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Magnetization process of a disordered phase in a mixed-bond spin-1 Ising ferromagnet
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The magnetization process of a disordered phase (or the S7=0 state) in a mixed-bond spin-1 Ising
ferromagnet on a honeycomb lattice is investigated by use of the effective-field theory with correla-
tions. We find that it exhibits a characteristic phenomenon similar to, but with an important
difference from, that of the standard Blume-Capel model.

I. INTRODUCTION

In the past few decades the magnetic properties of
binary random-substitutional alloys have been intensively
investigated from bond and site perspectives. The bond
model considers all lattice sites to be equivalent, but the
interaction energy between each pair of adjacent sites is
randomly assigned one set of possible values. In the site
model the lattice sites are randomly occupied by two
different species of magnetic ions, and the interaction be-
tween two ions is determined entirely by the species of
these ions. However, most works have not discussed the
effects of negative crystal-field interactions on the mag-
netic properties.

On the other hand, the spin-1 Ising model with a nega-
tive crystal-field interaction is described by the following
Hamiltonian:

H=— 3 J;S;S;+D 3 (SH)?, (1)
(1, /) i

where the first summation runs over all pairs of nearest
neighbors and J;; and D (D> 0) are respectively the ex-
change interaction and the crystal-field parameter. The
model Hamiltonian, which is often called the Blume-
Capel model, "? has been studied in some detail, using a
variety of methods.!™® It is well known in the system
that there exists a tricritical point in the phase diagram at
which the phase transition changes from second order to
first order, when the crystal-field interaction takes on a
large negative value.

The purpose of this work is to investigate the effects of
crystal-field interaction on transition temperature and the
magnetization process in a mixed-bond Ising ferromagnet
by the use of the effective-field theory with correlations
(EFT).> Accordingly, the exchange interaction J;; in (1)
is assumed to be randomly distributed by an independent
probability distribution function p(J;;). In Sec. II, we
briefly present the basic framework of the EFT in a
honeycomb lattice. In Sec. III, a phase diagram of the
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mixed-bond Ising ferromagnet with a coordination num-
ber z=13 is obtained for zero field. A disordered phase (or
the S7=0 state) is found in a concentration region of
mixed bonds, when the value of D becomes large. In Sec.
1V, the magnetization process in the disordered phase is
examined. We find some interesting phenomena for the
field dependences of magnetization and quadrupolar mo-
ment in the disordered phase.

II. FORMULATION

We consider a mixed-bond ferromagnetic Ising system
in a honeycomb lattice. The Hamiltonian is given by

H=—3J,;S!S;+D 3 (S}¥—H Y S7, )
(i,7) i i
where H is the applied magnetic field and S? can take the
values, =1 and 0. D is taken to be positive.
As discussed in the previous work,® within the EFT,

the averaged magnetization for the honeycomb lattice
with z=3 is given by

m={{57)),
=[g{cosh(J,;V)),+m (sinh(J;V)),
+1—gPF(x +h)|, - 3)
with
2 sinh(Bx)

x)= 2 cosh(Bx)+exp(BD) ’ @

where [B=1/kyT, h=BH, and V=d/dx is the
differential operator. ( --- ), denotes the random-bond
average for p(J, ). The parameter g is defined by
g =({(S?)*)),. The quadrupolar moment is given by

g =[g{cosh(J,,V)), +m(sinh(J;V)),
+1—¢1*G (x +h)|, (5)
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_ 2 cosh(Bx)
Gix) 2 cosh(Bx)+exp(BD)

By expanding the right-hand side of (3) and (5), they
can be described as

m=A,(9)+34,(¢)m +34,(q)m>+ A, (gm*, (7)

(6)

g =B,(q)+3B,(q)m +3B;(g)m*+B,(qg)m* , (8)
with
A,(q)=¢°K,+3qH1—q)K,+3q(1—q)’K,
+(1—¢)’’K, ,

A,(9)=¢’Ks+29(1—g)Ks+(1—¢’K; ,
A;(q)=qKs+(1—¢qg)K, ,
A q)=K,, ,

where B;(g) (i =1-4) can be given by replacing the
coefficients K; in (9) with L; (i =1-10). The coefficients
K; (i=1-10) and L; (i =1-10) are given in the Appen-
dix. For H=0, we can easily prove that 4,(q), 4(q),
B,(q), and B,(q) reduce to zero, by using that
Beven VIF(x)|, —g=0 and ¢44(V)G (x)|, —o=0, which is
valid for any even and odd functions ¢(V).

