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Spin dynamics and the delocalization of hole quasiparticles
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Hole motion through a Heisenberg antiferromagnet is examined using a restricted set of spin
configurations to describe the spin distortion around the hole. The hole induces spin singlets, not
ferromagnetism at the (magnetic) Brillouin-zone boundary. An inherently many-particle band
structure is found. Each band is associated with a different spin distortion around the hole. Most of
the bands are found dispersionless, in agreement with photoemission data from the high-

temperature superconducting cuprates.

I. INTRODUCTION

A first step in understanding the role of antifer-
romagnetism in the oxide superconductors is the charac-
terize the quasiparticles that are formed when the parent
compounds (e.g., La,CuO,) are doped with a dilute gas of
holes. In this paper we provide such a characterization
by calculating the correlated band structure (instead of
one band there are 17) of the quasiparticles, and examin-
ing their wave functions, revealing the nature of the local
spin distortion around the hole. The resulting informa-
tion will be useful in constructing models of interacting
quasiparticles to examine magnetic or superconducting
instabilities.

The simplest model that captures some of the physics
of the Cu-O planes is the “¢-J”" model,"? which contains
both mobile holes and a Heisenberg spin system. (The
model may either be regarded as a canonically
transformed Hubbard model® or as an effective model re-
sulting from consideration of Cu and O sites explicitly>*.)
The holes are implicitly coupled to the spins (since they
are displaced as the holes move).

There are three levels of complexity of treatments of
the t-J model. Firstly, the antiferromagnetism of the
spins may be ignored, then the ground state is ferromag-
netic, at least as a square lattice,” and the excitations
were considered by Brinkman and Rice.® Secondly, the
Ising part of the antiferromagnetic exchange may be in-
corporated so that antiferromagnetism remains (at low
enough doping). A single hole becomes spin polaronic,
extending over a region of divergent extent as the ex-
change constant tends to zero. From the investigation of
a previous paper (Simons and Gunn’) the following pic-
ture of the hole quasiparticle in the Ising case emerged:
The hole, displacing a “string” of spins behind it as it
moves, yields a linear potential, confining it to its “initial
site.” The quasiparticle is localized around a particular
site and there are excitations which increase the average
length of “string.” Trugman® demonstrated that there
are special trajectories for the hole (“Trugman cycles”)
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which allow the hole to move between neighboring sub-
lattice sites, without leaving a string, yielding a rather
small bandwidth for the hole (ca. 10% of the full band-
width). Furthermore, it was demonstrated in our previ-
ous paper’ that, as well as the excitations which change
the arclength of string, there are additional excitations
where spin configurations of the same string length were
weighted with different phases. It was suggested that
these states dominate the optical absorption.

Finally, the ¢t-J model may be treated fully by adding
the transverse (XY) coupling of the spins, giving the spin
system its own dynamics and restoring rotational symme-
try. Several works’~!? have been published recently in
this area, deriving the spectral weight of the quasiparticle
Green’s function and arguing that the resulting band-
width was of order the exchange constant J. [Gros and
Johnson found the bandwidth was ~t(J/1)?/3"] One
difference between the treatments was the representation
of the spin operators: Holstein-Primakoff bosons,’
Schwinger bosons,'” and fermions.''

Although the Green’s-function treatments of inclusion
of the spin dynamics are likely to give a good account of
certain aspects of the hole motion, they do not readily
provide the information that a wave function would pro-
vide, on the nature of the short-range distortion of the
spin system. In this paper we provide such a complemen-
tary treatment, using a variational approach which
displays the preferred spin configurations associated with
the short-range distortion. It allows us to investigate the
k dependence of this distortion and shows what remnants
there are of the excited states of the Ising limit studied in
the previous paper (Simons and Gunn’). The effect of
spin dynamics on hole propagation has also been investi-
gated variationally, choosing a spin-wave expansion to
describe the background Néel order (Sachdev'?).

The variational basis allows only spin flips (or spins
displaced by the hole motion) a certain distance (=2 lat-
tice parameters) from the “quasiparticle position.” This
distance is large enough for the transverse coupling to
yield a finite effective mass, but small enough that much
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of the problem may be solved analytically exactly. In
fact, starting with a basis set of 17 states, we are left with
only a 4 X4 secular equation to solve approximately. Re-
cently, based on the same prescription of defining basis
states by damaging the region of Néel order around a
hole, Trugman12 has used a larger basis of states to con-
struct the Green’s function for a hole in an antiferromag-
net. However, the analysis relies on computation and as
such does not provide an analytical description of many
of the properties described here.

The plan of this paper is as follows: Section II intro-
duces the variational basis set, Sec. III reduces the prob-
lem to 4X 4 secular equation and comments on the nature
of the other 13 bands, Sec. IV focuses on the lowest band
and its wave functions, Sec. V examines the spin distor-
tion and its k dependence, and finally we discuss and con-
clude in Sec. VL

II. INCORPORATION OF SPIN DYNAMICS

In this section we introduce the variational basis
tailored to answering the following questions: What is
the short-range spin distortion around a hole? How does
this affect the effective mass? Conversely, the basis will
not allow a discussion of the long-range part of the spin
distortion'*!® and, as will become apparent, the long-
wavelength spin waves.

The Hamiltonian we wish to consider is the ¢-J model
(Anderson'” and Zhang and Rice*'®)

H=—1t 3 [(1=n e, (1—n )+ He]

(ijYo
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Here (ij ) denotes near-neighbor sites on a square lattice.
We have allowed the magnetic exchange to be anisotropic
so that, for purposes of interpretation, we can turn off the
spin dynamics by letting a —0, yielding an Ising model.

