of its
argument, and any Ising variable o, satisfies 03" "1=0,
and a%"= 1, n=0,1,2,..., one can write the last equa-
tion (2.4) as

tanhK (0, +o,+03+04)=A(o,to,1to3+0,)
+B(o,0,03+0,0,04
+o0,0304+0,050,4) .
(2.5)

The coefficients 4 and B are only dependent on the in-
teraction constant K and can be evaluated by using all
possible values of the Ising variable 0,0,,03,0,4 in Eq.
(2.5), that lead to

(tanh4K +2tanh2K) ,

1
8

(tanh4K —2 tanh2K) .

A=
1 (2.6)
B=1
Substituting (2.4) and (2.5) into (2.3) gives
(ool /D= 4((a,+0o,+03+0)[f])
+B{(0,0,03+0,0,0,4
+010304+0,030)f1), 00€lf],
(2.7)

where A and B are given by Eq. (2.6). Equation (2.7) is
the basic generating equation for Ising correlations upon
the square lattice and will be used throughout the calcu-

FIG. 1. An elementary cluster of the square lattice, where
zero is the origin site and 1, 2, 3, and 4 are its nearest-
neighboring sites.
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lations to generate the linear-algebraic systems of correla-
tion identities.

III. EVEN-NUMBER LOCALIZED CORRELATIONS
OF THE SQUARE ISING FERROMAGNET

We wish to explore and develop a highly efficient pro-
cedure for obtaining the exact solutions for all even-
number correlations on a chosen eight-site cluster [see
Fig. 2(a)]. Using the rotational, translational, and inver-
sion symmetry, investigation offers 35 nonequivalent
correlations exhausting all the possibilities defined upon
the eight-site cluster. Five are pair-correlations, eighteen
are quartet-correlations, eleven are sextet-correlations,
and one is an octet-correlation. Using the basic generat-
ing equation (2.7), where [f] is any product of an odd-
number of spins (not containing the origin-site spin) and
recalling the fact that for any Ising variable o0?=1, and
again using the symmetry group operations for the sys-
tem Hamiltonian, one obtains 34 linear-algebraic identi-
ties. The correlations are given in Table I, where the lat-
tice points are enumerated in Fig. 2(a) as 0,1,...,7, and
for notational simplicity, the spin variables within a
thermal average symbol are represented by their corre-
sponding site labels. In Table I the underlined thermal
averages are those used to generate identities and one ob-
serves, therefore, for a particular correlation sometimes
more than one identity can be generated. For example,
three different identities can be generated for x¢. The re-

|o—5
&
20— ’O 2 7
3e——06
(a)
8
32

(b)

FIG. 2. Extended clusters of the square lattice where both
eight-site clusters are segments of the “Greek cross” cluster.
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sulting linear identities are the following:

x;=A+A2x,+x;3)+B(2x,+x3+x3), (3.1
X, =2A(x;+x4)+2B(x3+xy,), (3.2)
x3=A(x;+2x,+x5)+B(x6+2x5+x ), (3.3)
x¢=B+ A(2x,+x;+x3)+B(2x,+x;), (3.4)
xg= A(x3+2x0+x,)+B(2x5+x,3+x33), (3.5)
xe=A(x;+x7+x3+x9) +B(x50+X5 +X5+x3,),
(3.6)
x3=A(x | +x4+x3+x ) +B(x;+x,+x3+xy,),
(3.7
xg=2A(x4+x4)+2B(x;+x3) (3.8)
xg=A(x,+x5+x;+x19) +B(x;+x,+x4+x7),
(3.9)

Xp=Ax;+x,+x;3+x ) +B(x, tx4+x3+x,),
(3.10)
xp=Ax;+x4+x6tx7)+B(xs+x5+x;+x4),

(3.11)

x=A2x,+xg+tx9)+B(x,+x5+2x5), (3.12)

X1,=2A(x;+x3)+2B(x4+x,), (3.13)
xp3=A(x3+x 0t x,0+x)

+B(xgt+x; txy0+x33), (3.14)

X 3= A(x)+x5+x50+%x5 ) FB(xgtx9+x,+x3,),
(3.15)
Xy =A(x;+xgt+xy+tx5)+B(x5+x9+%xy,+x5),

(3.16)
x;s=A(x;+x5+2x ;) +B(2x,+x4+x ), (3.17)
X16=A(x3+x,;+2x50)+B(2x 5+ x,53+x33) , (3.18)