For H=0, as discussed in the previous work,® in the
vicinity of the second-order phase transition line, the
averaged magnetization can be given by

1—a

2

= 1

m b (10)

The second-order transition line can be determined by
a=1 (11)

in the expression (10). In the vicinity of the second-order
phase transition line, the right-hand side of (10) must be
positive. If this is not the case, the transition is of the
first order, and hence the point at which

a=1 and b=0 (12)

is the tricritical point. Here, the expressions of ¢ and b
for the present system can be easily derived by using the
previous framework.?

III. PHASE DIAGRAM FOR H =0

For the latter discussions, let us show a phase diagram
for the mixed-bond ferromagnetic Ising ferromagnet
where the probability distribution function p (J;;) is given
by

P =p8(J,; —J ) +(1—p)8(J,;—J,) . (13)

We assume that J, >J, >0 without loss of generality and
introduce a parameter

a=-—" (14)

By solving the relations (11) and (12) numerically, the
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phase diagram of the system with z=3 and a=0.5 is de-
picted in Fig. 1, changing the value of D. For the system
with p=1.0 (or the standard Blume-Capel model), it is
well known that the transition temperature at D=0 is
given by, within the EFT,
k2T _ 5101 (15)
Jy '

and the tricritical point is obtained at the values
(kgT,=0.68J, and D,=1.42J,). These values can be
compared with those obtained from other approximate
methods (see Tables I and II in Ref. 6). Furthermore,
from the energetic point of view, at 7=0 K the system at
p=1.0 may exhibit two equivalent ferromagnetic ground
states (S/==1) for D/J,<1.5 and one ground state
(Sf=0)for D/J,>1.5.

Since J, =0.5J, the transition temperature 7, and the
tricritical value D, for the system with p=0 in Fig. 1
should be given by the half values of T, and D, at p=1.0.
The system at p=0 is in the S7=0 state, when the value
of D becomes larger than D =0.75J,. In fact, the figure
shows that the conditions are really satisfied. For the
curves with D =0.8J, and J,, there are no solutions
satisfying the conditions (11) and (12) in the regions near
p=0.0; it means that T, =0 in the region and the ground
state is the S7=0 state.

In Fig. 1 the solid circles denote the tricritical point.
The dashed line parts express the first-order phase transi-
tion, below which the system may be in the S7=0 state.
In the figure, for the curve with D=0.0 (or D =0.5J) the
effect of mixed bond on the phase diagram exhibits a
weak downward curvature instead of the linear interpola-
tion (dot-dashed curve) between p=1 and p=0. This is

FIG. 1. The change of T, vs p for the mixed-bond spin-1 Is-
ing ferromagnet with z=3 and @=0.5, when the value of D is
changed. The solid circles and dashed lines express the tricriti-
cal points and the first-order transition, respectively.
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consistent with some general discussions of phase dia-

gram for quenched random-bond systems with D =0;%'°

the phase diagram should show a weak downward curva-
1

ture.

IV. MAGNETIZATION PROCESS

As shown in Fig. 1, when the value of D takes a large
value, the transition temperature reduces to zero in the
region of p near p=0 (see the curves of D =0.8J, and
D =J,). In order to examine the physical content of the
disordered phases, the magnetization process is examined
in this section, especially by solving the coupled equa-
tions (7) and (8) numerically for the systems with p=0
and p=0.2.