The variational basis is based on the Ising limit, where
the spin distortion caused by the hole, at least for J /t 2 1,
is well understood. There, a hole placed in a Néel state
becomes, to a first approximation, a localized quasiparti-
cle.” The “trapping” potential arises from the increase of
the exchange energy due to the hole’s motion: as it
moves the hole displaces spins from the Néel state, there-
by increasing its energy —growing roughly linearly with
the distance it has traveled. This “string” of displaced
spins confines it to the vicinity of the site on which it was
placed. (Here we neglect the effect of the special
configurations investigated by Trugman,® which allows
the hole to weakly delocalize. This effect will be
insignificant in comparison to the effects of the transverse
coupling that we will include.)

The transverse (to the direction of the sublattice mag-
netization) coupling of the spins allows a pair of displaced
spins to flip, and hence regain their orientations in the
Néel state. This provides a mechanism for the string of
displaced spins to relax and hence for the quasiparticle to
move. Of course, the process may occur in the reverse
order, where the spin flip occurs first and the hole motion
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second. This picture suggests the variational basis that
we will use: with each site we associate a set of states
with string lengths of zero, one, and two lattice parame-
ters. (This basis set should be sufficient if the string ten-
sion is not too weak; we will return to consider how real-
istic this is presently.) As the transverse coupling is in-
creased the degeneracy of these states is lifted and they
become bands of Bloch states. Physically, we may inter-
pret this procedure as the variational basis allowing a
description of the “internal structure” of the quasiparti-
cle and the incorporation of the transverse coupling al-
lowing mobility.

Throughout this paper we will assume that the back-
ground Néel order remains intact. Clearly this assump-
tion is not valid when there is more than one quasiparti-
cle, however, providing the hole experiences at least
short-range Néel order (the doping is not too high), we
may hope to determine the short-wavelength behavior of
the hole quasiparticle.

To construct the basis explicitly, let us review a num-
ber of results from the previous paper. We showed that
the configuration space for the hole trajectories is a Bethe
lattice with each site corresponding to particular hole po-
sition and spin arrangement. The ‘‘generation number”
of the lattice is the arc length of the trajectory. Since we
are treating the limit of high string tension, the hole
quasiparticles are well represented by including only the
low generations of the lattice—as mentioned above, we
choose to truncate after the second generation. This
leads to a basis set of 17 states per site, corresponding to
the Néel state with the hole sitting on the site and 16
disordered spin configurations generated by the hole
moving up to two lattice parameters away. The truncat-
ed Bethe lattice forms a Cayley tree of depth two.

We may now see how this choice of basis set, while
describing the short-range spin distortion adequately,
cannot describe the long-range part. It does not include
the possibility of displaced spins farther away than two
sites and hence does not allow for spin fluctuations, due
to the transverse coupling farther away either. Thus,
spin waves and the long-range distortion are not handled
well.

We denote the sites, on the tree, by their generation
number, 1, and a set of ‘‘sibling” numbers, {i}, which
determine which pattern of branches of the Cayley tree
have to be followed to reach the site. The corresponding
state is |n,{i} ). The generation numbers are chosen to
be —1 on the central “site” of the tree, O for the strings
of length one, and 1 on the outer generation. The actual
assignation of a particular sibling number to each state of
a given generation is arbitrary and it is not necessary to
make a particular choice. The allowed values of the sib-
ling numbers are 0 <i, <& —1, where

‘(Z—l), n>0,
gi,='Z, n=0,
1, n=—1.

To investigate the behavior of the quasiparticles with
higher dimensionality we have incorporated a general
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coordination number for the underlying lattice, Z. For
the case of a square planar lattice the coordination num-
ber is four.

In terms of this basis set, the Hamiltonian has three
terms: hopping between different generations of the tree
on a given site, the string tension ‘“‘potential”, and hop-
ping between neighboring trees caused by the transverse
coupling. (It should be noted that the transverse cou-
pling has no other effects within the basis set that we
have chosen.) It is easy to see that only states on a given
sublattice are connected. Thus, we will restrict our treat-
ment to one sublattice. Explicitly,

— 3

nCHi DR

(In;{i};RY{n+1;{j};R|+ H.c.)

+ i V,In; iR (n; i} R]

nfiJR

+—"i27— S (= LR+{i]D(L (iRl + Hee) . (2.3)
[ijR

Here we have used the hopping integral as the unit of en-
ergy. The ratio J/t describes the relative strength of the
trapping potential imposed by the Ising coupling of the
spins, and we will refer to it when loosely talking of the
“string tension,” 7. The vector R denotes the position of
the magnetic sublattice site (on the real lattice) to which
the Cayley trees are attached. The potential, V, due to
the hole scrambling the spin configuration from the Néel
state, is given by

[(Z—2)n +(Z—1)]%, n>0,

Va=lo, n=—1. (2.4)

We see from the last term in (2.3) that the effect of the
transverse coupling is to provide matrix elements be-
tween second generation sites on one tree and the origin
of the neighboring tree. Given the translational invari-
ance of the underlying lattice, we define Bloch states,
formed from the Cayley tree states from each sublattice
site, by the following;

|n;§i};k)=71——J\7%e““kln;{i};R), (2.5)

where the sum runs over all the sublattice sites. The total
number of sublattice sites in the lattice is given by WN.
Since only states on a given magnetic sublattice are con-
nected, it is more natural to work in the magnetic Bril-
louin zone. Thus, let us define the new cell parameter,
@=V2a and new coordinate axes in k space,
k,=(k,+k,)/V2 and k2=(ky—kx)/\/2. If we substi-
tute (2.5) into (2.3) we see that the Hamiltonian becomes

n{itljik

+ i V,In;{i};k)(n;{i};k]
nlilk

+ 20 S (e = )L fifsk + Hee) . 26)
filk

(In;{i};k)<(n +1;{j};kl+ H.c.)

J. M. F. GUNN AND B. D. SIMONS 42

We may see immediately that the “internal” structure
of the polaron is momentum dependent, due to the k
dependence of the matrix elements coupling the states
from different generations. In general, the degeneracies
associated with the uncoupled Cayley trees are broken,
although as we will see in the next section a substantial
number of (less obvious) degeneracies occur.