X17=AXyFxg+Xx5+Xx5)+B(x7+x5+x50+x3;),

(3.19)
x1g=A(xg+2x 4 +x9) B (x5 +2x57;+x34), (3.20)
Xy =2A(x3+x,)+2B(x,+x,), (3.21)
Xy = A(xg+x 14+ X6 +x57)
+B (x4 +x10+x0+x34) (3.22)
Xy5= A (x g +2x 3 +X,9)+B(x,+2x,+x5) , (3.23)
Xys = A(xg+x1g+2x7)+B(2x 4t x5+ x34), (3.24)
Xy =A(2xy5+x,3+x33)+B(x;+2x,0+x,,), (3.25)
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Xy =A (X5t Xy +Xx5+x3)+B(x;+x7;+x5+X4),
(3.26)

X3 = A (X0 xy +x20FX33)
+B(x;+x;g+x0+txy3), (3.27)

Xy = A(Xx;+xg3+X50+x3)+B(xy;+x9+x,,+Xx5),

(3.28)
Xy =A(x7+xg+X5 +x3)+B(x,+x5+Xx50+X5),
(3.29)
X3p=A(xg+txg+xy+x3)+B(x,+x;+x50+%5),
(3.30)
X33 = A (x4t x9+ x5 +x34)
FB(xgtx 4 +tx6+T%x07), (3.31)
X3 =A2x g+ X3 Fx33)FB(x3+x),+2xy),  (3.32)
X33= A2x 14+ x5+t x34) B (xg+x9+2x,;),  (3.33)
X35 =A (X9 +2xy7tx34) +B(xg+2x,tx9) . (3.34)

The set of 34 equations (3.1)—(3.34) in 35 unknowns is
linear, algebraic, inhomogeneous, and exact. Upon ex-
amining the matrix constructed from the coefficients, it is
found that among the 34 linear equations, only 28 are
linearly independent. Therefore, one needs knowledge of
seven correlations!” to determine solutions for the totality
of 35 correlations. For these, one may choose the five
pair correlations x, x,, X3, X4, and x5 together with the
two quartet correlations x,, and x,;. Exact solutions of
x, and x, are shown in a paper by Montroll, Potts, and
Ward'® and x, by Mahan;'! all calculated by Pfaffian
techniques. The remaining four correlations are also
presently calculated by Pfaffian techniques. With the aid
of the aforementioned seven solutions, the remaining 28
correlations are then solved by using the coefficient ma-
trix!” and standard methods of linear algebra. The final
results have been checked by calculating the two quartet
correlations x,, and x,; independently by Pfaffian tech-
niques for all temperatures.

After the success on the above eight-site cluster, anoth-
er eight-site cluster has been chosen on the square lattice
[see Fig. 2(b)]. This cluster is diagonally extended with
respect to the former cluster. Six lattice sites O, 1, 2, 3, 4,

TABLE 1. Definitions of spin correlations upon the eight-site cluster shown in Fig. 2(a) where the
underlined correlations are used as generators for correlation identities.

x,;=(01),(02),(03),(04),(15),(36),(45),(46),(47)
x,=(05),(06),(12),(14),(23),(34),(57),(67)

x3;=(07),(13),(24),(56)

x,=(16),(17),(25),(26),(35),(37)

X5:(27)

x6=10123),(0124),(0134),(0234),{0456),(0457),(0467),{4567)
x,=1{0125),(0146),(0236),(0345),(1457),(3467)

xg=1(0126),(0235),(1467),(3457)
x=1{0127),(0237),(2457),(2467)

x10=¢0135),(0136),(0147),(0245),(0246),(0347),(1456),(3456)

x,=40137),(2456)
x1,=(0145),(0346)

x1;=1(0156),(0356),(1345),(1346),(0157),(0367),(1245),(2346)
x,2=1(0167),(0357),(1246),(2345),(1235),(1236),(1567),(3567)

x5 =1(0247)
x16=1¢0256),(1347)

x,7=40257),(0267),(1247),(2347)

x15=1{0567),(1234)
x10=1{1237),(2567)

x,0=1(1256),(1357),(1367),{2356)

x5 =(1257),(2367)
x,=41267),(2357)
x,3=(1356)

x,0=(012345),(012346), (014567 ), (034567 )

x,5=(012347),(024567)
X,6=1(012356),(134567)

x,7=1(012357),(012367),(124567),(234567)
X,3 =(012456),(013457),{013467),(023456)

X2 =¢012457),(023467)
x40 =1{012467),(023457)

x4 = (012567 ),(023567),{123457),(123467)

X3, ={013456)
x33=(013567),(123456)
x34=1(123567)
x35=1(01234567)
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and S are common to the previous cluster, and only sites 2Aw,+2B(w g twg)=x3—24x4 , (3.37)
enumerated as 8 and 9 are newly considered. The

rotivations for choosing this cluster are its spatial com- Alws+we)+B(w;+w,+wotwy)

pactness and, due to its overlapping the former cluster, =xp—4(x;+x¢), (3.38)
many correlations are already kr}own, thereby hopefully A(wy3+w,,)+B (W, +w,+w +Fwpy)

sufficient to determine more easily many new solutions.

