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Transient ensemble averages in non-Newtonian flow: Symmetry and simulation
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Transient (nonequilibrium) cross correlation functions (CCF) are introduced for the characteriza-
tion of non-Newtonian flow under conditions of shear startup or cessation. Arguments based on the

principles of group-theoretical statistical mechanics imply that these are asymmetric for shearing
and symmetric for elongational stress. These expectations are confirmed with nonequilibrium

molecular dynamics. Nonequilibrium CCF s are evaluated in the rise transient regime, immediately

following the application of shear stress, and in the fall transient regime immediately following its
removal. The rise and fall transient CCF's of atomic velocity and pressure tensor components are
found to have quite different time dependencies, in line with the rise and fall stress transients them-

selves. They also correlate well with the non-Newtonian characteristics of the fluid, in that, as the
response to the stress becomes increasingly more non-Newtonian, the difference between the equi-

librium and rise or fall transient CCF's develops an increasingly sharp peak at short time.

I. INTRODUCTION

At sufficiently low shear rates the viscosity of a fiuid is
independent of shear rate, this is called the Newtonian
viscosity. At large shear rates the viscosity of a fiuid de-
creases further below the Newtonian viscosity with in-
creasing shear rate (called "shear thinning"). ' An objec-
tive of current research is to understand and specify the
microscopic origins of these changes in terms of its asso-
ciated statistical mechanics. Our contribution in recent
papers has been to characterize these nonequilibrium
fluids in terms of new time averages and time correlation
functions introduced by the strain rate. ' These changes
in the fluid, introduced by the strain rate, have been pre-
dicted using group theory applied to statistical-
mechanical ensemble averages (reviewed in Sec. II).
Verification of the predictions of this group-theory sta-
tistical mechanics (GTSM) has swiftly followed using
molecular-dynamics simulations. We have shown that a
shear velocity field has a pronounced effect on the time
correlation functions of a simple fluid, making them sen-
sitive probes of the physical consequences of nonequili-
brium flow on the fluid. The shear flow, j =Bu„/By (u is
the velocity), distorts the time correlation functions
present at equilibrium so that the x, y, and z components
are no longer equivalent. Most interestingly, however,
there are certain time correlation functions that only
have nonzero structure in the presence of shear flow,
which make them particularly useful probes of the pres-
ence and magnitude of a differential flow velocity within
a fluid.

It has been shown recently that the microscopic
response of an atomic ensemble to shear is the appear-
ance of asymmetric time correlation functions. This is
unknown in conventional non-Newtonian rheology, and
was discovered by nonequilibrium computer simulation
following indications provided by the third principle of
group-theoretical statistical mechanics, which asserts

that the complete symmetry of an external infiuence, in
this case shear stress, must be imparted to thermodynam-
ic ensemble averages, either in the field on steady state or
in the transient condition immediately following the im-

position of the external influence or, alternatively, its re-
moval. In order to implement the third principle, a
means must be found to measure the symmetry of (a) the
influence itself, and (b) the thermodynamic averages.
This is found through point-group theory, using the fact
that the point group of an isotropic ensemble of atoms or
molecules is the group of all rotations and reflections,
with its irreducible representations. Without these sym-
metry considerations, conventional rheology, dependent
as it is on continuum theory, is unable to say anything
about the response of a structured ensemble to shear or
elongational stress on the microscopic (molecular) scale.
In this respect continuum hydrodynamics is still beset by
controversies. These problems are removed by a corn-
bination of symmetry and simulation, which provides a
variety of new and useful insights, some of which are
presented for the first time in this paper. Group theory is
an intrinsic and central part of this process.

In this report we describe the theory that predicts
those time correlation functions, cf., existing in
(symmetry-breaking) simple planar shear flow, which are
trivially zero in the absence of shear flow for symmetry
reasons. The specific application here is to apply group-
theory statistical mechanics to nonlinear dynamic viscosi-
ty as probed by the buildup and decay of shear (and nor-
mal) stress on application and cessation of a shear strain
rate to a fluid, respectively. This involves applying
GTSM to nonlinear-response theory.

