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Theory of surface spin waves in metamagnets
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A theory is presented for surface and bulk spin waves in metamagnetic materials that consist of
ferromagnetically ordered layers, with the intralayer ferromagnetic exchange being much stronger

than the weak antiferromagnetic coupling between adjacent layers. Results are deduced for the

spin-wave dispersion relations in both the antiferromagnetic and ferromagnetic phases (depending

on the applied magnetic 6eld) at low temperatures. The results are applied to FeBr, and FeC12,

where the different crystal structures lead to different properties for the surface spin waves.

I. INTRODUCTION

It is well known that at the surface of magnetic insula-
tors there may be localized (or surface) spin waves in ad-
dition to the bulk spin waves that propagate throughout
the volume of the material. There have been numerous
investigations of the surface spin-wave properties of
Heisenberg ferromagnets and antiferromagnets, mainly in
terms of their dispersion relations, thermodynamics, and
Green functions (e.g. , see Refs. 1 —3 for reviews).

The purpose of this paper is to extend previous studies
by presenting a theory for surface spin waves in
metamagnets. These materials have been the subject of
experimental and theoretical work as regards their bulk
properties for many years (e.g., see Refs. 4—7). Typically
a metamagnet consists of ferromagnetically ordered lay-
ers, with the intralayer ferromagnetic exchange interac-
tions being very much stronger than the weak antiferro-
magnetic interaction between adjacent layers. For small
values of the magnetic field 8 (applied perpendicular to
the layers), the adjacent layers order antiparallel to one
another, giving the antiferromagnetic (AFM) phase,
while for larger 8 (sufficient to overcome the interlayer
antiferromagnetic coupling) the overall ordering is fer-
romagnetic (FM). The term metamagnet is usually
reserved for those materials, such as FeC12 and FeBr2, in
which the magnetic anisotropy is suSciently large corn-
pared with the weak antiferromagnetic coupling so that
there is no spin-Bop phase intermediate between the
AFM and FM phases (see Ref. 5).

The spin waves in bulk samples of FeC12 and FeBr2

have been studied experimentally by techniques including
neutron scattering ' and light scattering, ' '" mainly in
the AFM phase. There have also been theoretical studies
of the bulk spin-wave dispersion relations and other prop-
erties (see the references above and Refs. 12 and 13) lead-

ing to satisfactory agreement with experiment.
In this work we turn our attention to surface spin

waves in metamagnets. It is shown that, under certain
conditions, surface spin waves are predicted to exist in
semi-infinite crystals of these materials, and the disper-
sion relations are derived. Much of our formalism ap-
plies generally for any metamagnet, but we consider, in

particular, FeC1z and FeBr2. As mentioned above, these
two materials have already been extensively investigated
experimentally as regards their bulk spin-wave proper-
ties. Also, they differ from one another in their crystal
structure, and it is shown that this leads to important
differences for the surface spin-wave characteristics. In
Sec. II we describe the magnetic Hamiltonian and a set of
finite-difference equations satisfied by the spin-wave am-

plitudes is derived. These equations are solved by matrix
techniques to obtain the dispersion relations of bulk and
surface spin waves in both the AFM and FM phases.
Specific applications to FeBrz and FeC12 are made in Sec.
III, while further discussion and conclusions are given in
Sec. IV.

II. SURFACE AND BULK SPIN WAVES

%e write the spin Hamiltonian for a uniaxial metamag-
net in the following general form (see Ref. 13):

A= g J;.(S; S +aS,'S') —
—,
' g J,','(S, .S,'+o'S,'S,')—

—,
' g J~~ (SJ Sj'+o'Sf S; )

E,j i, l J J

gpsH g S;—+ g, S' Dg (S,') + g—(SJ')