Following the same procedure as mentioned, it is ob- =x;3—A(x,+x3), (3.39)
served that 38 nonequivalent multispin correlations ex-

haust all possibilities (see Table II). Of these, thirteen A(wy +wp)+B(w) tw); Twstwy)

correlations are known (from previous cluster calcula- -
tion). Twenty-six possible identities are developed for X1u— Alxatxg), (340
this cluster and are the following: —w3t 4w, twy tw;)+Bw,tw, twy)

=—Ax2—BX3 5 (3.41)

A(wl+w2)+B(w]]+w12+wl3+wl4) —w4+A(w2+w12+w14)+B(w1+w11+w]3)

ZX4—A(x2+X3) ; (335) :'—AX3_BX2 , (342)

A(w;y+w,y)+B(ws+we+wotwy) —wst+A4(w,+w,, +w)+B(w, tw;,+w)
=x,—A(x;+x4), (3.36) =—Ax,—Bx;, (3.43)

TABLE II. Definitions of spin correlations upon the eight-site cluster shown in Fig. 2(b) where the
underlined correlations are used as generators for correlation identities.

x,;=(01),(02),(03),(04),(15),(45),(58),(59)
x,=405),(12),(14),(18),(23),(34),(49),(89)
x;=(13),(19),(24),(48)
x,=(08),(09),(25),(35)

w, =(28),(39)

w,=(29),(38)
x,=1(0123),(0124),(0134),(0234),(1458),(1459),(1589),(4589)
x,=(0125),(0158),(0345),(0459)
x3=1(0235),(0589)
x10=(0135),(0159),(0245),{0458)
x,,=(0145)
x,3=40148),(0149),(1245),(1345)
x1,=40189),(0489),(1235),(2345)

x5 =1(1234),(1489)
w,=1(0128),(0349),(1258),(3459)
w,=(0129),(0348),(1358),(2459)
ws=1{0138),(0249),(1259),(3458)
we=1(0139),(0248),(1359),(2458)
w,=(0238),(0239),(2589),(3589)

wg =¢0258),(0359)

wy=10259),(0358)
wo=(0289),(0389),(2358),(2359)

wy; =(1238),(1289),(2349),(3489)

wy, =(1239),(1389),(2348),(2489)
w,;=(1248),(1349)

wy,=(1249),(1348)

w,s=1(2389)

X,,=1(012345),(014589)
we=(012348),(012349),( 124589 ),( 134589)
w,,=1¢012358),(012589),(023459),(034589 )
wiy=(012359),(013589),(023458 ),(024589)
wio=<012389),¢023489),(123589), (234589 )
w,o=1{012458),(013459)

w,, =(012459),(013458)

w,, =(012489),(013489), (123458),(123459)
w,; ={023589)

w,e =(123489)

w,s ={01234589)
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—w6+A(wl+w]2+w13)+B(w2+w11+w14)

=—AX3'—BX2 > (3.44)
—w;tA(w,tw,tw Fwp)HB(w;;twy)
=—B(x,+x3), (3.45)
—wgt+ A(wy;+wegtw;y)+B(w, +ws+w,,)
=—Ax1—‘Bx6 3 (3.46)
—wyt+ A(w,+ws+wy)+B(w;+weg+w,,)
=—Ax1—Bx6 y (347)
—wptAwtw,ptws)+HB(w tw;,; tw,y,)
=—AX2—B)C18 I’ (3.48)
24w +2B (wytwg)=x,4—2Ax¢ , (3.49)
—wtAdw, tw,+w;;twy,)+B(w, tw,)
=—B(x,+x3), (3.50
‘-w17+A(w3+w4+w10+w22)+B(w5+w6)
=—B(x;+x,), (3.51)
—w;;+(A4 +Blw;twtw)=—(4+B)x,, (3.52)
—wgtA(wstwgtw,gtwy)+Blw;+w,)
Z—B(x1+x6) s (3.53)
—w;gt+ (4 +BNw;,tw,gtw,g)=—(A4+B)x,, (3.54)
—wytA(w, tw,ptwstwyy)+Bw;,tw,)
=—B(x2+x]3) y (3.55)
—wWyt A(w;+wgtwy)+Blw,+ws+wg)
=—Ax6—Bx1 ’ (3.56)
—wy +A(wytws+wy)+B(wy;twgtw,g)
:_AXG_BXI 5 (3.57)
—wy+tAw  twptwy)+B(w, tw,tws)
=—‘Ax18—Bx2 N (3.58)
—wy;+2A4(w;+wg)+2Bws=—2Bx, , (3.59)
—wys+2A4(wg+wg)+2Bw,;=—2Bxq . (3.60)

