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Phonons in one-dimensional Peierls-Hubbard systems
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Reflectivity measurements from the ultraviolet (UV) down to the far infrared (fir) of one-

dimensional mixed-valence Pt-halogen chains are discussed. Particular attention is devoted to the

fir spectral range: the relevant one for the study of the phononic properties. We give evidence for
the presence of such defects (polarons) along the chain axis, which are manifest in the phonon spec-
tra through the defect modes. A lattice-vibrational calculation is further considered for the discus-

sion of the whole phonon spectra.

I. INTRODUCTION

Recently, the so-called halogen-bridged mixed-valence
compounds, which correspond to the chemical formula
[M(en)z][M(en)2X2]Y4 [where M=Pt, Pd, or Ni, X=CI,
Br, or I, (en) are amines such as ethylenediamine, and Y
are anions such as C10~, BF4, etc.], received a lot of at-
tention from the scientist s community due to their in-
trinsic low-dimensional properties.

Besides, these one-dimensional compounds are also
considered as model or prototype systems for proving the
availability of the so-called Peierls-Hubbard theoretical
approach. These studies have a lot of implications in the
development of theoretical models regarding the new
high- T, superconductors.

The hereafter abbreviated MX compounds are charac-
terized by a skeletal structure consisting of linear chains—M(II) —X . . .M(IV). . .X of alternating metal-
halogen ions, where the X ions are closer to the M(IV)
than to the M(II) ions. Along the chain axis (or b axis),
each M metal ion is coordinated by four nitrogen atoms
of the ethylenediamines. The anions, for instance, C104,
then act as glue molecules between the chains, in order to
create the three-dimensional single-crystal structure. '

Thus, the main structural feature concerns the dimeri-
zation of the halogen ions from the midpoint between
two nearest-neighbor Pt ions, which follows the appear-
ance of a commensurate charge-density-wave (CDW)
ground state. Therefore, these chain compounds are con-
sidered to be realized Peierls systems. However, one has
to remark that the former dimerized ground state is more
complex (since it is more the consequence of the so-called
site-diagonal electron-phonon coupling ) than the origi-
nal one considered by Peierls, where the metal atoms po-
sitions are dimerized instead of the halogens.

The experimental investigations were mainly devoted
to the optical properties of these MX chains. ' In the
visible energy spectral range the absorption spectra show
a very intense additional band, which is ascribed to the
charge-transfer (CT) transition between the d orbitals of

M(II) and M(IV), respectively. Essentially, this strong
absorption, polarized along the chain axis, corresponds to
the transition across the Peierls energy gap, formed at the
edge of the folded Brillouin zone (BZ) by the dimerization
of the halogen X ions. Furthermore, Wada et al. re-
viewed the M and X dependence of such a CT band,
measuring the polarized reflectivity in the visible energy
range.

Besides the CT band, new absorption bands around
half the energy of the CT band were detected along the
chain axis. ' Of particular interest is the work of Kurita
et al. , who measured photoinduced absorption spectra of
the Pt-halogen compounds at 77 K. By photoexciting
across the Peierls gap (i.e., using a He-Ne or Ar laser
with photon energy larger than the CT band energy), it is

possible to create defects along the chain axis, as a conse-
quence of the electron-hole relaxation to the self-trapped
exciton midgap state. These generally correspond to
Pt(III) ions, which break down the periodic mixed-
valence [i.e., Pt(II) and Pt(IV)] nature in the undoped or
ideal chain. Therefore, the absorptions detected below
the CT band (i.e., a broad structure at 300 K and three
distinct ones at 77 K) are ascribed to the transitions be-
tween the midgap levels introduced by the defects and the
continuum band. The experimental evidence, that
such defects should be charged and have a spin, calls for
their polaronic nature. It is worth it to remark that the
intensity of the midgap absorptions increase linearly with
the total excitation light flux and that the photoinduced
absorption bands are stable at 77 K and are induced only
by light with E~~b and are preferentially polarized for
E~~b. ' These last features suggest that the photoinduced
defect states are located on individual chains, and not as-
sociated with interchain impurities. Furthermore, these
photoinduced defects are characterized by their metasta-
ble nature, since the spectrum, after having kept the sam-
ple at room temperature for some hours after an excita-
tion for 1 h, is equal to the spectrum before any irradia-
tion. This is ascribed to the recombination of the pho-
toinduced defects (i.e., at 300 K the mobility is much
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higher than at 77 K). Nevertheless, the appearance of
the absorption bands, also before any irradiation, is the
evidence of the intrinsic nature of such Pt(III) impurities
along the chain axis. ' Besides, the application of an
external hydrostatic pressure or the halogen doping (i.e.,
carried out by exposing the single crystals in a vessel to
halogen vapor) are alternative methods to the photoexci-
tation for creating defects along the chain axis. ' In fact,
it is well established that the intragap absorptions origi-
nate from the same defect states, whatever the method
for the enhancement of their density is.