The earliest simulations of shear flow using molecular
dynamics (MD) attempted to reproduce the experimental
arrangement of boundary-driven flow. The contents of
the MD cell were sheared by two boundaries translating
in opposing directions on opposite faces of the cell (in
three dimensions). See Ref. 4 for a recent application of
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this method. Periodic boundaries in one of the three di-

mensions was sacrificed to achieve this. As the viscosity
is computed from a nonequilibrium steady state, we refer
to this form of molecular dynamics as nonequilibrium
molecular dynamics (NEMD). More recent advances in

nonequilibrium statistical mechanics have provided algo-
rithms that enable shear thinning to be simulated by
molecular dynamics maintaining periodic boundary con-
ditions in all three directions. ' Therefore, the molecular
dynamics cell is viewed as a subvolume in an infinite
boundary-less, but still sheared, fluid. Of these, the
SLLOD equations of motion were the first to be applied
widely. (The name SLLOD is not an acronym, the ori-
gin of which we refer the reader to Ref. 6.) These equa-
tions of motion maintain the desired velocity gradient on
an atomic distance scale throughout the cell, and it is
these equations of motion that we use here.

Recent NEMD simulations have revealed the existence
of asymmetric cross correlation functions (CCF's) in
couette flow at the shear-on steady state. These violate
the principle of microscopic reversibility and the
Onsager-Casimir reciprocal principle because they are
neither symmetric nor antisymmetric in the indices (X
and 7) when caused by an applied strain rate
y=BUX/BY. ' They are exemplified by the velocity
CCF's in an atomic ensemble,

( vz(&)vr(0) )A( v„(t)vx(0) ),
where ( ) denotes a time average. This result was
anticipated by the third principle of group-theoretical
statistical mechanics (see Sec. II). Asymmetric cross
correlations and transients as observed in this paper are
not statistically stationary in the conventional definition,
because they are sums of antisymmetric and symmetric
components. In the presence of shear stress, therefore,
the principle of statistical stationarity does not apply to
the time correlation functions and response functions
which appear on the microscopic (single atom) level as
the shear is applied. A statistically stationary process is
also microscopically reversible, implying that the time
correlation functions and response functions must be ei-
ther symmetric or antisymmetric. If they are neither,
then the process is irreversible on a microscopic level.
Note that such a system no longer obeys the Onsager-
Casimir reciprocal relations because these are based on
either symmetry or antisymmetry. The asymmetric rise
transients of this paper are therefore indicative of a
dynamical process under shear which is irreversible on
the microscopic scale, and which are not governed by
simple On sager-Casimir reciprocal relations. Both
Newtonian and non-Newtonian responses are irreversi-
ble, leading to a much sought after method of investigat-
ing irreversibility. A further discussion of this point is
given in Ref. 9.

Recent work ' has extended the NEMD simulation
and symmetry analysis to combined shear and elonga-
tional flow, using new equations of motion which are cap-
able of investigating simultaneously the effects of elonga-
tional and shear stress. The GTSM was tested with simu-
lation and found to be capable of anticipating, on the
grounds of symmetry, the types of CCF expected from

elongational and shear stress, applied independently or
simultaneously. The former produces symmetric diago-
nal time correlation functions in the stress applied steady
state and the latter asymmetric off diagonal CCF's of
type Eq. (1). Shear alone produces a depolarized light
scattering a second-moment frequency spectrum which
is the Fourier transform of asymmetric current CCF's
akin to Eq. (1). Both findings were the result of a symme-
try analysis based on GTSM.