Here i and i ' denote sites on one sublattice (i.e., one type
of layer), and j and j' denote sites on the other sublattice
(the set of adjacent layers), so that J,J is the interlayer an-

tiferromagnetic exchange interaction, while J; and J~~'

are the stronger intralayer ferromagnetic exchange in-
teraction. The effect of anisotropic exchange (Ising an-
isotropy) can be included if parameters cr and o' are
nonzero. The applied magnetic field in the z direction
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St+ =s„(kii)exp[i(kii p —cot ) ], (3)

where p=(x, y), kii=(k„, k ) is a two-dimensional wave
vector, and the z coordinate of lattice point rI corre-
sponds to the layer index n. This leads to a set of linear
coupled equations in the amplitudes s„(with n = 1,2, . . . ),
and, following the procedure in Refs. 14 and 15, we may

(perpendicular to the layers) is denoted by H, and param-
eter D )0 characterizes the uniaxial single-ion anisotro-

py. We take the i sites to refer to the spin-up sublattice
(with thermal average (S;) positive). Hence, (S'} for
the other sublattice (spin down) is negative in the AFM
phase, becoming positive in the FM phase for large
enough value of H.

To examine the surface spin-wave excitations we con-
sider a semi-infinite metamagnet that has a (001) surface
and occupies the half-space z ~0. We label the ferromag-
netically aligned layers parallel to the surface by a posi-
tive index n ( = 1,2, 3, . . . ), where n = 1 is the surface lay-
er, n =2 the next layer, and so on. We associate odd and
even values of n with the spin-up and spin-down sublat-
tices, respectively, of the AFM phase. As in previous
work on semi-infinite ferromagnets and antiferromagnets
(e.g. , see Ref. 1), the bulk and surface spin waves can be
studied by constructing the equation of motion for an S+
operator at any site l within the semi-infinite medium, us-

ing

dS,+
i

' =[S+A],
dt

where the commutator term can be evaluated in the
random-phase approximation (RPA). Using translational
invariance parallel to the surface, and seeking a time
dependence like exp( i cot) fo—r the excitations, we write

= g J,','exp[ikii (r, —r,')], (4)

while for the interlayer exchange interactions we define

v(kii)= g J;, (5)exp(ik 5),

where 5 is a vector joining the i sites in layer n to the j
sites in layer (n+1). The explicit forms of u(kii} and

v(kii) depend on the crystal structure in each layer and on
the stacking arrangement of the layers. Expressions ap-
propriate to FeBr2 and FeC12 will be given in Sec. III.
Except where stated otherwise, we assume for simplicity
that the individual exchange interactions near the surface
take the same values as in the bulk.

We now present the formal results separately for the
AFM and FM phases, assuming T « T, .

A. The antiferromangetic phase

In the low-temperature limit this is the stable phase
when H &H, where the bulk critical field is given ap-
proximately by

gps H„=2(1+cr )Sv (0) .

Here S is the spin quantum number, and
(S ) = —(S'}=S at T ((T, . The coupled equations for
the spin-wave amplitudes s„are

express the results equivalently in a matrix form. It is
convenient at this stage to introduce two-dimensional
Fourier transforms of the intralayer bulk exchange in-
teractions by

kll g I; exp[i kli ('r—, r; )]

[E gp~H„—(1—+o')Su(0)+Su(kii) —(1+o )Sv(0)]s& —Sv(kii)s& =0, (n =1)

[E gp~Hq ——(1+o')Su(0)+Su(kii) —2(1 +o)Sv( 0]}'qs+) —Sv(ki)sq +2
—Sv( —kii)s2 =0,

(n =2m+1, m ~1) (8)

[E+gpsH„+(1+cr')Su(0) Su(kii)+—2(1+o )Sv(0)]s2 +Sv(kii)s~ +, +Sv( —kii)sq, =0, (n =2m, m ~ 1) (9)

Here we have denoted E =co gpBH, and gpss—H„=(2S—1)D is an effective single-ion anisotropy field. Equations (7)
and (8) may be used next to eliminate the s„ terms with n odd from the set of equations represented by (9). The result-

ing equations connecting the s„with n even can be written in a matrix form as

( A +bo)F=O, (10)

where F is an infinite-dimensional column matrix whose elements are specified by F,„=s2 and Ao is a tridiagonal ma-

trix:

d T

Ao= 0

0 0

with
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I [gp~H„+(1+cr')Su(0) —Su(k~~)+2(1+o )Sv(0)]' —E I