The experimental evidence that these one-dimensional
compounds could support the presence of defects (intrin-
sic or induced) along the chain axis motivated our further
investigations in the far-infrared energy range. The main
aim consists in finding the signature of such defects
within the phonon spectrum.

In a previous work on the ir-active phonon modes we

proposed a first tentative assignment of the structures,
measured along the chain axis, with the help of a phe-
nomenological lattice-vibrational calculation. With the
present work we will completely review the fir spectrum
of the whole Pt-halogen series and above all, we will en-

large our phenomenological analysis to the case of a one-
dimensional chain containing Pt(III) defect sites. We will

give, therefore, the optical evidence of the existence of
the localized mode, as a fingerprint of the defects.
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II. EXPERIMENT AND RESULTS

The rellectivity [R(w)] measurements have been ob-
tained using four different spectrometers in order to cov-
er the whole range of energies between 1 meV and 12 eV.
Such measurements were performed with light polarized
parallel and perpendicular to the chain axis of our large
single crystals (2X1 5X I mm ) of the whole Pt-halogen
series and with temperature dependence between 300 and
6 K. In the fir we have made use of a Fourier spectrome-
ter (with an energy resolution of 1 cm ') with a triglicyne
sulfate detector down to 25 cm ' and with a He-cooled
Ge bolometer from 100 to 8 cm '. It is worth it to
remember, furthermore, that all optical functions [e.g.,
e( w ) or cr ( w )] can be obtained through Kramers-Kronig
transformations of the R (w) data.

In order to perform R (w) measurements in the fir after
photoexcitation of the sample, we have implemented a
device on the Fourier spectrometer. In fact, it consists of
a special N2 eryostat, which permits us to photoexcite the
sample with a laser at 77 K for a desired time. The He-
Ne lasers we used had a minimal power between 0.1 and
0.2 mW and they irradiated red (633 pm) and green (544
pm) light, respectively (i.e., in the energy spectral range
of the CT band). For more details, concerning the exper-
imental setup and the crystal growth procedure, we refer
the reader to the literature.

Here, we will now present the experimental results rel-
ative to the fir energy range, which, indeed, is the
relevant one for the discussion of the phonon modes.
Figure 1 shows the R (u) spectra along the chain axis for
the whole Pt-halogen series at 6 K. These spectra are
characterized by five highly polarized structures (N.B. for
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FIG. l. fir-R (m) at 6 K for the whole Pt-halogen series along
the chain axis.

the Pt-I on the top of the figure, these are marked with
arrows and the measurements on Pt-Br were performed
on new, better, single crystals than those of Ref. S). For a
complete overview about the optical response of the Pt-
halogen chains between the fir and UV energy spectral
range we refer the reader elsewhere in the literature and
to our recent works.

III. DISCUSSiON

As pointed out in the previous section, the common
features which characterize the R (w) spectra of the three
investigated Pt-halogen compounds concern, above all,
the five highly polarized mode structures along the chain
axis. The present discussion will be devoted to the inter-
pretation of these phonon modes through the help of a
phenomenologieal lattice-vibrational calculation.
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A. Phenomenological lattice-vibrational calculation (a}

To get quantitative insight into the internal phonon
modes, we will propose a phenomenological lattice-
vibrational calculation based on the linear harmonic ap-
proximation. We will develop the calculation formalism
following the approach of Barker and Sievers. ' In our
previous work we have introduced a model phonon cal-
culation for the case without defects, starting with the
crystallographic equivalence of our chains with the
three-dimensional isotropic perovskite structure of the
BaPb Bi& 03 compound. Here, we will first overview
the basic features and enlarge the procedure to the case
with defect sites.

We take our Pt-halogen compounds as a one-
dimensional two-atom base chain. From the CDW
ground state the dimerized unit cell Pt(III+5)—X
Pt(III —5)—X follows (where 0&5&1 describes the
charge disproportionation), which contains four atoms
along the chain. Next, an (en) planar molecule is at-
tached to each Pt ion. These bonds are modeled by four
out-of-chain bendings where each of them is formed by a
complex with the total mass of C and N. Thus, the unit
cell of the undoped Pt-halogen chain looks like the situa-
tion of Fig. 10 in Ref. 5, which contains a total of 12
atoms. Of course, this could be understood as the conse-
quence of the dimerization along the chain axis due to
the CDW ground state; furthermore, a folded Brillouin
zone also follows.

In order to calculate the vibrational modes in the linear
harmonic approximation, we consider two types of
nearest-neighbor interactions: the in-chain stretching
distortions with the spring force constants K, and the
out-of-chain bending distortions with the spring force
constants E,', where i=1,2, indicates the Pt ions with
3+6 and 3 —5 charge disproportionation, respectively.
The mixed-valence nature of these two atomic base
chains is thereupon renormalized within the spring force
constants K, and E .

So far, only the undoped chain was considered. How-
ever, from the former introduction it is well known that
these linear chains could support the presence of defects.
Of course, their presence will influence the Raman and
the ir phonon spectrum as well.