These symmetry considerations are quite general, and
apply equally well to transient and field-on steady states.
We therefore expect transient (nonequilibrium) CCF's to
follow the same pattern, and thus to provide immediate
insight at a fundamental level to the response of an en-
semble to the application and removal of both elongation-
al and shear stress. In general, the asymmetric rise and
fall nonequilibrium CCF's of various kinds will have
different time dependencies, and the extent of this

difference is an indicator of the departure from Newtoni-
an rheology. For shear flow we have the additional
feature that both rise and fall nonequilibrium CCF's are
asymmetric in general (as indeed are the shear responses
themselves). By analogy with what is known from dielec-
tric rise and fall transients, " ' stress-induced nonequili-
brium CCF's may be expected to show markedly different
rise and fall transient time dependencies, providing in-
sight into non-Markovian and nonlinear statistical
mechanics. In response to shear stress we have the addi-
tional property of microscopic irreversibility and the
violation of Onsager-Casimir symmetry shown by
features analogous to Eq (1). .

In this work we introduce nonequilibrium asymmetric
CCF's of various types which are produced either in the
rise transient state immediately following upon the appli-
cation of stress, or in the fall-transient regime after stress
is instantaneously removed. The nonequilibrium rise and
fall transient CCF's are computed for shear stress. In
each case the rise and fall transient CCF's are correlated
with indicators of the non-Newtonian (shear thinning)
response of the ensemble. This provides an entirely new
method of determining the fundamentals of non-
Newtonian rheology through the transient response of an
ensemble to the imposition or removal of elongational-
shear stress.

In Sec. II we describe the group theory statistical
mechanics and in Sec, III we explore its consequences for
transient non-Newtonian flows.

II. GROUP- THEORETICAL STATISTICAL MECHANICS

Group-theoretica1 statistical mechanics is made up of
three principles, the third of which is of interest
here. ' ' This asserts that the complete symmetry of a
strain rate is imparted to ensemble averages in the equi-
librium and transient condition. It makes use of the D
symmetries or irreducible representations of the point-
group of molecular ensembles. For those of structurally
achiral molecules, or atoms, they are irreducible repre-
sentations of the point group, Rz(3), of all rotations and

D„' ', D„"', . . . , D„'"'. The superscripts denote the order of



42 TRANSIENT ENSEMBLE AVERAGES IN NON-NEWTONIAN. . . 4365

and g Xg=g and g Xu =u. A quantity such as strain
rate, vr' ", where v is velocity and r is position, is, in
general, a complete (tensor) product of two vectors whose
D symmetry is D' '+D'"+D' ', a sum of three parts by
the Clebsch-Gordan theorem. This is an expression of
the fact that the second rank tensor A~;, ] is, in general,
the sum A(; )= A5(;i)/3+Ck+S(~), where A/3 is the
trace denoted by Dg(v). Here 5(,,)

is the Kronecker delta.
Ck =8(, .

) =(A(, )
—A(, ))/2 is the antisymmetric com-

ponent of the complete tensor, equivalent to a pseudovec-
tor through Ck =e~;~k]8[;J~, where e[;~k] is the Levi-Civita
symbol. This part is denoted by Dg". The third part is
the traceless symmetric component of the complete ten-
sor denoted as —,'( A (; )+ A (;) ) —A 5(; )/3. Its D represen-
tation is Dg '. The quantities A, Ck, and S[; ) form spher-
ical tensors of rank 0, 1, and 2 transforming as the spheri-
cal harmonics Yl, for L =0, 1,2. As discussed fully else-
where, ' the D symmetry of stress cr is the sum,

I ( ) D(0)+D(i)+D(&)
g

of scalar, vector, and tensor components, respectively.
The third principle of GTSM implies that the same sym-
metry is imparted to ensemble averages, such as time
CCF's, either in the steady state or in the transient condi-
tion between this and field-free equilibrium.