III. SOLUTION

The eigenstates of the Hamiltonian (2.6) form bands, as
expected from the translational invariance of the prob-
lem; however, the bands are not of a single-particle
nature—as may be seen immediately by noting that there
are 17 states per sublattice site. This abundance of bands
is due to the necessity of describing the spin distortion as
well as merely the hole position. Remarkably, only 4 of
these bands disperse and it is the main aim of this section
to comprehend why the other 13 bands remain flat.

A particularly concise representation of the secular
determinant, associated with the band-structure calcula-
tions, is the graph of the Hamiltonian matrix shown in
Fig. 1. (This is particularly valuable when dealing with
such a large matrix.) There, each node in the graph cor-
responds to one state [in this case the Bloch states defined
in (2.5)] and each link corresponds to a nonzero matrix
element, between the states associated with the appropri-
ate nodes, in the Hamiltonian. The nodes and links have
energies associated with them, corresponding to the diag-
onal and off-diagonal elements of the Hamiltonian, re-
spectively. Our diagonalization of the Hamiltonian will
rely heavily on this description.

We will now introduce a simple result which will great-
ly aid the manipulation of the Hamiltonian into a tract-
able form. Consider the Hamiltonian associated with a
very simple graph (we will refer to this as the ‘“tight-
binding star” or TBS): one ‘“‘central” site coupled to M
others, which are not coupled to each other. We denote
the sites by m, with the central site being m =0. The en-
ergy of the central site may be different from that of the
other sites, which are assumed to have the same energy.
However, we allow the matrix elements that couple the

FIG. 1. The graph of connectivity of the Hamiltonian when
expressed by means of the Bloch representation. Nodes with
the same “on-site” energy are shaded in the same way. The
bold lines indicate the momentum-dependent off-diagonal ma-
trix elements.
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central site to the others to be arbitrary, h,,. The Hamil-
tonian is

M M
H,=¢ 3 [m)m|— 3 {h,|m)0[+h%0)(ml} .
m=1 m=1
3.1

The eigenstates are of two types: those which have a
nonzero amplitude at the central site (of which there are
two), and those which do not (of which there are M —1).
The eigenvalues of the first type, E’, are determined by

h*-h
El—¢
(Here we have defined a vector h using the 4,, as com-

ponents.) The second type all have E I=¢. If the eigen-
vectors of type X (=1 or I) are taken to be of the form

WO =00+ S eXim)

m=1

=E'.

(3.2)

(3.3)

then the eigenvectors corresponding to the above eigen-
values are determined by (defining ¥ using the com-
ponents ¢,,)

¥ _ h
N (3.4)
h*-¢'=0, x'=0. (3.5)

This may be interpreted geometrically: the eigenvec-
tors which have their energies changed by the coupling
have ¥ =« th (3.4) ( and will be called “parallel” from now
on) while the unshifted eigenvectors have ¥lh* (3.5)
(called “‘perpendicular”). A very important point, in the
light of what will follow, is that this simple result is des-
troyed if the site energies (of the noncentral sites) are

H=— 3

n{{al{B])k

+ 3 V,ni{alk)(n;{alkl+ S S (@l =1;0;k) (1;{a};k|+ H.c.) ,

nialk Lp

where the structure factors are given by

1 LI a
R . S— ekl ool tm
Vs v "

The Hamiltonian is represented by the graph in Fig. 2.
The effect of the transformation when applied to the Cay-
ley tree was to disconnect a one-dimensional branch of
the lattice in “momentum” space. However, here, since
the states at the second generation are connected back to
the central site, the transformation leaves the graph in
one connected piece. The benefit of the transformation is
that the graph is more like a TBS—it has only a single
loop instead of twelve.

For the sake of clarity, we will not perform the manip-
ulations explicitly in terms of algebra for the rest of this
section, but merely operate on the graph and quote the
final result. The graph has three distinct components: a
triangular loop, eight single legs, and three double legs.
We wish to turn this structure into one where we may ap-

(3.8)
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different. Then, the best that can be achieved is to group
the noncentral sites into sets with degenerate site energies
and apply the result to each group in turn. Finally, note
that, in general, ¥ may be a complex vector, for instance,
in the case where all 4, are equal, then the components
of 3 can be chosen as the powers of the Mth roots of uni-
ty.
The above result will be used on various subgraphs of
the graph of the Hamiltonian, with the aim of reducing
the entire problem to a simple TBS form. The first appli-
cation of the result is to generate a convenient initial
basis for the treatment of the Hamiltonian (2.6). (This is
treated more fully in our paper.’) Consider removing the
k-dependent links in the graph in Fig. 1: then we are left
with a Cayley tree. In that case, repeated use of the
above results’ to each node in the graph produced a
hierarchical solution, with the “y” being a member of the
set of “1,, > associated with the nodes of the previous gen-
eration. The hopping terms are all identical in this case,
so we may use the remark at the end of the last para-
graph. Thus, we find a basis set {|n;{a};k)}, where the
set of conjugate variables to the sibling numbers, {i}, the
“sibling momenta,” are {@;:0<i <n}=a. Explicitly,

|";{a¥;k>=——‘l— S "'wfl,;""'ln;{i};k% (3.6)

V'S, 1

Here, each member of the product of the powers of w’s
[win=exp(27ri /E%) are the appropriate roots of unity]
corresponds to the set of a’s for that level in the hierar-
chy. We have defined the normalization, S, =Z(Z —1)"
for n 20 and S_,=1. Expressed in terms of the new
basis states, the Hamiltonian is given by

& r1lln;{a};k)(n +1;(B,B,,=0};kl+ H.c.)