S v(kii)v( —
k~i)

r=v( —k„)/v(k„)

The matrix 6 in (10) describes the perturbing effect of the surface, and in the present case it is given simply by

.=bo6, 5

with

(12)

(13)

(1+cr)Sv(0)I[E gp&H~ (1+cr )Su(0)+Su(kii) (1+cr)Sv(0 (14}

We now write (Ao+b, )= Ao(I+86), where I is the
unit matrix and 8 = Ao . Following the matrix formal-
ism as used in Refs. 14 and 15 for other surface problems,
the surface spin-wave solutions correspond to

det(I+85) =0 . (15)

~(H x + —x )/(r x —x '), m &m'
—. Pm+ I( m+m' —2m'x m —m'I(P —1)

r

m &m

where x is a complex quantity satisfying lx l

& 1 and

(16)

This is easily evaluated using the result that the inverse of
A o is known exactly (generalizing Refs. 14 and 15) as

tenuation of a surface spin wave through the property
lx l

=exp( —2Aco), where 2co represents the distance be-
tween adjacent even-index layers (i.e., co is the layer sepa-
ration) and I, )0 is an attenuation factor (see Ref. 15).
Hence, we have lx l

& 1 as a necessary condition for the
existence of a surface spin-wave branch.

By contrast, the bulk spin waves correspond to lx l

=1
(cf., Ref. 15}. On putting x =exp(2ik, co) in (17), where
k, is the third component of the three-dimensional wave
vector k=(k~~, k, ), and solving for E, we obtain the
dispersion relation

E =[gp&H„+(1+cr')Su(0) —Su(k~~)+2(1+o )Sv(0)]
—S'v(kii }v(—k~i)[2+«xp(2ik, c, )

+r 'exp( —2ik, co)] .

rx+(rx) '=d . (17)

x = —1/(«0) . (18)

When this is substituted into (17) we obtain an expression
that can be solved for the energy E corresponding to the
surface spin waves. The x parameter is related to the at-

On substituting Eqs. (14) and (16) into (15) and simplify-
ing, we obtain the conditions for a surface spin wave to
be

B. The ferromagnetic phase

The spin-wave analysis is more straightforward in this
case (which applies for H )H, ) because the direction of
net spin alignment is the same on both sublattices and
there is no need to treat the layers with n even and n odd
differently. The coupled equations for the spin-wave am-
plitudes s„at T «T, (where now (S ) =(SJ') =S) be-
come

[E gp~H„—(1+c—r')Su(0)+Su(k~~)+(1+cr)Sv(0)]s& Sv(k~~)sz=O (n =1) . (20)

[E gp~H„—(1+o—'}Su(0)+Su(k~~)+2(1+o )Sv(0)]s„—Sv(k~~)s„+, —Sv( —k~~)s„, =O, (n ~2), (21)

where we employ the same notation as in the preceding subsection. They can be written directly in the same matrix
form as Eqs. (10)—(14) with the following redefinitions. The general element of matrix F is now specified by F„=s„adn
we have

d = —[gp&H& +(1+o'}Su(0)—Su(k~~) 2(1+0')Sv(0) E]/Slv(k~~)l

&=v( —1„)/

a,= —(1+ ) (0)/lo(k„)l

(22)

(23)

(24)
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The same formalism as for the AFM phase can now be
followed. In particular, the x value corresponding to a
surface spin wave is again given formally by (18) provided
the existence (localization) condition that ~x

~

& 1 is

satisfied. The surface spin-wave dispersion relation is ob-
tained from (17), (18), and (22)—(24).