From a general point of view, introducing a defect in
our Pt-halogen chains consists in creating a new local
charge disproportionation. In other words, there is a new
charge distribution, which breaks down the periodic
mixed-valence nature of the undoped chain.

In order to visualize a concrete example, we will con-
sider hereafter, the case of a polaron defect. It is mani-
fest by the presence of Pt(III) ions, which locally incorpo-
rate the new charge disproportionation.

Thus, in our phenomenological calculation the new
charge distribution is considered by new spring force con-
stants (K3 and E4) around the Pt(III) ions. Figure 2 sum-
marizes the situation of a Pt-halogen chain without and
with the polaron defect (for the sake of clarity the amines
complex with the out-of-chain bending interactions are
not shown). "

We postulate that the defect is confined within the two
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FIG. 2. MX-chain (a) without and (b) with the polaron defect
used for the fit.

adjacent Pt-halogen units. Of course, this choice
strengthens the localization of the defect (and also of the
corresponding phonon mode, see below) but limits the
number of new parameters in the calculation. However,
the localization or the short range of interaction of the
defect is also established well by the theoretical work of
Baeriswyl and Bishop, at least in the strong electron-
phonon coupling case. ' Within their approach, based on
the Peierls-Hubbard tight-binding Hamiltonian, they ob-
served that only the electronic states (e„)of the nearest-
neighbor Pt ions to the defect are a6'ected by the presence
of a polaron.

Concerning the vibrational response at k=0, besides
the ir-active modes (i.e., zone boundary acoustic, the
stretching, and the ir-active bending mode'), the presence
of the defect along the chain axis introduces new phonon
modes in the spectrum. The situation is very similar to
the case of a chain of alternating masses ml and m2
(m, & m2), when an isotope substitution happens. ' If the
substituted mass m' is smaller than m „aso-called local-
ized mode appears; however, if m' is larger than m, (i.e.,
heavy isotope substitution), a new mode arises between
the optic and the acoustic phonon band. In the last case,
the localized mode is called a gap mode. A single local-
ized mode is also obtained in the case of isotope substitu-
tion for the mass m 2.

'

For our Pt-halogen chains, the localized mode around
the defects arises in the linear chain by reducing the force
constants on each side of one atom [Fig. 2(b)]. In order
to fix the idea, it is useful to define a factor y as
1 —E''/E, which describes the strength of the spring
force constant substitution E' for E (i.e. , for our present
considerations we take into account a simplified
configuration where the lattice interactions are described
by the unique spring force constant K and around the de-
fect by substituting K with a new spring force constant
E'). It follows that for y &1 (0&y&0.8), the localized
mode is essentially a gap mode and for y ~1, the former
mode decreases in frequency then changes its character
and enters the acoustic band. Once within the acoustic
band, there is a group of eigenvectors or modes which
have a large amplitude near the impurity. Such a group
of modes is called a "resonant mode. "
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Hereafter, since the defect situation in our systems will

always correspond to the gap mode regime, we will

briefly use the expression of a localized mode.
Our interest lies mainly in the zone-center (k =0)

modes of the folded Brillouin zone because they are
relevant for the ir spectra. Therefore, following our pre-
vious work, one has to build up the dynamical matrix
(D, ) for the two situations of Fig. 2 (i.e. , without and
with defect) at k=0 by writing down the equation of
motion in a one-dimensional space. Considering the
linear harmonic approximation, one obtains the matrix
(A2) of Ref. 5 in the case without defect, and for a chain
with a defect [Fig. 2(b)] we refer the reader to the en-
closed Appendix. Solving the corresponding determinan-
tal equation through the diagonalization of D„(Ref.5)
we determine the eigenvalues w„ofthe ir-active and of
the Raman modes as well, and afterwards the corre-
sponding normal modes.

Of course, the dynamical matrix D; has been built up
within the unit cell with the use of cyclic boundary condi-
tions. Furthermore, if we consider a unit cell of 144
atoms (i.e., which corresponds to an even number of un-

doped unit cells, namely 12), we have to diagonalize a
144X 144 dynamical matrix and we would then obtain for
the case without defect the phonon dispersion relation
w (k) for 12 points between —

m j2a and m /2a (a is the
Pt-X lattice constant in the ideal metal chain, i.e., the un-
dimerized chain). ' In fact, the diagonalization of the
144 X 144 D;, matrix at k=O for the situation of Fig. 2(a)
is equivalent to the eigenvalues problem solution within a
12-folded Brillouin zone.

The calculation of the vibrational modes in the pres-
ence of impurities is performed on a unit cell of N atoms
with one defect. It is clear that the size of the unit cell,
which, by the way, corresponds to the new unit cell of the
doped chain, is related to the impurity concentration. In
fact, due to the cyclic boundary conditions, the chain
contains one defect or impurity for each X atom [N.B.,
then the XXN D; matrix must be diagonalized (see the

Appendix)]. Thereupon, the impurity-mode strengths
scale directly with the concentration. Consequently, the
larger the concentration of impurities is, the stronger the
localized mode appears and reduces the strength of the
original lattice absorption, since its strength is "bor-
rowed" by the impurity modes. ' Furthermore, the en-
tire acoustic and optic bands have become active in the
fir absorption due to the folding of the BZ.