FIG. 2. The graph of the transformed Hamiltonian showing
the internal separation of the tree structure. The off-diagonal
matrix elements which are momentum dependent are denoted
by bold lines and those which have the same value are denoted
by wiggly lines. Nodes with the same “on-site” energy are shad-
ed in the same way.
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ply the TBS result directly. We may already do that to
the eight single legs, which have degenerate site energies.
To be able to apply it to the other two elements, we must
diagonalize the 2X2 matrices corresponding to the links
shown by wiggly lines in Fig. 2 present on the double-leg
component and the “cross link” in the triangular loop.
The resulting “bonding” and ‘‘anti-bonding” states are
each connected to the central site in Fig. 2, but not to
each other. The resulting graph is shown in Fig. 3(a). It
is important to realize that the hopping integrals associ-
ated with the wiggly links in Fig. 2 are all the same and
that the site energies at the end of the links are the same
from link to link: this implies that the site energies of the
legs resulting from the bonding states associated with
both the triangle and the double legs are degenerate, and
similarly for the antibonding states.

Thus, we now have a TBS with a central site and two
groups of four degenerate legs and one group of eight de-
generate legs. We may now form the perpendicular states
associated with each of these sets independently using the
result (3.5) (remember that the difference of the hopping
terms within a group does not affect this result), leaving
us with the diagonalization of the 4 X4 matrix represent-
ed in Fig. 3(b). Although this looks like a TBS, the site
energies of the legs are different and we must diagonalize

(a)

S

FIG. 3. (a) The graph of the Hamiltonian when transformed
to a “tight-binding star.” (b) The resulting connectivity of the
“parallel” states after the TBS transformation. All the off-
diagonal matrix elements are momentum dependent and nodes
with the same “on-site” energy are shaded in the same way.
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this problem directly.

We can now see why there are only four dispersing
bands: since all of the k dependent links emanate from
the central site, and hence are not involved in determin-
ing the energies of the perpendicular states, we are only
left with dispersion in states derived from three parallel
states attached to the central state.

The nondispersive bands fall into two classes, which
lead to states at three energies. Firstly, there are seven
degenerate states which are nonbonding corresponding to
the perpendicular combination of the states associated
with the single legs of Fig. 2 (i.e., the second generation)
having an energy

e=V, . (3.9
Secondly, there are the three (degenerate) bonding and

three (degenerate) antibonding combinations of states

which are perpendicular states from the triangle and dou-

ble legs (i.e., from the first and second generation) having

energies
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( Vo - Vl )2

4

VetV ,
="t +8& (3.10)

The characteristic equation for the spectrum of the
dispersive states is shown in (A15). The form of the
dispersion is found to depend only on the structure fac-
tor, ¢(k), defined in Appendix A. When the coordination
number Z is four, relevant to the two-dimensional case,
¢(k) is given by

k,a
2

(ﬁ(k)=l 4 cos? cos?

3

—1‘ . (3.11)

The form of the structure factor is natural: it is derived
from the sum over all the second-generation paths that
allow hopping between sublattice sites. Numerical calcu-
lations indicate no band crossing of the dispersive bands
as the string tension 7 is varied. The complete band
structure for 7=0.2 and depicting all the bands is shown
in Fig. 4.

When the dimensionality of the system diverges, the k
dependence vanishes and the states become nondisper-
sive. A hole introduced into such a system becomes lo-
calized in a quasiparticle. The energy of the quasiparticle
states scale as Z7. In the next section we will discuss the
behavior of the dispersive states for the two-dimensional
case and focus on the lowest band in various limiting re-
gimes.

IV. THE LOWEST BAND

So far we have been dealing with a single quasiparticle.
In this section we determine the role of the calculations
when there is a finite density of holes and focus on those
aspects which are useful then. The first point to note is
that we cannot merely “fill up” the bands to an arbitrary
Fermi level: the states are many body in nature as illus-
trated by the number of states. However, we can treat
the states in an approximately single-particle manner if
the holes are sufficiently dilute. A crude estimate of the
density, n., at which a gas of polarons is not a useful
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FIG. 4. The full quasiparticle band structure when 7=0.2. Note that ', k=(0,0); X, k=(7/a,0); and M, k=(7/a,w/a), where a

is the magnetic unit-cell parameter.

starting point is n, /¢S &, where £ is the “size” of the
polaron. (In the context of the moderate to strong string
tensions considered in this work, { =<5 lattice parame-
ters.) The numerical work mentioned at the end of the
last section implies that the dispersive bands never over-
lap. Thus, as the density is increased, the Fermi energy
rises in the lowest band reaching n, before any higher
quasiparticle bands are occupied. Thus, ground-state
properties (for n <n,) are determined primarily by the
lowest band, although excitations may probe the other
bands.

Since one aim of the present work is partly to act as a
basis for investigating Fermi-surface instabilities (either
magnetic or superconducting) of the quasiparticles, we
will focus, for the rest of this section, on the lowest band.
We will determine both the form of the dispersion rela-
tion (and, hence effective mass) and the wave function of
the quasiparticle, seeing how its ‘“‘shape’ distorts as k is
varied.

Although the limit of large string tension, 7>>1, is un-
physical in the sense that it departs from the parameter
space in which ¢-J model becomes a reliable representa-
tion of the Hubbard model, it is useful to investigate this
limit to enable some interpolation across the range of
string tensions. We will consider this limit first since the
nature of the ground state may be readily understood.

In this limit, the hole bandwidth is constrained by the
requirement that the hole must move two lattice spacings
before the superexchange can operate. Consequently, the
bands become dispersionless even at leading order (7°).
In fact, the bandwidth, normalized by the energy of the
hopping integral, scales like 1/7. At leading order, the

ground-state energy is determined purely by the energy

gained from hybridizing states of the zeroth and second

generations through the superexchange.
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48a%
25

1

1+ +0 . (4.1)

The total energy decreases in proportion to the string
tension.

