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Continuum theory of 4mm-2mm proper ferroelastic transformation under inhomogeneous stress
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We have studied a model square-rectangular proper ferroelastic transition in an inhomogeneous
stress field 0.(R) with nonzero deviatoric stress component. This stress field can induce spatially
heterogeneous transformations. Quasi-one-dimensional solutions for the lattice displacement fields

u are derived both analytically and numerically for some special choices of stress functions. We find

that the local instability is influenced by three factors: temperature, the magnitude of the applied
stress, and the stress size. A critical strength cr, ( =0.801 in dimensionless units) exists such that for
~cr(R),„&o, a local transition can occur without an activation energy. The constraints of bound-

ary conditions on the allowed solutions are also examined, and single-phase or twinned embryos

may be formed through local transitions for free boundary conditions or fixed ends, respectively.

I. INTRODUCTION

The theory of heterogeneous displacive phase transi-
tions in a solid system has been and continues to be a
challenging problem. It is still far from being thoroughly
understood despite the large amount of work done in this
field. There are discrepancies and inconsistencies be-
tween theories and experiments as well as within the ex-
periments. The complications are due to several causes:
First, there are significant effects of defects in almost all
systems. Second, usually a displacive phase transition in
a solid, proper or improper ferroelastic, is accompanied
by structural distortions, and these distortions often in-
teract with other defect induced distortions through
long-range elastic coupling, which complicates the prob-
lem in comparison with systems having only short-range
interactions. Third, in many experiments, sample holder
and other mechanical constraints directly infiuence some
physical properties and, in some cases, even the nature of
the phase transition; thus one must study the effect of
stress, especially of heterogeneous stress.

The effects of homogeneous external stress on phase
transitions has been studied by several investigations, '

who have shown how the first-order transition tempera-
ture could be altered by the stress field in a proper ferroe-
lastic system (things are different for a second-order
phase transition, for which the phase transition is
smeared out by the applied stress). ' As for the case of
heterogeneous stress, little work has been done up to
now, but it is, in reality, more relevant to the defect-
induced transformation problem. In a previous paper
we have introduced a method to treat systems with de-
fects and proposed a continuum model which might be
used to explain the heterogeneous transformation and
thermal growth process in an athermal martensite.
Based on that model we will, in this paper, address how
boundary conditions determine the allowed solutions,
and look at the effects of magnitude and extent of an ap-
plied stress on the local thermadynamic instability.

For illustrative purposes here we treat only an applied
stress field with certain symmetry, i.e., the deviatoric

stress in the square-rectangular phase transition. The in-

terphase and interface boundaries are assumed to be
coherent, and we neglect additional stress fields possibly
generated by the transformation process. Analytic func-
tional forms for the stress field were assumed, which
might be realized either by introducing suitable substitu-
tional or interstitial defects, or by applying surface con-
straints to the system. Even with such a simplified mod-
el, many observations could be correlated and better un-

derstood, including the concepts of local instability,
preexisting embryos, pinning of twin boundaries by de-
fects as well as the heterogeneity of transformations in
many systems. '

The paper proceeds as follows: Section II defines the
theoretical model and the equilibrium conditions. Solu-
tions for free boundary conditions which would lead to a
single domain product phase, and solutions for fixed ends
which lead to a twinned product phase, are given in Sec.
III and IV, respectively. The final section is the summary
and conclusion.

II. 2D MODEL FOR A PROPER
FERROELASTIC TRANSITION

For a proper ferroelastic transition the system free en-

ergy depend only on the elastic strain tensor

=
—,'(u; +u;+uk;uk ), (i j,k =1,2) .