Up to now, we considered the consequence of the pres-
ence of defects only on the phonon modes along a simple
one-dimensional chain. However, since we take into ac-
count the out-of-chain bending interactions, also another
localized mode is expected along the chain axis, due to

the new spring force constants distribution around the
defect. Similar to the gap mode described above, this ad-
ditional localized mode has similar properties relative to
its strength and localization. Hereafter, we will call it the
localized bending mode.

Before concluding this subsection, we would like to re-
call the attention of the reader to the effect of the impuri-
ty on the out-of-chain lattice interactions also. In fact,
we have previously taken into account the effect of its
presence on the intrachain lattice interactions. There-
fore, besides the new spring force constant distribution
along the chain axis, new out-of-chain bending force con-
stants (K, ) must be introduced around the defect within
the phenomenological calculation. In the next subsec-
tion, we will apply this phenomenological approach to
our Pt-halogen chains, in order to interpret the phonon
spectra along the chain axis.

B. ir and Raman active phonons
in the Pt-halogen chains

The application of the phenomenological lattice-
vibrational calculation consists in finding the best set of
parameters K, and K,', in order to obtain the best possible
fit with the experimental data.

In Table I we summarize the spring force constants
used in the calculation and for which the best fit is ob-
tained. An interesting feature evolves immediately from
Table I; namely, the tendency to reach the best fit with
in-chain spring force constants K, and K2, which do not
appreciably differ from each other. This is more and
more pronounced going from Pt-Cl to Pt-Br and to Pt-I.
The progressive leveling of K~ and K2 is in contrast to
the numerical conclusions proposed by Clark, who con-
sidered only the interactions within the chain [i.e., with
K =0 the dynamical matrix reduces its dimension to
four and would correspond to the 4X4 matrix without
defects (see the Appendix of Ref. 5)], and where K,
differs about a factor between 10 and 20 from K2. ' We
have claimed that this large difference is to be ascribed to
a certain renormalization due to the omission of the out-
of-chain bending interactions. However, the small and
increasing (from Pt-I to Pt-Cl} difference between K, and

K2 in our fit accounts for the 5 charge disproportionation
on the Pt site.

Concerning the spring force constants (K3 and K4)
around the defect, these are approximately a factor 2 less
than K, and K2. Baeriswyl and Bishop calculated that
the lattice dimerization around the Pt(III) ion (i.e., the
defect) is only half the normal dimerization. ' In fact,
around the defect there is a weak-coupling limit as a
consequence of the reduced-charge disproportionation

TABLE I. Spring force constants K, and K,
'

(with i = 1,2) and K3, K4, and K& used in the phenome-
nological fit.

Pt-Cl
Pt-Br
Pt-I

1.10
0.80
0.73

K,

0.87
0.70
0.61

0.66
0.58
0.66

K',

0.02
0.06
0.01

0.50
0.40
0.40

0.40
0.35
0.30

K, (mdyn/A)

0.50
0.45
0.50
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and, consequently, screening of the lattice interactions
arises, so far supporting the reduced values of K3 and E4.

The results of our fitting procedure for the ir-active
phonon modes is presented in Table II, which further-
more shows the good agreement between the experimen-
tal and the calculated modes. We would like to remind
the reader that we expose the eigenfrequencies (calculated
and experimental) for each Pt-halogen compound in in-
creasing order of energy and that the temperature depen-
dence of the frequency is negligible.

The differences between the calculated and the experi-
mental values generally oscillate between 0.5 and 3 meV.
Different valence delocalizations could arise in domains
along the chain characterized by different halogen dimer-
izations. Then it was claimed that similar effects could be
the origin of the small dispersion of the ir modes.

The assignment of the phonon modes is obtained by
the calculation of the eigenstates. The fit procedure was
applied for the undoped and for the doped Pt-halogen
chain as well. In fact, in the following figures the eigen-
states in the two situations for the Pt-Cl chain are com-
pared. We depict, with the vertical bars, only the ionic
movements or displacements along the chain axis, omit-
ting for clarity the corresponding components of the (en)
complexes and also the dimerization of the halogen ions.

Firstly, the eigenstate of the lowest-frequency (i.e., at
17, 12, and 11 meV for Pt-C1, Pt-Br, and Pt-I, respective-
ly) ir mode is shown in Fig. 3. It corresponds to the
zone-boundary acoustic mode, which is expected, since
the reduced mass of this mode is equal to the Pt-ion mass.
As it will be the case for all other ir modes, the eigenval-
ues are not at all afFected by the presence of defects
which, however, strongly influence the eigenstate around
the defects itself.

Figure 4 shows instead the other typical ir mode for a
one-dimensional chain; namely, the stretching phonon
mode which is at 44.5, 28, and 23 meV for Pt-C1, Pt-Br,
and Pt-I, respectively.