Investigation shows again, that to obtain a nonvanishing
determinant of the coefficient matrix, one needs
knowledge of six correlation solutions (in addition to the
already known 13 correlations). These are taken to be
w3, Wy, Ws, We, W, and wy,, where all are four-spin
correlations. The latter six correlations are presently cal-
culated by Pfaffian techniques thus enabling the system of
linear-algebraic equations to be solved exactly for the
remaining 19 unknown correlations.

As results, the graphs of pair correlations (five shortest
distances) versus reduced temperature T /T, are shown in
Fig. 3. Beginning at unity saturation values, all correla-

1.0 T T T T T T T T

0.8 b

0.6 1

0.4t -
L X, 4

Pair correlations
T

0.2 Xq X, B

o O — 1 1 1 1 1

"0.4 0.8 1.2 1.6 2.0 2.9
T/ T,

FIG. 3. Exact solutions for pair correlations of the square Is-
ing model as functions of the reduced temperature
K./K(=T/T,), where K,=1In(V2+1)=0.44068..., and
where, in order of increasing radial distance x,=(01),
x,=(05),x;=(07),x,=(16), and w, =(28).

tions are continuous monotonically decreasing functions
of temperature tending to zero at high temperatures. At
the critical temperature 7 =T,, there is in each case a
vertical inflection point as a weak singularity of energy
type elne, where e=|T —T,|/T.. As expected, the
curve for the nearest-neighbor pair correlation x, (ener-
gy) forms an upper envelope for all even-number correla-
tion curves.

In addition, the seven shortest-distance pair correla-
tions are plotted in Fig. 4 as functions of radial distance
at three different temperatures T /7,.=0.9580, 1.0000,
and 1.1017, where these graphs reveal monotonically de-
creasing behavior versus radial distance, which agree and
extend upon the results of Kaufman and Onsager® who
plotted the five shortest distance pair correlations as
functions of radial distance.

Next, four multispin correlations are plotted as func-
tions of reduced temperature. These are select pair-,
quartet-, sextet-, and octet-correlations (see Fig. 5). As

1.0 T T T T

Pair correlations

o
N
T
1

0. - 1 1 1
° 1.0 1.5 2.0 2.5 3.0 3.5

R/a

FIG. 4. Exact solutions for the pair correlation of the square
Ising model as functions of relative radial distance R /a (a being
lattice spacing) at three different temperatures: curve a,
T/T,=0.9580; curve b, T /T, =1.0000; curve ¢, T/T.=1.1017.



4404 M. KHATUN, J. H. BARRY, AND T. TANAKA 42

0.8

o
o

Select correlations
o
H

0.2

FIG. 5. Exact solutions for select even-number correlations
of the square Ising model as functions of the reduced tempera-
ture T/T,, where x;, ={01), w;=(0128), w,,=¢012348 ), and
w,s =(01234589).

expected, all correlations are continuous monotonically
decreasing functions of temperature and have the same
types of qualitative behavior as the nearest-neighbor pair
correlation.

The exact solutions for the correlations defined upon
each of the eight-site clusters previously shown in Fig. 2
offer two examples of essential-type degeneracies. From
the systems of linear-algebraic equations, one can im-
mediately establish by inspection [see Egs. (3.7), (3.10),
(3.52), and (3.54)] that

X7=X19 W;7=Wpg » (3.61)

where the former (latter) is between quartet (sextet) corre-
lations. As is easily seen in Fig. 6, these essentially de-
generate correlations are geometrically inequivalent, but,
in fact, their values are identical for all temperatures (or

i 5 (a)
2@ o) 2 T =
3 6
<0l25> <0I135>
18 (b)
| 5 9 _ -*
2e 5 4 s
3e 'y
<0l2358> <0I2359 >

FIG. 6. Diagrammatic illustrations of essential-type degen-
eracies, specifically, twofold degeneracies between (a) quartet
and (b) sextet correlations.

for all values of dimensionless interaction parameter).
Moreover, superimposing Figs. 3 and 5 reveals an
accidental-type (crossing point) degeneracy between the
correlations w, and w;. A complete statistical-
mechanical theory of degeneracies for multispin correla-
tions does not yet exist.