Elongational stress has the symmetry D' ' of diagonal
components such as

(v;(0)v;(t)); i=l, Y, or Z (3)

(where ( ) means a time average) and produces no
off-diagonal components. The strain rate tensor in planar
couette flow of the type Bv„/By consists of a symmetric
traceless or "pure strain rate" component and an an-
tisymmetric component associated with vorticity. The
latter causes a rotation of the primarily distorted fluid
structure away from the m/4 and 3m/4 directions. The
GTSM reveals that there are two types of time cross
correlation functions induced at the microscopic level by
Buz/BY flow. One is symmetric to time or index reversal
[i.e., (q, p)~(q, —p)] and represents the effect of the
pure strain rate component. The other is antisymmetric
to index reversal and represents the effect of vorticity.
The sum of both influences is generally asymmetric to a
time shift. Shear stress has the symmetry Dg +Dg a
combination of antisymmetric vorticity D' ",

( v~(0)v r(t) ) = —( ur(0)v~(t) ), (4)

spherical harmonics, the subscripts positive (g) or nega-
tive (u) to parity inversion P. The D symmetry of a sca-
lar is D' ', of a pseudoscalar D„' ', of a polar vector D„"',
of an axial vector Dg"', and so on for higher-order tensor
quantities. Higher-order D symmetries are generated
through the Clebsch-Gordan theorem

D(n)D(m) D(n+m)+. . . +D(n —m)

and symmetric deformation D' ',

(u~(0)u), (t)) =(vt, (0)vx(t)) .

A weighted combination of Eqs. (4) and (5) gives the ob-
servable result, Eq. (I). ' Note that the response to
shear stress is purely off-diagonal and asymmetric, and
that to elongational stress is purely diagonal and sym-
metric. We concentrate on the shear flow case in this
work.

Asymmetric CCF's are measures of non-Newtonian
rheology. Asymmetry and non-Newtonian are not inter-
changeable concepts. Of course, the asymmetry is always
there, but increases as the non-Newtonian response in-
creases. Even a Newtonian shear stress is asymmetric at
the microscopic level.

III. COMPUTATION OF NONEQUILIBRIUM CCF's

A nonequilibrium CCF is defined, in general, as the
running time average ( A(0)8(t)), where A (0) is sam-
pled in the equilibrium condition, and 8 (t) out of equi-
librium. Special numerica1 techniques are needed '

for the proper evaluation of a nonequilibrium CCF. For
rise transient nonequilibrium CCF's, A (0) is taken at
field-free equilibrium and 8(t} in the transient condition
between equilibrium and the attainment of the field-on
steady state. Conversely, for fall transients, A (0) is tak-
en at the field-on steady state and B(t) in the transient
condition between this and the reattainment of field-free
thermodynamic equilibrium.

In this paper A (0) and 8(t) represent velocity, posi-
tion, and appropriate components, of the pressure ten-
sor, both for elongational and shear stress. The rise and
fall transient responses are correlated with independent
indicators of the non-Newtonian rheology of the ensem-
ble as measured by the shear viscosity. The full time
dependencies of representative rise and fall transient
nonequilibrium CCF's are given as figure illustrations. In
this section we describe methods for incorporating planar
shear flow in the classical equations of motion of molecu-
lar dynamics.

The MD simulations followed particles of mass m in-
teracting via the Lennard-Jones (LJ}potential

$(r)=4e[(a/r)' (a/r) ] . —

The basic technique is the same as used elsewhere. ' The
MD simulations were performed on a cubic unit cell of
volume V containing X =256 LJ molecules. The interac-
tions were truncated at 2.5'. We use LJ reduced units
throughout, i.e., kz T!e~T, and number density
p=Ncr /V. Time is in a(m/e)', strain rate is in
(e/m )' /a, viscosity is in (me)'~ /a, and stress is in
eo . The time step was 0.015. The state point con-
sidered was a near triplet-point state at p=0. 8442 and
T =0.722.