The bulk spin-wave dispersion relation is obtained by
substituting x =exp(ik, co) into (17) and using (22) and
(23):

E =g hatt H„+(1+o')Su (0) S—u (k~~ ) —2( 1+o )SU(0)

+S~u(k~~~~)~[r exp(ik, co)+r 'exp( ik, co—)] . (25)

III. APPLICATION TO FeBr& AND FeC12

We now discuss the results of the preceding section in
more detail for the specific cases of FeBr2 and FeC12.
These metamagnets have different crystallographic ar-
rangements of the magnetic ions, leading to differences in
the spin-wave spectra.

Both materials have the same trigonal arrangement of
magnetic Fe + ions within each ferromagnetically or-
dered layer (see Fig. 1). We denote by J, and J2 the dom-
inant nearest-neighbor exchange and the weaker next-
nearest-neighbor exchange, respectively. Hence, the in-
tralayer exchange sum u (k~~ ) defined in Eq. (4) is given by

u(k~~)=2J, [cos(k„a)+2cos(k„a/2)cos(k a&3/2)]

+2Jz[cos(k a&3)

+2 cos(k a+3/2)cos(k„a3/2)], (26)

where a is the nearest-neighbor distance in the layers and
the choice of coordinate axes is indicated in Fig. 1 ~

The two materials differ, however, in the stacking ar-
rangement of the layers. In FeBrz the Fe + ions in one
layer are directly above and below those in the adjacent
layers. The very weak antiferromagnetic exchange in-
teraction, denoted by J3, couples to the one nearest
neighbor in each adjacent layer and we have, for the in-
terlayer exchange sum defined in Eq. (5),

FIG. 1. Planar view of the triangular arrangement of Fe +

ions (solid circles) in the ferromagnetically ordered layers for
FeBr, and FeC1,. The nearest- and next-nearest intralayer
neighbors to the ion labeled 1 are those labeled 2 and 3, respec-
tively. In FeBr, the ions in adjacent layers are vertically above
and below the solid circles. In FeC1~ the layers are staggered
with respect to one another, and the crosses and open circles
represent the positions of the ions in the adjacent layers above
and below the plane.

A. Results for FeBr2

This material has spin S=1 and critical temperature
T, =14.2 K. The lattice constants are a=3.75A and
c =12.38A (see Ref. 16). The approximate values of the
exchange and anisotropy parameters are known from
neutron-scattering and R.aman-scattering experiments, "
and here we take J]=507 cm ', J2 = —12 cm
J3=1.45 cm ', D =-7.34 cm ', and 0.=0'=0.28.

In the AFM phase the formal expression (19) for the
bulk spin-wave frequency simplifies because U(k~~) is real
and independent of k,

~

for FeBr2. The result for the two
branches becomes ai = cos (k ), where

U(k~~) =J3 (for FeBr2) . (27)

J3 [exp(ik, a /v'3)

+2 cos(k„a /2)exp( ika /2V'3)]—'

(for FeClz) . (28)

By contrast, the stacking of the layers is staggered in the
case of FeC12 (see Fig. 1). There are three nearest neigh-
bors in each of the adjacent layers and we have

cos(k) =gptiH+ [ [Eo(k~~)+2(1+o. )SJ, ]~

—[2SJ,cos(k, c)]'(' ' .

Here Eo(k, ) is defined by

Eo(klan ) g @AH &
+ ( 1+o')Su (0)—Su (k~~ ),

(29)

(30)

The distance co between layers is equal to c and c/3 for
FeBr2 and FeC12, respectively, where c denotes the dis-
tance along the c axis of the conventional magnetic unit
cell for each case.

and Eqs. (29) and (30) are in agreement, as expected, with
previous spin-wave theories for an infinite FeBr2 crys-
tal. " From (12), (14), (17), and (18), it follows that there
are surface spin-wave solutions given by ai=cos (k~~)

where
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~s (k~~ ) =gpsH —A + j [Eo(k~~ )+ ( 1 +0 )SJ3 + A]2

(SJ )2
I

1/2

with

(31)
40—

A =0 (2+o )SJ3/[2( I+o )] . (32)

The above surface spin-wave branches only exist provid-
ed the localization condition ~x ~

& 1 (see Sec. II) is

satisfied, and in the present case give the requirement for
a physical solution that

=0 I-

~o I

C

+ +0)SJ3 ~s "II +gp&Hl &(1+a)SJ3

(33) FIG. 3. The same as for Fig. 2 for FeBr2 in the AFM phase,
but with k~~ along the y direction.