The phonon states at 36.5 meV for Pt-Cl and at 37
meV for Pt-Br and Pt-I are assigned to the ir-active bend-
ing mode. This is induced by the out-of-chain bending
interactions and is depicted in Fig. 5.

So far, we have discussed the ir-active phonon modes,
characterizing each one-dimensional chain with the unit
cell shown in Fig. 10 of Ref. 5 (i.e., without defect).
However, the presence of polarons along the chain axis

(15 rneV}

(0)(U) 0) il 5 Q 8 il 5 4) 5 il (5

(14meV)

(bio kt tt 0 8 ttt Ct (b Q 0 lt k&

C) Pt(ll) ~ Pt(1V) Pt(lll) Q Hatogatt

FIG. 3. Eigenstate of the acoustic mode for the Pt-Cl chain
(a) without and (b) with a polaron defect (within brackets, the
calculated eigenvalue).

[Fig. 2(b)] introduces also the so-called localized mode
besides the changes described above for the former pho-
nons (see Figs. 3—5).

The new spring force constant distribution around the
defect (K3 and It:~) is responsible for the localized gap
mode at 25, 18, and 16 meV for Pt-C1, Pt-Br, and Pt-I, re-
spectively. The corresponding eigenstate of Pt-Cl (Fig. 6)
demonstrates well its localization. We have just men-
tioned in the previous subsection that this strong localiza-
tion is a direct consequence of the small coherence length
of the defect and then, of the limited range of the new
spring force constant distribution (i.e., up to the adjacent
Pt-X cell).

In addition, we find, in our calculation, another local-
ized mode which is induced by the presence of the out-
of-chain bending interactions; namely, the so-called local-
ized bending mode (Fig. 7). This last mode is then as-
signed to the fifth structure in the phonon spectra at 32
meV for Pt-C1, and at 33 rneV for Pt-Br and Pt-I. How-
ever, in a previous work we have assigned it to an ir mode
of external type. In fact, it was argued that this external
mode involves the whole Pt-X chain against the inter-
chain complexes formed by the (C10&) molecules. Be-
sides, the fact that the reduced mass of this external
mode is essentially equal to the total mass of the (C10~)
molecule for the whole Pt-halogen series, could also sup-
port the experimental evidence of finding the external

TABLE II. Experimental and calculated fir phonon frequencies (m„)(N.B., m„are exposed in in-

creasing order of energy).

Pt-Cl expt.
calc.

17.0
14.0

25.0
26.0

32.0
34.0

36.5
35.0

44.5
44.0

Pt-Br expt.
calc.

12.0
14.6

18.0
17.0

28.0
24.0

33.0
32.0

37.0
37.0

Pt-I expt.
calc.

11.0
11.0

16.0
14.0

23.0
20.0

33.0
33.0

37.0
39.0
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(a) O 0 Ii 0 0 il 0 0 0 Ii 0

(44meV)

(26meV)

C)O ~ 0 080@0~ 0

(44m eV)

FIG. 6. Eigenstate of the gap mode for the Pt-Cl chain with a
polaron defect (within brackets, the calculated eigenvalue).

(b) O 0 ii 0 0 0 e 0 ii 0

FIG. 4. Eigenstate of the stretching mode for the Pt-Cl chain
(a) without and (b) with a polaron defect (within brackets, the
calculated eigenvalue).

mode at the same frequency for all Pt-X compounds.
Nevertheless, with the described phenomenological ap-
proach we can only consider the so-called internal modes,
and the last hypothesis is beyond such an approach and
remains an alternative explanation.

Besides the ir-active phonon modes, the diagonaliza-
tion of the dynamical matrix D,, also offers us the Raman
modes; namely, the Raman breathing and bending
modes. In Table III the experimental data concerning
those modes are compared with the corresponding calcu-
lated ones.

Concerning the Raman bending mode, we should re-
mind the reader that, for the linear chain without defect,
a seven-times degenerate mode is obtained at approxi-
mately 26 meV. Actually, this degeneracy will be re-
moved by the presence of defects [i.e., from the model
calculations point of view by the E, spring force constant
around Pt(III)], which essentially split the degenerate
states in two parts. However, the calculated split results
in the range of -4 meV for our choice of K&.

The calculated Raman bending mode agrees very well
with the experimental result of Tanino et al. , who mea-
sured the Raman spectra of mixed-halogen compounds
Pt-(Cl, „Br„).'