%'e used the SLLOD algorithm in most of the calcula-
tions. The peculiar or thermal velocity is denoted by v.
For molecular position R,
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Rx = vx =Ux+ ~R y

Ry=Uy=Uy

Rz vz vz

dvg

dt
=Fg /m —ivy,

dVy
=Film,

(10)

probes of the non-Newtonian nature of the sheared en-
semble. Therefore, we have gone part way to bringing to-
gether rheology, dielectrics, and the dynamical Kerr
effect within a common theoretical framework.

In Fig. 1 we show the difference in the transient CCF's
( ux(0)ur(t) ) in rise and fall conditions. The shear rate is

j = 1 and the SLLOD algorithm was applied for typically
100 transients, starting from prepared equilibrium start-
ing states. For the rise event CCF is

( ux(0)ur(t) ) . —( ux(0)ur(t) ) .

Uz
Fz /m

dt
(12)

where the a component of the force on a particle is F,
the velocity is v, and the peculiar velocity is u (i.e., that
component of the velocity in excess of the streaming flow

velocity). We maintain constant kinetic energy ("temper-
ature") within the Verlet algorithm using a profile as-
sumed thermostat by Velocity rescaling applied to v .

We calculated the shear viscosity g from

'9 Pxr /'Y

where

N N —1 N r,,r,, dP(r,, )
~xr ~ g mt "xr "yi

i=1 i =1 j&i &J

(13)

(14)

and where r„, is the x component of r;t and V=(N/p)
the volume of the MD cell. In the sheared case y =1.0
produces ran=2. 1 (about 30% shear thinning) and y =3.0
produces g=0.6' These two shear rates therefore span a
significant region of the shear thinning curve.

We now consider the transient response of simple
liquids to shear flow suddenly applied at time t =0, aver-
aged over typically 100 distinct starting phase points.
They were performed with an assumed profile thermostat
using the technique devised by Morriss and Evans.

In transient flows the nonequilibrium cross correlation
functions (ux(s)vr(0)) and (ur(s)ux(0)) appear in

response to shear. Here the time argument 0 is taken
from an equilibrium ensemble and s from the transient
flow state. The observed transients are weighted sums of
the vorticity and deformational transients. Rise tran-
sients and fall transient CCF's of velocity can be defined
in the nonequilibrium condition. The former occur im-
mediately after a field is applied at the equilibrium point
t =0. The nonequilibrium CCF is built up with one vari-
able in the equilibrium condition and the other in the rise
transient condition at t =s, for example, (ux(0)ur(s)).
Fall transient CCF's are defined with Uy having reached
the field-on steady state. After reaching the steady state
the field is switched off at t =0 and the nonequilibrium
CCF constructed by correlating vy at this instant with v&

in the fall transient condition at t =s. The CCF is there-
fore (u„(0)ux(s)). We see that one CCF is generated
from the other by a time shift, or index reversal. The ve-
locity rise and fall transients are asymmetric and become
approximately symmetric only when the external field
goes to zero. In the finite-field case, however, the rise and
fall transient velocity CCF's cannot have the same time
dependence. The velocity transient CCF's are molecular

where at time t =0 the two ensembles depart due to the
different strain rate histories. The "background" steady
state is the unsheared fluid. For the fall situation the
CCF is

(ux(0)vr(t) ) o
—(ux(0)ur(t) )

In this case we have the reverse situation of a steady-state
sheared fluid and an instantaneously "applied" unsheared
state. The two difference CCF's in Fig. 1 are clearly
asymmetric. We observe that in the rise transient the
time function has a sharp peak at t =0.15, whereas the
corresponding fall transient has a dip at the same posi-
tion. The corresponding "difference" mean-square dis-
placements (M.S.D.) in the x ("streaming") direction are
shown in Fig. 2. (The position increments due to the
peculiar momenta are only used in calculating these. ) Fig-
ure 2 shows that the presence of shear causes enhanced
self-diffusion in the transient state compared to the
unsheared state. The corresponding y and z m.s.d. curves
are all positively increasing, indicating that any sudden
change of shear rate (application or cessation) to a fluid
causes at least a temporary enhancement of self-diffusion
in the y and z directions.