The present method and its success for determining
large numbers of exact solutions for Ising correlations
offer some insights for further advances along similar
directions. For example, in the calculational systematics,
choosing a spatially compact cluster of sites whose asso-
ciated correlations appreciably overlap presently known
correlations would appear to be a desirable strategy since
one then needs to handle fewer unknowns, thus raising
more favorable expectations concerning closure and
linear-independent requirements.

IV. SUMMARY AND CONCLUSIONS

The present theoretical investigations have developed
and demonstrated a method for obtaining large numbers
of exact solutions for n-site (n-even-integer) localized Is-
ing correlations on the square lattice. Combining usual
Pfafian techniques with linear-algebraic systems of corre-
lation identities, the method is reasonably straightfor-
ward with computer aid and indeed much simpler and
more fruitful than using Pfaffian procedures exclusively.
Some of the successes are evidenced by the facts that six-
ty (exhaustive in number upon each of two eight-site clus-
ters) exact solutions were determined and the eight-site
correlation solutions are, to our knowledge the first of
that order to be explicitly evaluated for an Ising model on
any regular planar lattice. In addition, since the square
lattice is “loose-packed,” it should be mentioned that ex-
act correlation solutions for the square Ising antifer-
romagnet can now be obtained by merely inverting the
appropriate ferromagnetic solutions.

Upon examining a typical system of linear identities in-
volving all correlations defined upon a given cluster of
sites, one most often finds that linear independence is a
more elusive algebraic property than closure. Conse-
quently, one secures a linearly independent subset of
equations by searching for and then calculating a selec-
tion of the unknown correlations by Pfaffian methods
thereby reducing the number of unknowns in the original
system. Any resulting subset (or subsets) of linearly in-
dependent equations can then be solved by standard
linear algebraic and related numerical procedures.
Significantly, the entire search and numerical analyses
were made highly efficient and benefited from an original
Fortran program designed to find and triangularize an
appropriate coefficient matrix which circumvented enor-
mously large combinatorics and entailed very short com-
puter time.

Generally, if a very large sample set is assembled for
scientific observation, one may hope to uncover some spe-
cial features not discernible within a small sample set.
However, for the case of even-number correlations of pla-
nar Ising models, it has been difficult in practice to obtain
large numbers of exact solutions since conventional
Pfaffian techniques involving rather complicated expres-
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sions of elliptic integrals and Toeplitz determinants be-
come progressively lengthy and very laborious as either
the numbers of sites under consideration or the distance
between these sites increase. The methods of the present
paper have succeeded to a sizable extent in traversing this
calculational impasse enabling new correlation informa-
tion to be explored for the square Ising model in zero
magnetic field (“Onsager lattice”). As illustrations, be-
sides the anticipated behaviors that Ising model even-
number correlations are continuous monotonically de-
creasing functions of temperature exhibiting weak
(energy-type) singularities at the critical temperature, ex-
amples of both essential- and accidental-type degenera-
cies are exposed upon examining many exact correlation
solutions. Although these occurrences of degeneracies
have strictly only been established here for the square Is-
ing magnet, one can likely infer similar incidents for oth-
er lattice structures.

Allying the types of procedures in the present paper
with extended transformation theorems (extended in the
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sense that the theorems are applied beyond partition
functions to multisite correlations), exact solutions have
also been obtained for Ising-model correlations on other
planar lattices'® (regular and irregular) and these results
along with some examples of applications have been pub-
lished.!® Notably, therefore, the present and previous re-
sults'® now enable exact solutions to be obtained in an
efficient and systematic manner for Ising localized even-
number correlations upon all two-dimensional regular
lattices (honeycomb, square, kagomé, and triangular) as
well as upon their bond-decorated (irregular) lattices.
With such availability of exact solutions for localized Is-
ing correlations (magnet, lattice gas, binary alloy, etc.) on
various planar lattices, there are, in fact, some interesting
and informative thermal quantities, both in equilibrium
and nonequilibrium, which are largely local in their char-
acter and which can now be more thoroughly investigat-
ed and compared upon different planar lattice structures
with perhaps some special and diverse effects of their own
to reveal.
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