The halogen independence of these degenerate modes
follows from the fact that only the (en) complexes are in-

(35meV)

(o)(t) QII0 $0 Ii 0 (Poli 0

volved but the Pt and halogen ions do not move at all.
The eigenvalue calculation demonstrates this fact well
since the Raman bending mode frequencies depend only
on K and Jt, (i.e., which are affected by the valence on
the Pt ions). Besides, the numerical values of the E and

K5 constants are quite the same for the whole Pt-halogen
series (Table I). The small differences account again for
the different 5 disproportionation on the Pt ions and con-
sequently for the small experimental dispersion of these
bending modes. However, from the experimental point
of view, the resolution is not enough in order to detect
such a dispersion and the further splitting of about 4 meV
due to the defects. '

Regarding the Pt-I compound, we did not find any
published experimental results for the corresponding Ra-
man bending modes. Nevertheless, from the above con-
siderations about the halogen independence, an experi-
mental frequency of about 26 meV is expected, as predict-
ed by our calculation. In fact, preliminary Raman mea-
surements point out a mode around 23 meV. ' An inves-
tigation of Pt-(CI, „I„)would be needed in order to
prove the halogen independence of this mode. '

Returning now to the Raman breathing mode, we de-
pict first of all the corresponding eigenstate in Fig. 8. In
addition, regarding this Raman mode, the most interest-
ing experimental evidence concerns the fine-splitting
effect of this mode and of its overtones. Through reso-
nant Raman measurements Tanaka et al. resolved the
Raman mode into five structures with three main com-
ponents. ' ' Firstly, they proposed the halogen isotopic
splitting as a possible explanation of the fine structures.
Nevertheless, the expected frequency split in the breath-
ing mode for different halogen isotopes is larger than the
measured one. Thus, they conclude that the most prob-
able origin of the fivefold split is to be ascribed to the
presence of different domains composed by short chains
of different length.

With a similar investigation of the Pt-Br compound,
Conradson et al. also claimed that the presence of de-
fects could be a further cause for the five structures of the

(b) (i) 0 ii 0 (t) P P 0 &i 0

(35meV)

oo ~ heovnol ~ o

(34m eV)

FIG. 5. Eigenstate of the ir-bending mode for the Pt-Cl chain
(a) without and (b) with a polaron defect (within brackets, the
calculated eigenvalue).

FIG. 7. Eigenstate of the localized bending mode for the Pt-
Cl chain with a polaron defect (within brackets, the calculated
eigenvalue).
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TABLE III. Experimental and calculated frequencies of the
Raman modes (breathing and bending mode).

Pt-Cl Pt-Br Pt-I (meV)

~breathing expt. '
calc.

38.4
38.4

21.5
22.3

15.4
17.1

bending expt.
calc.

26.0
22. 8-26.2

26.0
22.6-25.3 22.6-25.9

'Reference 1.
Reference 13.

(58meV)

{a} G 0 ~ 0 0 ~ 0 0 ~ 0

(38meV)

(b)Q 0 ~ 0 OOOO ~ 0

FIG. 8. Eigenstate of the Raman breathing mode for the Pt-
Cl chain (a) without and (b) with a polaron defect {within brack-
ets, the calculated eigenvalue).

Raman breathing mode. ' This seems to find a
confirmation in our lattice-vibrational calculation. In
fact, besides the Raman and ir modes described above,
many other modes at the I point of the BZ are obtained.
Among these, many modes have a Raman symmetry and
eigenfrequencies around the breathing mode, even
though the frequency split (i.e., around 1.7 —2.3 meV) is
much larger than the experimental one (around 0.5 meV).
Moreover, a particular interest is assumed by that Raman
mode which has a breathing symmetry and is strongly lo-
calized around the defect (i.e., a polaron). Within our
phenomenological calculation it should appear at approx-
imately 27, 15, and ll meV [i.e., at a frequency about a
factor (&2) ' less than the normal breathing Raman
mode frequency] for Pt-C1, Pt-Br, and Pt-I, respectively.
For Pt-Cl the frequency is equal to the Raman bending
mode. Therefore, the mode detected around 26 meV
cauld be the contribution of two Raman active phonons
(i.e., the bending and the localized breathing one). Re-
cent preliminary Raman measurements on Pt-I clearly
give the evidence of a shaulder around 14 meU superim-
posed to the Raman breathing mode at 15.4 meU of the
undoped chain. Furthermore, similar measurements on
the heavy-doped Pt-I compound [i.e., with approximately
5 mol. % of Pt(III) along the chain axis] confirm the ener-

gy shift of the breathing mode. ' It is important to real-
ize that the squared eigenfrequency of the Raman defect

mode is equal to (E, +K4)/M„,i, ,„[thecorresponding
eigenfrequency by the undoped chain is

(K, +Kz)/M„„,,„,thus a factor 2 larger than the form-
er one] and consequently, by increasing the density of
such Pt(III) sites, this last mode will be dominant. For
the Pt-Br compound, however, we do not know enough
accurate Raman measurements which could prove and
confirm this guess from our lattice-vibrational calcula-
tion.

All these modes at the I point of the BZ arise as conse-
quence of the BZ folding caused by the presence of de-
fects. Then, the defect density det|:rmines the large size
of the unit cell where the phenomenological calculation is
carried out. Since a sum rule is considered for the total
mode strength, it happens that the total strength of the
normal one-dimensional modes (i.e., for a chain without
defects) is borrowed by the impurity modes.