The limit of greater interest is 7<1. As mentioned
previously, we expect our basis set will be sufficient until
7~0.1. We may then formally exploit T as a small pa-
rameter in determining the energy spectrum. In reality,
even if 7=0, there will be dispersion due to Trugman’s
mechanism. However, for 72 0.1 we expect that the
transverse coupling will be a more powerful agent for re-
moving the translational degeneracy than Trugman cy-
cles, due to the dilute nature of the latter. Thus, we as-
sume that the expansion to leading order in the string
tension 7 will provide a good estimate of the dispersion of
the lowest band, within the domain of validity of our
variational assumptions (72 0. 1).

Of the four dispersive bands, only three of the states
are dispersive at first order in 7. In particular, the energy
spectra of the lowest band is given by the following:

e(k)z—V'7+5’71[g+a¢(k)]+0<72>. 4.2)

The separation in the true energy between the lowest
band and the states of the higher bands scales like z. The
bandwidth of the lowest band is given by £aJ to leading
order in 7, which may be simply understood since the ma-



4376

trix elements that lead to the delocalization are of order
aJ. (The second dispersive band has twice this band-
width.) Moreover, since the sign of the matrix elements
are positive, reflecting the antiferromagnetic nature of
the spin interaction, the ground state is located at the
magnetic zone boundary. This result is ubiquitous
amongst the numerical calculations.’ 20

The ground-state energy can be more readily under-
stood by separating the contributions from the kinetic en-
ergy, the transverse exchange energy, and the potential
energy arising from the string treating the string tension
7 as a small parameter.

Firstly, we find that there is no contribution to the ki-
netic energy arising from terms at first order in 7: the to-
tal contribution comes from the internal energy of the
quasiparticle as though it were localized. Numerical
simulations on 4X4 clusters?® show a kinetic energy
which varies smoothly from —3.2¢ in the 7—0 limit to
—2.45t at 7=1, comparing favorably with a value of
—V/7t obtained from our results to leading order in 7.
Allowing for the fact that in the weak string tension lim-
it, where the quasiparticle would become extended over a
wider configuration space than that chosen here, the
agreement is quite good. The kinetic energy is found
significantly higher than that found in the retraceable
path approximation® of —2V/3¢ illustrating the difference
between the two approximations.

Secondly, the contribution from the Ising exchange
due to the hole-induced spin disorder is 9J /7 which cor-
responds to the breaking of ca. five bonds. Again this
compares favorably with the numerical simulation where
they find ca. six bonds broken for most values of 7 apart
from the weak string tension limit where the energy
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seems to diverge.

The final contribution comes from the transverse ex-
change and is —(2/7)aJ, almost an order of magnitude
smaller than the Ising contribution. This reflects the low
amplitude of the wave function at the second generation
which leads to the narrow bandwidth.

The bandwidth is small in both the limits 7—0 (as the
matrix elements between neighboring sublattice sites are
proportional to 7) and 7— o (as then the hole is confined
to the lowest generation by the high string tension).
Therefore, it is not surprising that numerically we find a
maximum bandwidth of ca. 0.8z when 7 is of the order
unity (Fig. 5). The shape of the bands is entirely deter-
mined by the structure factor. Examination of the struc-
ture factor shows that the bands only disperse normal to
the faces of the magnetic zone, thus the Fermi surface
has the normal “‘television screen” shape of a square with
rounded-off corners. The effective one-dimensionality of
the band structure implies an effective mass divergent at
the magnetic zone boundary and very anisotropic.

The wave function for states of the lowest band have
been calculated explicitly for both limits of the string ten-
sion, discussed above, in Appendix B. The behavior of
the wave function is again complicated by the competi-
tion arising from the localizing (Ising) potential and the
matrix element controlling the bandwidth both scaling
with the exchange constant. When the string tension is
both divergent and vanishing, approximately one-fifth of
the amplitude of the wave function resides at the outer
generation. The proportion changes only marginally as
the string tension explores intermediate values. This
reflects the effective cancellation of the two effects dis-
cussed above. The relative amplitude of the first and

0.8

0.6

W/t

0.4

J/t

FIG. 5. The bandwidth W of the lowest band as a function of the string tension .
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second generation account for the largest fluctuation as
the string tension is varied. Firstly, since states of the
first generation can only be accessed through hole
motion, and not the spin dynamics alone, the increase in
Ising energy causes the amplitude at this generation to
vanish with increasing string tension. However, in the
limit in which 7 vanishes, and the problem merely resem-
bles a tight-binding Cayley tree, the amplitude at the first
generation rises to one-half.

The spin dynamics also causes an anisotropy of the
wave function. The nature of this anisotropy depends on
the quasiparticle momentum. At the zone boundary the
matrix element which connects the central generation to
the outer generations is negative, and hence favors an in-
crease in the second-generation amplitude over the Ising
limit. Clearly this tendency is at a maximum when the
matrix elements are negative in both directions—that is,
when motion is parallel to the sublattice axes. If this is
not the case, then there is an anisotropy caused by the
preferential increase in amplitude in the direction of
motion. Conversely, at the zone center there is no anisot-
ropy and the amplitude on the second generation is di-
minished, as compared to the Ising limit (as the matrix
element is positive).

V. SPIN DISTORTION AROUND A HOLE

In this section we investigate the local spin distortion
induced by a hole. Specifically we examine the ability of
the hole to drive neighboring spins towards a relative
singlet or triplet configuration as a function of quasiparti-
cle momentum by determining the change in the expecta-
tion value of the total spin on introducing a single hole
into the antiferromagnetic background. Since our ap-
proximation does not start with the true total spin-singlet
antiferromagnetic ground state, it is sensible to discuss
only the change in the expectation value of the total spin
and not the absolute calculated value.