Here u; are the components of displacement field, the in-
dices after comma represents a partial derivative with
respect to the corresponding space variable, and the last
term in the parentheses is the geometrical nonlinearity.
The total free energy of the system can be written, in the
continuum approximation, as

G= g u, , u, -ko. ; dV, (2)

with

i' u&~ki ' ) g0( ij&u~ij )+gG(ui jk )

g ( ouo; ) is the contribution of local strain and external
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local stress, which includes both harmonic and anhar-
monic terms; go(u; ik) is the strain gradient energy dis-
cussed below. For the 4mm-2mm proper ferroelastic
transition it is convenient to use the so-called symmetry
coordinates, ' '" in which the three independent elastic
strain components are

For static configurations we set the left side of Eq. (9) to
be zero.

In a 4mm-2mm proper ferroelastic martensitic trans-
formation, the lattice motion is a pure ( 11 ) /( 11 ) shear,
and there are two low-temperature variants which are en-
ergetically degenerate in the absence of external stress or
body force. Consider now an infinite long slab with the
dimension L& ~ ~ and L, &&Ll, to be in the directions of
(11) and (11),respectively, and apply an external stress
0 2 to lift the twofold degeneracy. A quasi-one-
dimensional solution can be found under the approxima-
tion of geometrical linearity [i.e., neglecting the product
term in Eq. (1}],for example, if

In terms of these symmetry coordinates go(u;, cr;.) can
be written explicitly as crz=az(n R) &0, with n= —(1,1),

2
(10)

go(u; J,oj )= B 4 C,+ e2+
4 6

(a=1,2, 3), (5)

the displacernent field u may be given by

u=mu(n R), with m= —(1,1) .v'2

where summation convention has been used, and the
coeScients

C&] +C&2& Ap C&~ C]2& A3 C33 (6)

are the independent combinations of second order elastic
constants for square symmetry in Voigt notation, cr

(a=1,2, 3} are the components of external local stress in
the symmetry coordinates. The last two terms in Eq. (5}
with B & 0 and C )0 are the minimum anharmonic terms
required in order to describe a first-order phase transi-
tion. Only those high-order terms which contain the de-
viatoric strain e2 were retained in the free energy expan-
sion for simplicity. 8 and C are linear combinations of
fourth and sixth-order elastic constants.

For the same reason only the lowest-order strain gra-
dient terms are kept in the energy expansion, so that the
gradient energy go(u; ~k) is given by"

go(e;)= —,'d, (ef, +e) z)+ —,'dz(ez, +ez z }

3(e3, +e3 z }+d4(e, , ez, —ez, ez z }

+d5( l, 1e3,2 l, ze3, 1 )

+d6(ez &e3 z
—e3 ze3 &

) (a=1,2, 3;i =1,2),
(7)

Only four of the six strain gradient coe%cients are in-
dependent and they can be determined from phonon
dispersion curves by inelastic neutron scattering. "

One can now write down the system Lagrangian

I. =f [ ,'pou;u; g—(u...u, k, o—,j)]dV (i j,k =1,2);

Defining a new variable X'=n R, one can derive the
strain components e according to Eqs. (4a —c) and (11)
to be

1 d
e&=0, ez= —,u(X'), e3=0.

2 dX' (12}

This is to say that the phase transition is area conserving
and has no shear strain.

Substituting Eq. (12) into Eq. (5) leads to an effective
elastic P model under stress with single component order
parameter ez. In the absence of stress (oz=0) for that
model the first-order phase transition temperature T, is
given by'

3B
16PC

' (13)

lim e2=0 .X'~+ ~
(14)

By substituting the results of Eq. (12) into Eq. (9) and
integrating it once using the boundary condition Eq. (14),
one can simplify the equilibrium condition to give a
second-order ordinary di8'erential equation

where p is positive and independent of temperature, and
is related to Az through the relation Az =p(T —T, ).