With high defect concentration (i.e., small unit cell), a
corresponding small amount of modes at the I point of
the BZ is expected. These, on the contrary, will have a
considerable mode strength. The intrinsic concentration
of defects in our Pt-halogen chains amounts to approxi-
mately 1 mo1% which corresponds to one defect in each
100 unit cells. ' Although this gives sizable normal and
impurity modes, all the other I point modes are at least a
factor 10 smaller in strength. Concerning the ir-active
mode, our calculation with the presence of defects gives
evidence of new ir modes at very low frequencies (i.e.,
below the zone-boundary acoustic mode) and at frequen-
cies smaller than the stretching mode. This explains the
structures at very low frequencies, the splitting of the
zone-boundary acoustic mode, and the broad asymmetric
shape of the stretching mode detected along the chain
axis (see Fig. 1).

As briefly mentioned in the previous section about the
experimental setup, we also tried to measure the photoin-
duced phonon spectrum for the whole Pt-halogen series.
This was performed with the aim to artificially change
the defect concentration. Following the experimental
procedure of Kurita et al. , we measured in the fir the
R (w) spectra along the chain axis after photoexcitation
with a laser light at an energy above the CT band absorp-
tion energy for different periods of irradiation. We did
not obtain any difference in the phonon spectra before
and after the photoexcitation. Of course, it is possible
that the laser power is not enough to pump a large
amount of impurities. However, this negative result also
claims that the intrinsic amount of defect is just consider-
able and it could not be further improved by photoexcita-
tion.

In other words, the augmented concentration is not
large enough in order to alter the impurity phonon mode
strength. Even though it is very difficult to characterize
the samples regarding their impurity concentration, it is
established quite well that the intrinsic amount is there-
fore about 1 mol%, not far away from the saturation
point of approximately 4—5 mol %.

Besides, we measured many doped compounds with
nominal different impurity concentrations. ' In this case
also, the spectra did not change at all, confirming the
difficulty of finding the fingerprint of the defect concen-
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tration dependence in the fir optical measurements. Once
again, it seems to us that, besides the objective difficul
in eharaeterizing the defect concentration of the samples,
this intrinsic impurity concentration should be, neverthe-
less, near the saturation point.

Before concluding, we will discuss some further aspects
concerning the phenomenological calculation. A first as-

pect, which was taken into account during the lattice-
vibrational calculation, concerns the distribution of the
defects within the unit cell. It was proved that, due to
the strong localization and the cyclic boundary condi-
tions, the position of the polaronic defect within the
chain axis is not influential on the phonon modes. Be-
sides, the experimental results and the agreement with
the phenomenological calculation claim further that the
defects are uniformly distributed along the chain. The
contrary would indeed correspond to a random distribu-
tion which also implies, from a phenomenological point
of view, a random distribution of the spring force con-
stants (since there would exist diA'erent domains with
different charge distributions and consequently lattice in-
teractions). Then, as demonstrated well by Barker and
Sievers, ' the phonon spectrum would not be character-
ized by well-defined mode structures, but on the contrary
by broad and/or "washed-out" phonons.

Moreover, the calculations were performed paying at-
tention to the so-called charge neutrality. The unit cell
always contained an electron-hole pair of defects (i.e.,
hole and electron polaron). Also in this respect such a
dependence does not affect the above conclusions.

Another important aspect regards the type of the de-
fect. Up to now, the phenomenological fit to the experi-
mental data was performed for the case of a polaron de-
fect. Nevertheless, a big debate arose recently about the
identification of the defect type (i.e. , polaron or soliton).
In fact, Kuroda et al. and Sakai et al. ' although ob-
taining results similar to those of Kurita et al. , extrapo-
lated another conclusion from the analysis of their data,
based on the presence of neutral soliton defects. There-
fore, the same calculation was performed for other kinds
of impurities; namely, for the neutral and charged soli-
tons, for which similar results to the previous ones for the
polaron case mere achieved. The defect dependence con-
cerns only the symmetry of the corresponding eigenstates
and, among them, that of the localized impurity in partic-
ular. This is directly related to the spring force constant
distribution which depends on the charge distribution
modeling the defect. %e would like to remember that the
choice of the spring force constant distribution (which
appears in Figs. 9 and 10) is related, as by the polaron

(27m eV)

~ oz ohio ~ oeso ~ o
K„K~ K~ K~ K~ K~ K„K~ K~ K, K,

FIG. 9. Eigenstate of the localized gap mode for the Pt-Cl
chain with a neutral soliton; please note the spring force con-
stants distribution used for the fit (within brackets, the calculat-
ed eigenvalue).