The total spin of the system is defined by the following
operator:

§2= ly_,s,]z. (5.1)

1

For the rest of this section, when referring to the total
spin of a given state, we will implicitly refer to the expec-
tation value of this operator. Since the hole quasiparticle
states are defined in terms of hole trajectories on a Néel
background, it is helpful to determine the total spin of
the original state. The Néel state may be described by N
magnetic unit cells each with an up and a down spin. We
will first focus on the “off-diagonal” part of the operator
between the spins on two different magnetic cells. Since
there is no “in-plane” component to the individual spins,
the contribution from the transverse components of the
operator is zero. Furthermore, since there are two anti-
parallel spins in each cell, the Ising contribution also van-
ishes. The net contribution arises from the diagonal con-
tribution alone. Summing the ‘“‘on-site” spin, 2X 3, and
the cross terms, 2X — 1, the total spin of the Néel state is
found to be the following:
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(Néel[S?|Neel) =V . (5.2)

The rest of the section is concerned with determining
the manner in which the total spin of the system changes
when a single hole is introduced in the half-filled state. It
is natural, therefore, to first examine the total spin of a
state in which a single hole is fixed in a Néel-ordered
background.

Again, since the off-diagonal part of the sum vanishes,
the correction due to the hole simply arises from the di-
agonal contribution at the cell in which the hole resides,
—2 from the missing spin and 2 X+ from the Ising con-
tribution lost. The total spin of the state is therefore,
N—1,

In fact, it is simple to deduce the total spin of the state
created when the hole is allowed to wander along some
trajectory. Since, the operator which measures the total
spin calculates the scalar product of all spins with all oth-
er spins, any hole trajectory is guaranteed to give a state
with the same total spin as the hole fixed in a Neéel back-
ground. It is only by constructing a state in which the
spins are allowed to develop transverse components that
the total spin can change.

The average spin on a site does not change in direction
in the presence of a hole quasiparticle, as this requires the
hole motion to mix in the state where the spin of interest
is inverted with all other spins unaltered and the hole is in
the same position. This cannot happen as it does not
conserve total S°. However, the net spin of near neigh-
bors is allowed to change in direction. In fact, there is a
tendency of neighboring spins to be driven towards a
singlet or triplet state depending on the relative phase of
string configurations on neighboring sublattice sites. The
superposition of a string configuration of length two from
one sublattice site having its associated hole sharing the
same site as a string configuration of zero length on a
neighboring sublattice site superposes an “up-down’ spin
pair with a “down-up.” At the zone center these states
sum with equal phase tending towards a triplet whereas,
at the magnetic zone boundary, we expect that they sum
with opposite phases tending towards a singlet. The
truncation of the basis set at a maximum string length of
two implies that this scenario is the only one in which a
transverse component can develop. The total spin of the
hole quasiparticle state is therefore determined by the Is-
ing contribution, which assumes the static hole value to-
gether with the transverse contribution:

(Y(k)[SY(k)) =N—142F €, (k) , (5.3)

1

where the correlation function @ 1e (k) can either be writ-

ten in terms of spin operators or in terms of the string
basis states:

@ie,(k): 2 %<Si+Si:-€‘ +Si—SiJ~r+€, =

1

= 3 e M —1;k)(1;{i};k| + Hc.)  (5.4)

k{i}
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Although the correlation function enters the total spin
as an invariant sum along all four lattice directions, it is
interesting to focus on a particular component and there-
by demonstrate the anisotropy of the spin distortion of
neighboring spins. The symmetry of the correlation func-
tion is determined by

sin(k @) sin(k,@)~ cos(2k,a)— cos(2k,a) . (5.5)

The correlation function, therefore, displays reflection
symmetry about the x and y directions together with
symmetry under inversion. The anisotropy, which van-
ishes at both the zone center and the magnetic zone
boundary, enchances the degree to which the neighboring
spins are driven towards a singlet configuration along the
direction of motion as the momentum approaches the
magnetic zone boundary. The enhancement along the
direction of motion is exactly cancelled by the diminution
perpendicular to the direction of motion disguising this
effect in the invariant sum.

The tendency to form singlets at the magnetic zone
boundary (at least at symmetry points) and triplets at the
zone center is shown by the spin distortion induced by
the special class of hole motions (discovered by Trug-
man®) which allow the hole to hop one sublattice parame-
ter, while leaving the final spin arrangement still Néel-
like.

The total spin, calculated to leading order in the string
tension, is given by the following:

(YIS 2yk) ) =N—1

6 T
+2 — T [35a+2(1+7a)p(k
2 24(k) 7\/7[350: ( a)p(k)
—36ad(k)’] | . (5.6)

This shows that, when the string tension is small, there
is a tendency to drive the system towards a state of low
spin at the magnetic zone boundary and high spin at the
zone center. In fact, the latter tendency becomes re-
versed in the limit of high string tension when the states
of zero momentum drive the system towards a state of
low spin even more vigorously than at the magnetic zone
boundary.

VI. DISCUSSION

There are two striking aspects of the results of this
work: the singlet nature of the spin distortion for low-
energy quasiparticles (which reside at the zone boundary)
and the preponderance of flat bands when hopping is in-
cluded. We will now discuss these in turn.

The singlet nature of the quasiparticles is counterintui-
tive in the light of the Nagaoka® result which shows the
ground state to be ferromagnetic in the zero superex-
change limit: it might be expected that the ferromagne-
tism remained within the bounds of a spin polaron when
the superexchange was included. There are really
separate reasons for the occurrence of singlet tendencies
and absence of ferromagnetism. The Heisenberg superex-
change causes the quasiparticles to reside at the zone
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boundary (ror the zone center as in the case of the
Nagaoka state); this changes the phase of the superposi-
tion of the spin configurations—as discussed in the last
section. It is interesting to note that the tendency of a
single hole to drive the spin system towards a singlet is in
accordance with the paramagnetic nature of the super-
conducting phase of the cuprates. It is tempting to as-
cribe the absence of ferromagnetism to the size of our
basis set: it is not large enough to allow spin
configurations to be superposed by the hole motion alone
and hence the Nagaoka mechanism to work. However, it
seems clear that this requires the hole-hopping integral to
be substantially larger than the superexchange, so that
the string of displaced spins does not dissolve under the
influence of the superexchange before the hole has com-
pleted a loop. We suspect that the real case of the Cu-O
planes corresponds to the regime where the Nagaoka
effects are not predominant.