When oz(X')%0 but is localized (nonzero only within
certain range), we would still expect the bulk transition
temperature to be the same as Eq. (13) except inside the
range of the stress field. Outside that region for T & T,
the system is in the high-temperature square phase at
X'=+ ~, which defines the boundary condition for solu-
tions above T&,

again, summation conversion has been used, po is the
mass density. The equation of motion is' "

d ep
dz z

= Azez+Bez+Cez —oz(X') .
dX'

(15)

Bg
aX auJ &J

(i,j,k =1,2) . (9)
We shall discuss different solutions of Eq. (15) in the two
following sections in conjunction with the relevant
boundary conditions.
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III. SOLUTION FOR FREE BOUNDARY
CONDITIONS ABOVE T

o 2(X'}=o p5(X'), (16)

The simplest case would be the insertion of a single line
of foreign atoms at X'=0. If the produced stress field
can be approximated as

both finite magnitude and width, so that the discontinuity
of strain gradient resulting from 5-function stress will be
smoothed out, and a local transition can be induced.

Unfortunately, analytic solutions can not be found for
a general functional form of cr 2(X'), so numerical
methods have been used. As an example, we took a mod-
el function

one can solve Eq. (15) analytically to give

2A2(B+2W)
e2= 8' ——'A C

3

with

2v'~, zd, ~x I8'=8' e

(17)

(18)

X'
oz( X') =crpsech

Xo
(22)

where 0 p and Xp describe the strength and characteristic
width of the stress field, respectively. For convenience
the physical quantities are then rescaled to dimensionless
form according to the following transformations:

' 1/2

Clearly ez~0 as ~X'~~00. The constant Wp can be
determined by putting Eq. (18) back to Eq. (15), and in-
tegrating Eq. (15) once over the range —b, &X' & b, then
taking the limit b ~0, which gives the condition

4C
—38

T Tc7=
T1 Tc

e2 (23a)

(23b)

8 A2V Wpdp( Wp —8 /4+
3 AzC)

[( Wp —8l2) ——', A2C]
(19)

16C 4C
p

1/2

Op, (23c)

Using Eqs. (11), (12), and (17) one can easily derive the
displacernent field u,

16Cd 2
(23d)

u=mv (X');
(20)

Qd2 la F (v, q), for X' & 0,
v(X')= '

Qd2/a [2F(vp, q) —F(v, q)], for X') 0,

It is found that there are three factors which influence
the heterogeneous phase transition process, the system
temperature r (homogeneous), the strength of the stress
field &p and the characteristic range of the stress gp. We
will address them individually.

where F(v, q) is the elliptic integral of the first kind and

a=+—', A C, (21a)

(21b)

&+a
2Q

' 1/2

(21c)

2Q
vp= arcsin ~o+a

2Qv= arcsin 8'+ a

1/2

1/2

(21d)

(2 le}

Equation (20) is a kink which describes the local des-
tortion of the high-temperature phase with a 5-function
stress acts at X'=0. This distortion will cause a relative
shift of the system at X'%0 [similar to the picture given
in Fig. (5a)]. However, the size of the distortion does not
change significantly with temperature, and the magnitude
8'o is a continuous function of temperature through A2
[Eq. (19}],therefore, this local distortion does not induce
a local transition and can not be considered as the em-
bryo of the low-temperature phase. The reason, as will
be shown later, is because the assumed stress field Eq. (16)
has no width. In reality a 5 function is not a good
description of the physical picture, the stress should have

A. Temperature-induced heterogeneous phase transition

First, let us fix the strength and width of the stress,
then examine how the transition proceeds with decreas-
ing temperature. The results for a choice of o p=0. 6 and
gp=2 are shown in Fig. 1 in a half space (the solution are
all even function of g). For r) r, =1.7558, the local dis-
tortions caused by the stress field increase on cooling, but
very slow. At v =~, a first-order transition occurs, which
transforms the local distortion into an embryo of the
low-temperature phase. Further cooling (1 & r & r, ) pro-
duces the thermal growth of this embryo, and at
r =r, = 1 (the rescaled bulk transition temperature
without external stress) the whole system transforms into
a single-domain low-temperature phase. Note here the
interface of low- and high-temperature phases is assumed
to be coherent.