Figure 2(a) shows the magnetization process for the
system with p=0.0, D =J, and a=0.5. As noted in Sec.
II1, the system is in the S7=0 state at T=0 K, since
D =J, is larger than the critical value D =0.75J,. Asis
seen from the figure, m at k3T =0.05J, expresses a first-
order transition at a critical field H, (H,=0.25J,) from
m =q=0 to m =g=1. The gap width Am where the
value of m becomes discontinuous at H./J,=h* de-
creases with the increases of 7. In Fig. 2(b), the thermal
variations of Am and h* for the system are also depicted.
Am decreases rapidly to zero, when the value of T be-
comes larger than kzT =0.15J,. By contrast, the value
of h* is nearly fixed at A*=0.25. These behaviors are
very similar to those usually found in metamagnets. The
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same phenomena can be also obtained for the system with
p=1.0 (or the standard Blume-Capel model), when the
value of D becomes larger than D =1.5J.

On the other hand, the magnetization process of the
system with p=0.2, @=0.5, and D =J, (being also in the

=0 state) is shown in Fig. 3(a), changing the value of
T. At kgT =0.05J,, the magnetization (or the quadru-
polar moment) changes discontinuously from m=0 (or
qg=0) to m=1 (or ¢g=1) at the critical field A*
(h*=0.06). In contrast to Fig. 2(a), the critical field 4 *
exhibiting the discontinuity of m clearly depends on the
value of T as well as p. In Fig. 3(b), the variation of A *
versus p is depicted at the fixed temperature kT
=0.05J,. Asis seen from the figure, the value of 4 * rap-
idly reduces to zero, when the value of p increases from
p=0.0.

Comparing Fig. 3(a) with Fig. 2(a), we find that the
magnetization process in the S?=0 state (or the disor-
dered phase) of the mixed-bond Ising ferromagnet is
different from that for p=0 (or p=1). In order to show
the difference more clearly, the thermal variations of Am
and h* for the system with p=0.2, «=0.5, and D =/J,
are depicted in Fig. 4. Am also decreases rapidly to zero,
when the value of T becomes larger than kzT =0.15J,.
However, the behavior of 2* in the system is completely
different from that of Fig. 2(b); For the value of T
larger than kg7 =0.2J,, h* takes the constant value
(h*=0.13). With decreasing T, on the other hand, h*
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FIG. 2. (a) Magnetization processes in the S7/=0 state of the system with p=0, «=0.5, and D =J,, when T is changed as
ks T =0.05J,, 0.2J,, and 0.4J,. (b) Temperature dependence of #* and Am at the point where magnetization exhibits a discontinui-

ty.
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FIG. 3. (a) Magnetization processes in the disordered phase (the region with 7, =0 in Fig. 1) of the system with p=0.2, a=0.5,
and D =J, when T is changed as k3T =0.05J,, 0.25J,, and 0.5J,. The dashed lines express the field dependences of q. (b) The
change of & * vs p for the system of Fig. 3(a) at a fixed temperature kz T =0.05J,.

FIG. 4. The temperature dependences of Am and h* for the
system with p=0.2, a=0.5,and D =J,.

decreases almost linearly with 7T in the region
(0.02J, <kpT <0.08J,). When T becomes smaller than
0.02J,, it is difficult to determine the value of 4 * because
of the large numerical errors, although it seems to go to
zero at T=0 K. Thus, the magnetization process in the
disordered phase of the mixed-bond spin-1 Ising fer-
romagnet with p=0.2 exhibits a characteristic behavior.
As is seen from Figs. 3(a) and 4, it is different from that
of p=0.0 (or p=1.0) shown in Fig. 2.

V. CONCLUSIONS

In this work, we have examined the magnetization pro-
cess of a disordered phase in a mixed-bond spin-1 Ising
ferromagnet with the use of the effective-field theory with
correlations. We find that it exhibits characteristic phe-
nomena similar to, but with an important difference
from, that of the Blume-Capel model for p=0.0 and
p=1.0, as shown in Figs. 2, 3, and 4. As far as we know,
such behaviors have not been discussed, although the re-
sults in Fig. 2 are very similar to those usually found in
metamagnets.