Rise transients and fall transients of shear-induced ve-
locity provide information analogous to that in orienta-

o.04

I

0.02

R!SE

o.oo

—0.02
FALL

FIG. 1. The difference CCF's in rise and fall transients
( y = 1). The solid line is for the rise CCF
(ur(0)v&(t)) . —(ur(0)v„(t)) . o. The squares are for the fall

CC& ( ur(0)u &(t l ), ,—(u&(0)ur(tl ),.
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0.1

0.0 ,

shows that the magnitude of the rise transient increases
with shear rate, following the extent of the distortion of
the fluid structure and resulting in viscosity reduction.

In Fig. 4 we show the difference in the transient CCF's,
( ur( 0)vz(t) ), in the rise condition. The shear rates are

y = 1 and j' =3. For the rise event the CCF is

( v„(0)vz(t) ) . —( vr(0)uz(t) ),
The "background" steady state is the unsheared Quid.
For the fall situation the CCF is

—0.1 (u„(0)u~(t)) .
o
—(ur(0)uz(t)) . .

FIG. 2. As for Fig. 1 except that the corresponding
difference mean-square displacements in the x direction are
given.

tional transients induced by an electric field. The latter
depend on field strength when the response is nonlinear.
The rise transients in electric field show field-induced os-
cillations, recently confirmed by computer simula-
tion, ' and the fall transients are accelerated with
respect to the equivalent equilibrium correlation func-
tion. The latter is an exclusive indicator of nonlinear
response, and is also expected to occur in the contexts of
shear and elongational Qow. Oscillations in the rise tran-
sient are indicative of non-Markovian nonlinear statisti-
cal mechanics.

In Fig. 3, we compare the difference in the rise tran-
sients, (uz(0)vr(t)), for two states at j =I and j =3.
Both curves show peaks at t-0. 15. Figure 3 clearly

Note that the shape of the difference rise transients for
(vx(0)vr(t)) (Fig. 3) and (vr(0)ux(t)) (Fig. 4) are quite
different as predicted by GTSM. The former is charac-
terized by an initial peak, whereas the latter has a
minimum before a following maximum. The rise and fall
transients are again approximately antisymmetric. In all
of these CCF's we attribute the oscillations beyond
t =0.5 as statistical noise.

In Fig. 5 we investigate the fall difference CCF's
formed out of (Pxr(0)P+r(t)). In Fig. 6 we show the
rise and fall difference CCF's formed out of
(Pzz(0)P~&(t)). The collective CCF's clearly show a
sensitivity to shear rate and are distinct in rise or fall situ-
ations.

The conventional foundation of detailed balancing and
microscopic reversibility rests on time-reversal symmetry
in achiral ensembles. However, in the presence of shear
stress, which is of Dg +Dg ' symmetry, and which is nei-
ther symmetric nor antisymmetric to time reversal, it is
doubtful whether detailed balancing and microscopic re-
versibility can still be obeyed. In this case there is no mi-
croscopic time-reversa1 symmetry even in correlation
functions in the steady state, and the concept is even less

0.12

0.08

RISE
0.04

0.02

RISE

V
0.04

I)

l3

0.00 ~

I

0 1 2

V

0.00

—0.04

FIG. 3. The difference CCF's in rise transients. The solid
line is for the rise CCF (u (0)u x(t)) .r—(u~(0)vr(t)) . o, for
(y =3). The squares are for the same rise CCF using y = 1.