B. Stress-induced heterogeneous transition

Next, we look at the case for which the width of stress
and the temperature of the system are fixed but vary the
magnitude of the stress field o'p. In certain temperature
range above ~1, stress induced local transition is possible.
Figure 2 illustrates the transition process, for which the
temperature and range of stress are chosen to be v.=1.5
and (p=2. It can be seen clearly that the maximum
strain value e(0) at /=0 experiencing a discontinuous
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& =06sech (g/2)
a limited range of &o and ~. But one must remember that
the applied stress should be within the elastic limit of the
system, i.e., no plastic deformation is allowed in the
present model.

C. Local transition temperature v., and critical stress 8',

0.5

0.0
0 IO

FIG. 1. Profiles of rescaled deviatoric strain e vs distance g
from the defect center for different temperatures v.. The local
distortion transforms into embryo of the low-temperature phase
at r, =1.7588 for parameters So=0.6 and (o=2. Plots for nega-
tive g can be obtained by the relation e( —g) =e(g).

I I I I I I I I I

jump when the stress magnitude increases to o p=0. 4068,
which implies a stress induced local first-order transition.
Further increase of o o produces greater (localized) defor-
mation of the low-temperature embryo, but the size of
the embryo is not influenced much. To a certain extent
the effect of increasing &o is equivalent to decreasing r in

I 0—

I I I I I I I I I I I

cr = &, sech (('/2)

The strain space profile e(g), which minimizes the total
energy, is a hump resulting from the stress Eq. (22).
When 8'o is small, an energy barrier exists in order pa-
rameter space, which makes certain strain space profiles
thermadynamically unstable. If we use the height of the
hump E(0) to characterize these profiles, a discontinuity
will occur at ~=~„ thus we define ~, to be the local tran-
sition temperature. Figure 3 shows the plots of E(0)
versus r for several &o with go=2. One can see that r, in-
creases with &o, and at the same time the discontinuity of
e(0) becomes smaller. There is a critical strength &„for
&p )& the discontinuity disappears and the transition
becomes continuous. This corresponds to the physical
situation for which the free energy density at (=0 has
only one minimum with respect to the local order param-
eter at any temperature. We found this critical stress to
be 8, =0.801 in dimensionless units, which naturally is
consistent with the case of a system under homogeneous
stress. The continuous growth of the strain profile with
lowering temperature signifies the loss of transformation
barrier. Therefore, we define those local distortions
caused by stress magnitude &o)0.801 to be the embryos
of the low-temperature phase, because a transition tem-
perature ~, can no more be defined.

I.O /2) 0.8—
O
II 0.6—

0.5
0.4—

0.2—
0.5

0.6 0.75

cd
= I.O

I

p p i i I i

I.O l.5
I I I I I I I I I I I

2.0 2.5 5.0

0.0
0

FIG. 2. Stress-induced local transformation at temperature
7 —1.5. The critical stress magnitude is &O=0.4068 in dimen-
sionless units.

FIG. &. The magnitude of stress profile, e((=0) vs tempera-
ture v for different stress magnitude &o. The discontinuity of
e(0) is the signature of the local first-order transition, which be-
comes smaller as &o increases. The critical stress magnitude is
defined to be &, =0.801 in dimensionless unit. For o p & &„e(0)
becomes a continuous function of ~.
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D. ES'eet of stress range ga on the phase transition

The range of the applied stress is also very important;
it affects the total system gradient energy associated with
the local distortion. When &o& 0.801, the energy density
has only one minimum with respect to the local order pa-
rameter, so that the space profile of the strain order pa-
rameter will continuously grow following the shift of this
minimum with decreasing temperature. However, the
growth rate is greatly influenced by the size of the stress
field. Only o o (0.801, can a local transition temperature

~, be defined. One can clearly see the strong size effect
shown in Fig. 4. Generally speaking, the local transfor-
mation can be induced by stress either larger in magni-
tude (oo) but smaller in extent (go), or smaller in magni-
tude but larger in extent, which is partly in analogy with
the fluctuation mediated classical nucleation theory. '