In this work, the effective-field theory with correlations
has been applied to the present problem. It is based on
the decoupling approximation, namely

(SHSEP. . .SPY=(SH(SFP)...(SP)

for j*k=...= /I, which appears in the expression of an
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exact Ising spin identity.»® Because of this fact, the
present framework essentially corresponds to the approx-
imation of Zernike theory in the spin-1 Ising model. '
Very recently, Kaneyoshi'® has developed a new theory
of spin-1 Ising systems in which the multispin correlation
functions can be exactly treated when the concept of
correlated effective-field introduced by Lines!* is applied.
Comparing the results of both theories, the present
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framework gives reasonable results to the Blume-Capel
model and is superior to the standard mean-field theory.

Finally, for crystalline alloys there is surprisingly little
experimental data to compare with the present results.
We hope that this work will stimulate further experimen-
tal and theoretical work on the magnetic properties of al-
loys.

APPENDIX

The coefficients K; (i =1-10) in (9) are given by
K, =[{cosh(J;V)),P’F(x +h)|, -,
K,=[{cosh(J;V)),’F(x +h)|, , ,
K3={(cosh(J;;V)) F(x +h)l, -,
K,=F(h),
Ks=(sinh(J;V)),[{cosh(J;V)),PF(x +h)l, ¢ ,
K¢=(sinh(J;V)),{(cosh(J;V)) ,F(x +h)|,—, ,
K7=(sinh(J,-jV)>,F(x +h)l =0,
Ky =[(sinh(J,;3)),]*{cosh(J;V)) F(x +h)l, —,
Ko=[{sinh(J;V)),PF(x +h)|, =,
K o=[{sinh(J;V)),PF(x +h)l,—,
with
(cosh(J;;V)),=p cosh(J,V)+(1—p)cosh(J,V)
(sinh(J;;V)),=p sinh(J,V)+(1—p)sinh(J,V) ,

where the coefficients can be easily calculated by using a mathematical relation eV f (x)=f (x +a).
The coefficients L; (i =1—10) in B, are given by replacing the function F(x) in (A1) with the function G (x).

IM. Blume, Phys. Rev. 141, 517 (1966).

2H. W. Capel, Physica 32, 966 (1966).

3T. Kaneyoshi, J. Phys. C 19, L557 (1986); T. Kaneyoshi and H.
Beyer, J. Phys. Soc. Jpn. 49, 1306 (1980).

4D. M. Saul and M. Wortis, in Magnetism and Magnetic Materi-
als (Chicago, 1971), Proceedings of the 17th Annual Confer-
ence on Magnetism and Magnetic Materials, AIP Conf. Proc.
No. 5, edited by D. C. Graham and T. J. Rhyne (AIP, New
York, 1972).

SB. L. Arora and D. P. Landau, Magnetism and Magnetic Ma-
terials (Chicago, 1971), Proceedings of the 17th Annual
Conference on Magnetism and Magnetic Materials, AIP
Conf. Proc. No. 5, edited by D. C. Graham and T. J. Rhyne

(AIP, New York, 1972).

SA. F. Siqueira and L. P. Fittipaldi, Physica A 138, 592 (1986).

L. Samaj, Phys. Status Solidi B 149, 6755 (1988).

8S. A. Janowsky, Phys. Lett. A 134, 131 (1988).

9H. Falk and G. A. Gehring, J. Phys. C 8, L298 (1975).

10M. F. Thorpe and A. R. Mcgurn, Phys. Rev. B 20, 2142
(1979).

1IR. Honmura, A. F. Khater, L. P. Fittipaldi, and T. Kaneyoshi,
Solid State Commun. 41, 385 (1982).

12F, Zernike, Physica 7, 565 (1940).

13T. Kaneyoshi, Physica A 164, 730 (1990).

14M. E. Lines, Phys. Rev. B9, 3927 (1974).