Another notable feature of the results is the existence
of many dispersionless bands present in the quasiparticle
band structure. Although we would expect the inclusion
of higher-order string states and Trugman cycles to cause
a small amount of dispersion to develop in these bands
the bandwidth would still remain much less than the bare
bandwidth of the hole.

The predominance of flat bands mirrors the recent
angle-resolved photoemission data on single crystals of
both the Bi-(Refs. 21-23) and Y-based?* superconducting
cuprates where several flat, excited quasiparticle bands
were found, in disagreement with single-particle calcula-
tions. We would interpret these bands as being of an in-
herent many-particle nature, corresponding to excitations
of the spin distortion of the short-range Néel order
around the hole. It is tempting to make a more detailed
fit of the data to the parameters in the model when we
find that, in the case of the experiments performed on
Bi,CaSr,Cu,0;4 by Takahasi et al,’"?? a choice of
J=0.15 eV and J/t =0.6 gives an almost perfect over-
lap. These experiments remain rather controversial and
the fit may be fortuitous. Nevertheless, it demonstrates
the ability of the model to reproduce the observed
features at the correct energy scales.

Why are there so many flat bands? Equivalently, why
is it so easy to establish spin distortions, centered on one
unit cell, which have no matrix elements to a neighboring
cell? It seems difficult to answer this in an entirely satis-
factory manner: fundamentally it is the lack of loops in
the configuration space of the hole and spins. More ex-
plicitly, the topology of the graph of the Hamiltonian, de-
picted in Fig. 1, is rather ramified and this facilitates
composing superpositions (of configurations) which have
no amplitude at the k-dependnent links.

The sufficiency of our approximation (the truncated
basis set) depends on the appropriate ratio of J /t: as long
as this ratio is larger than ca. 0.1, the treatment there
should be adequate. Supporting evidence for this view
comes from various numerical calculations of the spectral
function of a hole in the 7-J model on a 4X4 lat-
tice.* 132925 A sharp quasiparticle peak is observed with
an energy scaling like the Ising hole quasiparticle. The
quasiparticle is attributed to the remnants of the Ising
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string polaron in the Heisenberg limit.

In conclusion, we have demonstrated that hole quasi-
particles in a Néel state reside in polaronic states. These
are associated with induced singlets on neighboring spins,
not with local Nagaoka ferromagnetic tendencies. They
have internal excited states most of which are dispersion-
less, in qualitative agreement with photoemission results.
We have discussed the anisotropy of the amplitude of the
quasiparticle and the associated spin distortion in the
Brillouin zone.
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APPENDIX A

Determining the ground-state wave function is compli-
cated by the excessive algebra and as such is presented in
this appendix. Since our aim is to establish the lowest-
energy band, we depart a little from the prescription
given in the text in order to minimize the total number of
basis states. Finally, we will display the wave function of
the lowest band calculated to leading order in the string
tension, T.

The representation of the Hamiltonian defined in terms
sibling momenta is denoted by the graph in Fig. 2. Since
the k-dependent links emanate from only the central site,
we can deduce that the dispersive states must be con-
tained within the manifold of which the state at the cen-
tral site is a member. By recursively operating the Ham-
iltonian on the states derived from the central state, this
manifold of states can be generated. In fact, there are
only six such states defined below. We have chosen to re-
turn to the original sibling basis in order that the wave
function may be more readily related to the underlying
lattice. Firstly, there are the isotropic superpositions of
all the spin configuration states of a given generation. In
the absence of spin dynamics these states provide the
basis for the invariant wave functions:

ILk)=|-1;0;k) ,
12,k)=10;a,=0;k )
%)IO¥§U (A1)
13,k)=11;a,=0,a,=0;k)
= §01§, jZi‘l,ll;iii;k>

Secondly, there are the states which incorporate a
momentum dependent phase twist in the superposition of
the spin-configuration states:
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1
14,k>'“—] % )Sal,O@ZIO;a;k)
=§— [ #(k)1[0; {i};k)
I“ 2 K!() ’ ’ ’
|5,k)=ﬁ%(1~8a0y0)5a1'0@;|1;a;k)
1 .
n”gmo¢mnmhuw, (A2)
1
|6’k>=F—2%‘1_5(11,0)@;“?‘1;1‘)
1 i .
=— 3 (e®lil—k )1;{i};k) ,
r, % RIHEY
where the structure factors are given by
K, =5 38, , ekl (A3)
0 Sf-% n 010
and
22 (A4)
gO iy
and the normalizations by the following:
r%mzzu— KI[(Z—1Deék)+1], (A5)
rik)=Z(Z-2)[1—¢k)] . (A6)

Before presenting the matrix elements between the six
basis states it is useful to define the following structure
factors:

Fok)=larvVZ(Z—1)¢(k) , (A7)
Fk)=1arl (k) , (A8)

The graph of the Hamiltonian which connects the six
basis states described above is shown in Fig. 6. The ma-
trix elements are shown in detail below:

FIG. 6. Graph of Hamiltonian described in terms of the six
basis states defined in Appendix A. The off-diagonal matrix ele-
ments which are momentum dependent are denoted by bold
lines and those which have the same value are denoted by wig-
gly lines. Nodes with the same “‘on-site” energy share the same
shading.
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0 —¢& F O F F
—& Vo —& 0 0 0
Fo —& V 0 0
H= 0 0 0 Ve —& (A10)
F 0 o —-¢&§ VvV, O
%, 0 0 0 0o Vv,

Notice that, at the Brillouin-zone center where the struc-
ture factors #, and ¥, vanish, the two branches which do
not loop become disconnected from the central site. In
fact, the detached states become undefined since they
vanish in this limit. Thus, there are only three states
which have a finite amplitude at the origin (this compares
with the ordinary Cayley tree). These are the states
which are invariant under permutations of the branches
of the tree.