(28m ev)

~ ooqqoqq eo ~ o
K, K K K, K K K, K K K, K,

FIG. 10. Eigenstate of the localized gap mode for the Pt-Cl
chain with a positive charged soliton; please note the spring
force constants distribution used for the fit (within brackets, the
calculated eigenvalue).

case, to the halogen dimerization around the defect. The
halogen displacements were calculated with the PH mod-
el of Baeriswyl and Bishop (see Figs. 10 and 11 of Ref.
12). For example, by the charge soliton (Fig. 10) the
halogen between the two Pt(IV} ions (which actually
represent the defect) is completely undimerized. This lo-
cal perturbed configuration is modeled by the symmetric
spring force constant (K3) distribution around the former
undimerized halogen ion. Then, from the nearest-
neighbor Pt-halogen unit on (along the chain axis} the
configuration looks like the unperturbed chain, which we
further model with E& and Ez. In Figs. 9 and 10 the lo-
calized modes for the case of a neutral and charged soli-
ton in the Pt-Cl compound are presented, respectively.
Also, for these defects, the strong localization of the im-

purity mode appears clearly. The calculations were per-
formed using the same spring force constants of Table I.
It follows that the type of the impurity has a marginal
importance in the above conclusions. From the optical
point of view it is not possible to distinguish between
different defects but one has to combine other experimen-
tal methods. For the present situation, we have pointed
out that the impurities should simultaneously have a
charge and a spin, which, however, is not the case for the
solitons.

Finally, we would like to remember that by applying
the Peierls-Hubbard model of Baeriswyl and Bishop, '
where our fitted spring force constants are considered as
input parameters, it was possible to find a link between
the phononic properties, the electronic ones and, above
all, the static distortion characterizing the dimerized
CDW ground state. ' This was an evidence, at least in-

direct, of the intrinsic physical consistency of the K pa-
rameters used for the vibrational calculation (i.e., they
did not have a numerical meaning only).

IU. CONCLUSION

Our thorough optical measurements between UV and
down to the fir give the evidence of the presence of de-
fects along the chain axis of the one-dimensional Pt-
halogen compounds. Discussing with particular em-

phasis the fir spectra, we found the signature of the im-

purities within the phonon spectra by detecting the defect
("localized" } modes. Our conclusions are well confirmed
and supported by the lattice-vibrational calculation based
on the linear harmonic approximation. Even though the
optical investigations alone are not enough for discerning
between the type of the defects, we pointed out their
probable polaronic nature.

Lastly, we would like to point out the similarity of our
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Pt-halogen chains with the polyacetylene systems. In
fact, roughly speaking, these two systems belong to the
same category in the sense they have the twofold degen-
eracy and can therefore support the defect (as, e.g., soli-
tons). Onodera first suggested the consistency of different
theoretical approaches, concerning these compounds,
within the continuum limit (the reader can find an ex-
tended discussion elsewhere, e.g. , in Ref. 9) that after-
wards permits us to establish a universal behavior of
these similar one-dimensional systems. Then, our Pt-
halogen compounds could be considered as another pro-
totype class of one-dimensional compounds, which can be
suitably studied from the theoretical and experimental
point of view, as well.
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Fig. 2). Actually, we enlarge the matrix D, as developed
for the case without defect in the Appendix of Ref. 5. We
consider a unit cell formed by 12 ions along the chain,
where each Pt ion is coordinated by four bonds of the (en)
molecule. The defect [i.e., a Pt(III) ion] is located on site
number 5. It results in a 36X36 D„matrix which has
the following general and schematic form:
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APPENDIX

We present here the dynamical matrix D,
&

for a one-
dimensional Pt-halogen chain with a polaron defect (see

[N.B., i and j number, from 1 to 12, the Pt and X ions
along the chain alternatively [Pt(III) on site 5] and from
13 to 16 the four (en) bonds to the Pt site 1, from 17 to 20
to Pt site 3 and so on up to 36], where the 12 X 12 matrix
H,J is (N.B., we write only the matrix elements which
differ from zero)

H)
—K

1

0

—K
1

H2
—K 2

—K2

H3
—K4

—K4

H4
—K 3

—K3

H)
—K3

—K3

H4
—K4

—K

H3
—K2

—K 2

H2
—K ]

—K 1

H,
—K [

—K
1

H2
—K 2

—K2

H„
—K2

—K
1

—K 2

H2

with the diagonal elements
H2 K] +K2y H3 K2 +K4 + 8K2,
Hq =2K3+8Kq, and H6=2K2+8K2.

H[ =2K) +8K&
H4=K3+K4,

H, ', =K', +K& for i from 13 to 20 and from 29 to 36,

H, '; =K& +K5 for i from 21 to 28,

H,
' =0 for all i Wj (i,j-from 13 to 36) .

Finally, the 12X24 matrix H, - takes the values

Then, the diagonal 24X24 matrix H, '- has the following
form:

H, j=—K', for j from 13 to 20,

H3j K 2 for j from 1 7 to 24

H5 = —K5 for j from 21 to 28,

H7j —K 2 for j from 25 to 32

H9j= —K', for j from 29 to 36,

H» = —Kz for j from 13 to 16 and from 33 to 36,
all other H„=O(for i from 1 to 12

and j from 13 to 36) .

In conclusion, the reader should pay attention to the fact
that the charge neutrality was not considered here.
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