However, there are two points need to be addressed: One
is that for very small size stress (go (0.1), the local transi-
tion temperature is not too much different from that of
the bulk, so the stressed regions would only provide nu-

cleation centers for the bulk transformation and prevent
the system from supercooling. The other is that for stress
of larger go () 10), the size effect diminishes and the mag-
nitude &o becomes the dominant factor to control the lo-
cal transition. As go~ De the system becomes homogene-
ous with a constant stress &o, and so the transition tem-

perature for a given &o reaches the asymptotic value

given in Fig. 2 of our previous paper.

E. The displacement Seld

The displacement field u corresponding to the results
of Figs. 1 and 2 can be easily calculated from Eqs. (11)
and (12). A typical result is shown in Fig. (Sa) for an in-

2.5

2.0

Interphase
Boundary

FIG. 5. Illustration of lattice displacements pattern
represented by (a) Solutions in Fig, 1; (b) Solutions in Fig. 6.

termediate temperature between ~, and ~f, i.e.,
& T& 7f, where rf is the bulk transformation tempera-

ture and rf = r, = 1 for an infinite system (L&~ 0e ) but

7f & 1 for a finite system. It is important to see the rela-
tive shift of the two ends caused by the partial square-
rectangular transition in Fig. 5(a). As the transformation
proceeds in space, this shift becomes larger, and it
diverges for an infinite system. Therefore, solutions given
in Fig. 1 as well as Eq. (20) can only exist with free ends,
for which the transverse translation of the system does
not cost energy. When the relative position of the two
ends are Axed, these solutions are not allowed, so we must
consider that case anew.

IV, SOLUTIONS FOR FIXED ENDS ABOVE Ti

When the two ends of the rectangular slab are fixed at
X'=+~, the displacement field u must be an even func-
tion with respect to space variable, so that the corre-
sponding strain becomes an odd function. Physically,
this means that X'&0 corresponds to one variant, X' &0
to the another. One can see from Eq. (15) that the space
parity of ez is determined by the parity of cr2(X'). There-
fore, in order to form a twin seed, cr2(X') must be an odd
function. We choose, for convenience, the derivative
form of Eq. (22} as a model function (in fact any odd
function will do)

1.5

X' X'
cr 2(X' ) =crosech tanh

Xo Xo
(24}

I.O
O. I IO 100

FIG. 4. Local transition temperature ~, vs the characteristic
width go of the stress field for different &o. r, increases with &o

but becomes undefined for o 0 & 0, (shaded area).

to show the characteristics of a twin solution and its
thermal growth process. The numerical results are given
in Fig. 6 with the parameters chosen as cro=0. 6, and
go=4. Here we have doubled the range of the stress
function because the size effect strongly suppresses ~, .
With the above parameters we found the temperature of
forming the twin embryo of low-temperature phase is
v., =1.3782. Again coherency in both the twin boundary
and the two interphase boundaries has been assumed. It
is interesting to point out the different behavior of the
twin boundary and of the interphase boundaries. The
twin boundary is fixed in space, or "pinned" by the ap-
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FIG. 6. The strain profiles e(g) for a twinned embryo at
different temperatures under the stress field given by Eq. (25) for
parameters &0=0.6 and $0=2. The local transition tempera-
ture is ~, = 1.3782.

plied (or defect) stress, but the two interphase boundaries
move away from each other with further cooling,
representing the thermal growth of the equilibrium size
of this twinned embryo. The final product phase is a bi-
crystal. When lateral constraints are present, this will
not be possible because the large displacement of the lat-
tice near the twin boundary [see Fig. (5b)]. In this case, a
twin band could be formed' ' in order to minimize the
(macroscopic) transformation strain.