Furthermore, for the two-dimensional case, when
J

0 0 1 0 0
5, N, S_WN_ 0 pu, 8 N, p & _N_
+ N, N 0 u Ny p-Ny
US|V, p 8. N 0 —8,N, —8 N
[T, uN_ 0 —WN, —N_

0 0 0 0 0

where

5 _ 1 5. = Vi—As . :§051_70
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Z =4, at the magnetic zone boundary F, vanishes along
with the contribution of the fourth and fifth basis states
to the bonding eigenstates. The anisotropy of these states
is determined by the amplitude of the sixth basis state
alone. This implies that the wave function for states
along the boundary remains invariant at the first genera-
tion.

Although this reduced basis set contains the dispersive
states, we have not eliminated all the nondispersive eigen-
states which have a node on the central site. The elim-
ination of such states is achieved by constructing the
bonding and nonbonding combination of states about the
k-independent matrix elements denoted by the wiggly
lines in Fig. 6. The result of this procedure is the genera-
tion of the manifold of states which describe all four of
the dispersive states. The unitary matrix which separates
out the two nondispersive states is shown below, the
eigenvectors of the two states occupying the first two
columns:

The eigenvalues of the nondispersive states in this reduced basis are given by the following:

2
(VO—VI)Z Y

Vo+V,

- 2

+ét

0
0
0
ol> (A11)
0
1
, NP2=(14+82)(1+u?) . (A12)
(A13)

Finally, the matrix elements of the part of the Hamiltonian which connects the four basis states for the dispersive

eigenstates are shown below:

1442 112
0 —F, |t ~
1+8%
1/2
1+p
IR RETY e
+
H= 1+p,2, 172
_71 2 0
1+6~

1+,LL2, 172
1+6% &
0 0
(A14)
A 0
0 v,

These states form a “tight-binding star”” [as depicted in Fig. 3(b)] with differing matrix elements and site energies but all
connected to the central site. The resulting characteristic equation which determines the eigenvalues does not yield a
simple analytic solution. The precise equation is shown below for the two-dimensional case when the coordination

number is four:

84—’—23T£3+[(%—3(12)72—7]52—(72-51'2—4&1272—110+48a¢)£e—[25*6a2( 1= 57)—6(5—a)ap]r?=0 .

(A15)
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The solution of the quartic is discussed in the text.

When the dimensionality (and therefore the coordina-
tion number Z) diverges the k dependence vanishes from
the problem and the energy scale of Z7/2 emerges. Re-
mormalizing the energy by this factor is done by defining

—ZT,
29

(A16)
The roots of the characteristic equation are then given by
the following:

x=1,2,1:(14+a»)"?. (A17)

APPENDIX B

It is useful to determine the form of the wave function
in the following perturbative limits. Firstly, when the
magnitude of the exchange constant becomes much less
than the magnitude of the hopping integral, the hole is
able to delocalize through the creation of string
configurations but the net motion of the strings through
superexchange is diminished. It is in the extreme limit
that the truncation of the basis states becomes inade-
quate. Nevertheless, the strength of the localizing poten-
tial enables the justification for the higher region of the
limit. Secondly, when the exchange constant becomes
much larger than the hopping integral, the hole motion
becomes dominated by the hopping integral since the
strings very readily exchange binding sites. Since the su-
perexchange is derived from second-order correlations in-
duced through the same hopping integral, this limit is un-
physical. Nevertheless, the interpolation between these
regimes should enable a clearer understanding of the evo-
lution of the wave function. Throughout we will assume
a coordination number Z, of four relevant to the two-
dimensional case.

We will first consider the limit in which 7 tends to
zero. The wave function may be more readily understood
by considering the Hamiltonian acting on the six basis
states defined by (A1) and (A2). The eigenstates of the
unperturbed Hamiltonian are given by the following uni-
tary matrix:

V271 V371 —Vv2/7 0 0 o0
1 1
e 0 e
v v 0 0
V3/IA —-%~ V3714 0 0 o
V7
y'= 1 1
0 0 o L L
) V2
1 1
0 0 o L L
V2 V2 0
0 0 0 0 0 1

(B1)

The first three states correspond to the invariant eigen-
states of the tight-binding Cayley tree of depth two. The
eigenvalues are given by —V'7, 0, and V'7, respectively.
The effect of the perturbation is to enable the delocali-
zation through the exchange of spins. Focusing on the
lowest band of states, the energy spectrum is given by

—V7+1[342ad(k)]r+0 (), (B2)
and the wave function by

14+ = [ —Lag(k)]r

o
S Ve

1

)

3

_ 1
1 7‘/_7[4 ad(k)]r

— 1 37
1 7‘/77[T+5a¢(k)]‘r

k) . (B3)
—\/3/14—1—2——

V3/14

Iy, k)=

1 Fik)

The variation of the wave function across the zone is discussed qualitatively in the text.

The second, less physically motivated limit arises from the perturbation at order 1/7. States of the first generation,
which can only be accessed through hole motion, have an amplitude which vanishes at leading order. The unperturbed
Hamiltonian resembles a tight-binding star between states of the second generation and the central state. For disper-
sion to occur, the hole must propagate two lattice spacings resulting in a band spectrum which remains dispersionless to
order 7°. The lowest band of states have an energy given by the following:

1/2
5t

2
== 1— |1+ =+
4

S|

with the corresponding wave function, again expressed to order 7°, given by the following:
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