For most values of the parameters (including those ap-
propriate to FeBrz) the above condition implies that only
the cps (k)) is physical. Numerical calculations of the
predicted bulk and surface spin-wave dispersion relations
for FeBr2 in zero applied field (H=0) are shown in Figs.
2 and 3 for the cases of the parallel wave vector k~~ along
the x and y directions, respectively. We have shown only
the positive-frequency solutions, because the two
branches to the bulk spin-wave spectrum in the AFM
phase are degenerate in magnitude (~cos ~=~cos ~} when

H =0. The bulk modes are specified by a three-
dimensional wave vector k =(k~~, k, ), and so should ap-

pear as a band in such a plot because of the range of pos-
sible values for k, . However, in the present case, J3 is

relatively small and the dispersion relation (29) is a quad-
ratic expression, with the consequence that the depen-
dence on k, is almost negligible in the AFM phase. It is

cps(k) =gp&H+E (k0~~)
—2(1+a )SJ3

+2SJ3cos(k, c ), (34)

~s(kt~ ) gpsH +ED(k~~ ) ( 1+ )SJ

seen from Figs. 2 and 3 that the surface spin-wave branch
is split off below the bulk modes by about 2 cm '. This
separation is suSciently large to be resolved using Raman

scattering.
In the FM phase, the corresponding results for the

bulk spin-wave frequency co&(k) and the surface spin-
wave frequency cos(k~~) become

+(1+cr ) 'SJ3 . (35)

50
E
V

The existence (localization} condition for the surface
spin-wave branch is simply cr &0. This is satisfied for
FeBr2, and numerical estimates show that cos(k~~) )co+(k)
with k=(k~~, k, ) and for any value of k, in the Brillouin
zone. However, the splitting of the surface spin wave
above the bulk modes is too small (about 0.1 cm ') in
FeBrz to be observed by conventional Raman scattering.

B. Results for FeCl2

(-
X

FIG. 2. Dispersion relations of bulk and surface spin waves
in FeBr2 in the AFM phase, taking 0=0 for the applied Geld

and the parallel wave vector k~~ along the x direction. The bulk
spin-wave frequencies (solid lines) form a band because of the
range of k, values, but this k, dependence is very small in the
present case. The surface spin-wave branch is shown by a
dashed line.

The lattice constants of FeC12 (S=1 and r, =23.5 K)
are given by a =3.58A and c = 17.54A (see Ref. 16). For
the exchange and anisotropy parameters we take J, =5.5

cm ', Jz= —1.2 cm ', J3=0.28 cm ', a=9.4 cm
and u=o. '=0.2, in accordance with data from neutron
and Raman scattering. ' ' '

For the FeClz structure the interlayer term v(k~t) is a
complex function of k~~ [see Eq. (28)], and this makes
some of the results more complicated than in the FeBrz
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case. In the AFM phase we find the following expres-
sions for the bulk and surface spin-wave frequencies:

(—k)=gp H+I [E (k„)+6(1+ }SJ ]

—[2SJ3as(k)] ]'~2, (36)

(37)

Here Eo(kl } is defined in Eq. (30), and

s(k~~)=gp~H A—'+
I [Eo kll +3(1+o )SJ3+ A']

—[SJ a (k )]~I'~~
0—

A'= —(1+o )—3 1

2 6(1+o )
as(k ) SJ3, (38)

, 0 L
Q

while az(k) and az(k~~) denote

Re[exp( ik, c—/3)u (klan)]/J

and lu(k~~)l/J3, respectively, or explicitly,

az(k) =cos(k~a /&3 —k, c/3)

+cos(k a/2&3+k„a/2+k, c/3)

+cos(k~a/2&3 —k„a /2+k, c/3),

a&(kii) l4cos'(k„a/2)

+4 cos( k„a /2 )cos( k a &3/2 ) + 1
I

'

(39)

(40)

FIG. 5. The same as for Fig. 4 for FeC1, in the AFM phase,

but with kll along the y direction.