The analyses for the effects of an and ga can be carried
out easily in the same way as in Sec. III. Similar results
as Figs. 3 and 4 have been obtained.

V. SUMMARY AND CONCLUSIONS

Through the above analyses we conclude that a "phase
diagram" which describes the heterogeneous transforma-
tion process under inhomogeneous stress must involve
three parameters: the system temperature ~, the strength
of the stress field &a and the characteristic range ga of the
applied stress. There exists a critical strength o'„ for

op & 0', the local distortion transforms into an embryo of
the low-temperature phase via a first-order transition,
which can be triggered by thermal fluctuations; for
&p & &, this transformation is smeared out, and the local
distortion simply gro~s continuously into a region of the
low-temperature phase upon lowering temperature.
Since thermal fluctuations are not necessary for the latter
case, one could view the local distortions caused by large
stress (oa&o', ) as the preexisting embryo of the low-
temperature phase. ' ' One may notice that the sym-

metrics of local distortion and the embryo are the same,
~, is defined as the temperature at which the maximum
value of the equilibrium strain space profile experiences a
jurnp. As o.

p increases, this jump reduces, and finally the
signature of the first-order phase transition disappears
when the stress magnitude exceeds the critical value o, .
In laboratory units cr, (-0.801 in dimensionless units)
depends on system parameters according to Eq. (23c). In
general, this critical stress is small, for instance, 0., -5
bar for InQ 79Tlp p& ~ We have also calculated the conver-
sion factor y in Eq. (23d) for the same material, which is
roughly y-a/2, where a is the lattice constant. If we
characterize the stress size by 2(a, one can conclude from
Fig. 4 that for InQ 79Tlp z, the size effect becomes
insignificant when the stress range is greater than ten lat-
tice constants, but for smaller range stresses this size
effect strongly affects the local transition temperature v,
or the growth rate of an embryo (large &p).

In the past, people have attempted to develop a scheme
parallel to the theory of liquid-vapor transformations to
apply to a solid system. ' However, that kind of
theory often has led to an unphysical energy barrier.
More importantly, the phenomena of partial transforma-
tion, viz. , the equilibrium coexistence of mixed high- and
low-temperature phases in a certain temperature range,
as well as the phenomena of transformation precursors
are beyond the capability of such classical theories. Oth-
er attempts, such as local soft mode and preexisting em-
bryo theory, ' ' may provide a partial understanding of
the problem (despite many remaining questions in those
models) but remain to be correlated. Though idealized,
the model we have presented here may help to provide a
conceptual link between these different physical concepts,
to the extent that they are defect controlled through in-
homogeneous elastic stresses.

Finally, to summarize, defects create local stresses
which cause the local distortions of the host matrix.
These local distortions can become the sites of local insta-
bility. We have shown in the present pedagogical model
that the local instability temperature v., is not separately
defined, but depends on both the strength and the range
of applied stress field. Together with the fact that defect
concentrations and boundary conditions are different for
each sample, it is apparent why ~, is generally sample
dependent.

A real system contains many defects which induce lo-
calized stress fields and hence local distortions. However,
whether a particular distortion around defects is allowed
to transform or grow into the low-temperature phase is
determined also by the boundary conditions on the sys-
tem. Here, we have looked at two simple cases, free
boundaries and fixed ends; for each the lateral dimensions
were assumed free of constraints, which is to say that the
lattices can be translated in L, dimension without caus-
ing additional elastic energy. That is generally not true,
and in practice the local transformed regions are subject
to constraints from all sides. This will produce a twin
band product phase, no matter what the parity of the
original distortion is, in order to minimize the induced
global elastic energy. It is evident that defects of large
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size, which are the favored local instability sites, have

very low mobility. The twin pattern grown from these
stress centers would have relatively stable positions in

space and be reproducible upon temperature recycling.
Because of the pinning (Fig. Sb) provided by these low

mobility defects, a finite energy is required to move the

final product twin pattern, which could inhuence shape
memory behavior.
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