FIG. 4. The difference CCF's in rise transients. The solid
line is for the rise CCF (u (0!v~r(t))„.—(v„(0)v~(tl) . o, for

y =3. The squares are for the same rise CCF but at y =1.
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0

A

v

FALL

valid in the transient regime considered in this paper. It
is important to note that the present system conserves re-
versality because the complete time-reversed experiment
is clearly possible, but in the time-reversed experiment
the correlation and transient functions would also be
asymmetric, neither symmetric nor antisymmetric to in-
dex reversal. This type of asymmetry reinforces the gen-
eral conclusion that it is the unitarity of matrices, rather
than microscopic reversibility, that is necessary for the
validity of Boltzmann's 0 theorem, one of the founda-
tions of statistical mechanics. Thus irreversibility is used
here in the sense that the time correlation functions and

FIG. 5. The difference CCF's in the fall transients

(Prr(0)PX„(t)) . 0
—(Pxr(0)Pxr(t)) .. The solid line is for

j' = 3 and the squares are for the same rise CCF but at j' = 1.

transients of D"'+D' ' symmetry, imparted by shear
stress, are asymmetric in index reversal.

The methods developed in this paper have potential ap-
plication for a wide range of useful materials, including
glasses, rheids, alloys, and composites under shear and
elongational stress. A glass, for example, can be simulat-
ed using the well-developed techniques of slam quench-
ing, and reacts to imposed shear stress according to the
rate at which the stress is applied. Glass can flow, bend,
or shatter under this stress. Quickly applied it is shat-
tered by shear stress; if the latter is applied slowly glass
can be flexed; and glass can also flow. These processes
are all characterized by the asymmetries of our indicator
transient CCF's, which are spectral measures of the vari-
ous ways in which glassy material flows, flexes, and
shatters. If a glass is shattered in a computer simulation,
transient CCF's are the only available measures of
response to the quickly applied shear stress, because the
material obviously never reaches equilibrium.

The study of ensembles of atoms, as in this paper, can
be extended straightforwardly to simple metal mixtures
(alloys, for example), stressed to the critical degradation
point and beyond, using transient CCF's to study the de-
gradation process on the picosecond time scale. An un-
derstanding of the microdynamics of metal failure would
be useful in the design of new materials (alloys, compos-
ites, and polymers) with greater tolerance to shear and
elongational stress. Finally, simple graphitic and dia-
mond models for material failure in carbon-based corn-
posites can be constructed straightforwardly from the
present code for Lennard-Jones atom ensembles. The
methods developed here are equally valid for molecular
and liquid crystalline ensembles, where we have the add-
ed dimensions of rotation and orientation, with consider-
ably enhanced scope for cross correlation between rota-
tional, translational, and orientational variables.

IV. CONCLUSIONS

A

v

0 c

FIG. 6. The difference CCF's in the rise and fall transients
(P»(0)P»(t)) . —(P»(0)P»(t)), , and (P»(0)P»(t) )„,—(P»(0)Pr„(t)) . , respectively. The solid line is for the rise

CCF at y=1 and the squares are for the fall CCF at the same
shear rate.

The group-theoretical statistical mechanics theory has
predicted the existence of new time correlation functions
which only exist during the buildup or decay of shear
flow in a Quid. They have a damped oscillatory appear-
ance and are sensitive indicators of the transient state. It
is concluded that on the fundamental, single-atom level,
the imposition of elongational stress produces symmetric
rise transients and time correlation functions in the
steady state. Removal of the elongational stress produces
symmetric fall transients. Shear stress results in rise and
fall transients and steady-state correlation functions
which are asymmetric, consisting of a linear combination
of symmetric and antisymmetric components in each
case. Accordingly, the microscopic description of shear
stress is irreversible and statistically nonstationary. The
simple type of Onsager-Casimir reciprocal relation is no
longer a valid description of the microscopic statistical
response of an atomic ensemble under shear stress. There
is also a relation between the asymmetry of the response
and correlation functions and the degree to which the en-
semble departs from Newton's linear relation between
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stress and strain. The shear stress always produces asym-
metric response and correlation functions even in the
Newtonian limit. Furthermore, the correlation functions
produced by shear stress cannot be described as a simple
Langevin equation and are, in consequence, both non-
Markovian and nonlinear in the sense that linearity in the
friction coefficient or memory function of the Langevin
equation fails completely to describe them.
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