The qualitative behavior is similar to that for FeBr2, but

the surface branch is split off by only about 1 cm ' be-

cause J3 is smaller than for FeBr2 and the crystal struc-
ture is different.

In the FM phase of the FeC12 structure, the results for
the bulk and surface spin-wave frequencies are

cps(k) =gp&H+ Eo(kli) —6(1+o.)SJ3+2SJ3a&(k)

(42)

In this case the existence condition for either of the sur-
face branches co+ (k~~ } to represent a physical solution is

IEo(kii }+3"+a }SJ3 ~s~(kii)+ gp~H I
& 3(1+o )SJ3,

(41)

and for most values of the parameters (including those
taken for FeClz) this will be satisfied only by a)z (k~~ ). Nu-
merical calculations to illustrate the predicted bulk and
surface spin-wave dispersion relations for FeC12 are
shown in Figs. 4 and 5 for two different directions of kll.

los(k~~) =gpsH+Eo(k~~ )
—3(1+0 )SJ3

+ —,'(1+cr ) 'SJ3as(k~~~) . (43)

In this case the surface spin-wave branch exists provided
cT +

3
which is satisfied for FeC12. A numerical exarn-

ple is given in Fig. 6, where it can be seen that the surface
spin-wave branch comes above the bulk band. The split-
ting is negligible for small lk~~l but (unlike the case of
FeBrz) it becomes larger and of order 1 cm ' for larger

70

E SQ

-,0

4Q

30

20

'0—

, o I

0

FIG. 4. Dispersion relations of bulk spin waves (solid lines)

and surface spin waves (dashed line) in FeC1& in the AFM phase,

taking H =0 for the applied field and the parallel wave vector kll

along the x direction.

FIG. 6. Dispersion relations of bulk and surface spin waves
in FeCl, in the FM phase, taking gp&H=4 cm ' for the ap-
plied field and the parallel wave vector k!I along the x direction.
In this case the broadening of the bulk spin waves into a band
(region between the solid lines) is apparent, and the surface
spin-wave branch is shown by a dashed line.
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wave vectors as a consequence of the different crystal
structure.

IV. CONCLUSIONS

In this paper we have presented a theory for the sur-
face (and bulk) spin waves in semi-infinite metamagnets
at low temperatures T &(T, and in both the AFM and
FM phases. In these materials there are competing fer-
romagnetic and antiferromagnetic exchange terms, as
well as a large single-ion anisotropy, and our method of
calculation is an extension of previous theoretical work
for ferromagnets and antiferromagnets. The theoretical
results were applied to the metamagnets FeBr2 and

FeC12, which have a different crystal structure leading to
a difference in the surface spin-wave dispersion relations
and existence conditions. The spin-wave properties in
bulk samples of both of these materials have already been
extensively studied by Raman scattering and other exper-
imental techniques, as mentioned in Sec. I. It would be of
interest to have similar experiments carried out to study
the surface spin waves. This might be done, for example„
by Raman techniques using a backscattering geometry to
scatter light from a single surface of a metamagnet, by

analogy with other surface light-scattering studies (see
Ref. 6). The theoretical results in this paper indicate that
the surface spin waves are separated in frequency from
the bulk spin waves to a larger extent in the AFM phase
and this would make the surface spin waves more readily
observable by Raman scattering. Also, we calculated a
larger frequency separation in FeBr2 compared with

FeClz, which would favor the former material for experi-
mental studies.

On the theoretical side, there are various possible ex-
tensions to this work. These include incorporating the
effects of modified exchange constants at the surface and
carrying out Green-function calculations. The former
would lead to a modification of the frequency separation
between bulk and surface spin waves (which is expected
to be more important in the FM phase), whereas the
latter would be needed for calculating Raman-scattering
intensities.
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