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Coherence length and vortex filament in the boson-fermion model of superconductivity
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The boson-fermion model of high-T, superconductivity is based on the dominance of the "s-
channel" reaction 2e~$~2e, where P is a local field, representing phenomenologically the pair
state. We show that in this model the coherence length g can be calculated and is very small, con-
sistent with observation. This, in turn, justifies the local-field approximation. The relevance of
Bose-Einstein condensation is discussed; in this theory, the critical temperature can be much higher
than that in the BCS theory. We also examine the vortex filament and the critical magnetic fields

H, 1 and H, 2.

I. INTRODUCTION

One of the important differences between the recently
discovered high-temperature superconductors' and the
usual lower-temperature superconductors is the smallness
of the coherence length g. For the former, 3

g is = 10 A;
for the latter& g is much longer, typically = 10 A for type
I and =10 A for type II. The purpose of this paper is to
calculate g for high-T, superconductors, according to the
recently proposed (phenomenological) boson-fermion
model of superconductivity. '

A. Review

In order to obtain a perspective on the theoretical
model, we begin with a brief review. The observation of
such a small coherence length g indicates that the pairing
between electrons, or holes, is reasonably localized in the
coordinate space. Hence, the pair state can be well ap-
proximated by a phenomenological local boson field P(r),
whose mass M is =2m, and whose elementary charge
unit is 2e, where m, and e are the mass and charge of an
electron. It follows then that the transition

2e ~$~2e

must occur, in which e denotes either an electron or a
hole; furthermore, the localization of P implies that phe-
nomena at distances larger than the physical extension of
P (which is (g) are insensitive to the interior of P. Since
g is of the same order as the scale of a lattice unit cell, it
becomes possible to develop a phenomenological theory
of superconductivity based only on the local character of

Of course, physics at large does depend on several
overall properties: the spin of P, the stability of an indivi-
dual P quantum, the isotropicity and homogeneity (or
their absence) of the space containing P, and so on. The
situation is analogous to that in particle physics: The
smallness of the radii of pions, p rnesons, kaons, etc. ,

2e ~2e+phonon~2e . (1.2)

In the language of particle physics (1.1) is an s-channel
process, while (1.2) is t channel. The BCS theory may be
called the t-channel theory, and the model that is based
on (1.1) the s-channel theory.

The use of a boson field for the superfluidity of liquid
He II has had a long history. However, there are some
major differences in the following application to (high-
temperature) superconductors:

(1) The P quantum is charged, carrying 2e, while the
helium atom is neutral.

(2) We assume each individual P quantum to be unsta-
ble, with 2v as its excitation energy.

In any microscopic attempt to construct P out of 2e,
because of the short-range Coulomb repulsion it is very
difficult to have P stable. The explicit assumption of in-
stability bypasses this diSculty; it also makes the present
boson-fermion model different from the theory of
Schafroth and others.

In the rest frame of a single P quantum (in isolation),
the decay

$~2e
occurs, in which each e carries an energy

(1.3)

makes it possible for us to handle much of the dynamics
without any reference to their internal structure, such as
quark-antiquark pairs or bag models. Hence, the origin
of their formation becomes a problem separate from the
description of their mechanics. An important ingredient
in this type of phenomenological approach is the selec-
tion of the basic interaction Hamiltonian that describes
the underlying dominant process. In the usual low-
temperature superconductors, the large g value makes
the corresponding pairing state P too extended and ill-
defined in the coordinate space; therefore (1.1) does not
play an important role. Instead the BCS theory of super-
conductivity is based on the emission and absorption of
phonons,
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and

y(x) y~(x)e(l/2)ii)(x)

Consequently, in a large system, there are macroscopic
numbers of both bosons (the )}) quanta) and fermions
(electrons or holes), distributed according to the princi-
ples of statistical mechanics.

At temperature T (T„ there is always a macroscopic
distribution of zero-momentum bosons coexisting with a
Fermi distribution of electrons (or holes). Take the sim-

ple example of zero temperature: Let eF be the Fermi en-

ergy. When e~=v, the decay $~2e cannot take place
because of the exclusion principle; therefore, the bosons
are present. Even when c.F & v, there is still a macroscop-
ic number of (virtual) zero-momentum bosons in the form
of a static coherent field amplitude whose source is the
fermion pairs. This then leads to the following essential
features of the s-channel model.

Below the critical temperature T, the long-range order
in the boson field can always be described by its zero-
momentum bosonic amplitude Bo, as in the Bose-Einstein
condensation (and therefore similar to liquid He II). Be-
cause of the transition (1.1), the zero-momentum of the
boson in the condensate forces the two e to have equal
and opposite momenta, forming a Cooper pair. There-
fore, the same long-range-order Bo also applies to the
Cooper pairs of the fermions. Furthermore, as shown in
Refs. 5 and 6, the gap energy 5 of the fermion system is
related to Bo by

(1.4)

where g is the coupling for $~2e.
Since in reality )})) is a composite of 2e, when the aver-

age distance between )I} quanta becomes less than the di-
ameter of the composite the approximation of treating
each (t as a single boson breaks down. However, for den-
sities not that high, by representing the 2e resonance as
an independent it) field, we may convert an otherwise
strong interaction problem (which forms the resonance
and exists at small distances) to one that can be handled
by perturbative series in weak coupling (i.e., the residual
interaction at relatively larger distances). This enables us
to give a systematic analysis of such a theory; it also
makes transparent the question of gauge invariance and
symmetry breaking.

B. Coherence length

To derive the coherence length g, we may either ana-
lyze the vibrational spectrum of P, or examine the vortex
filament and the critical field 0,2. These details will be
given in the following sections. Here, we begin with a
simple discussion.

Consider the case of a scalar )}) interacting with an elec-
tron (or hole) field g through (1.1). Let A be the trans
verse electromagnetic field. Assume the space to be iso-
tropic and homogeneous. Define the phase-angle variable
8(x) by

)I}(x)=R (x)e' '"',

V(x)= A(x) —(2e) 'VH(x) . (1.6)

At very low temperature we have R —=Bo, the long-range
order parameter (chosen to be real). As shown in Ref. 6,
the energy spectra for the transverse and longitudinal
modes of U are (in units of R=c =1)

cv, (k)=(i{. +k )' (1.7)

and

co (k)=[A, +k v +(k /2M) ]'

where k is the momentum (or wave nuinber},

(1.8)

E(k)=
'2

k' —p +5
2m

1/2

(1.10)

where b, is given by (1.4), m is the electron mass, and )cc

the chemical potential.
Equations (1.7) and (1.8) also follow from general argu-

ments: (i} At zero momentum k =0, as in the Higgs
mechanism, the energies of the three spin components of
the massive vector field V become the same; i.e., they are
all equal to the rest mass m v, given by

mp kL o

—
1

(ii) When e =0, we have mi =0 and the transverse mode
is the usual photon with co, =k (since the velocity of light
c is 1). On the other hand, the longitudinal mode de-

scribes the Goldstone-Nambu boson' which, for e =0,
corresponds to the vibration of (t), propagating with the
sound velocity v ((I (i.e., co&~kv as k~0). (iii) For
very large k, the excitation of )t) approaches the free bo-
son spectrum k /2M,

k
co&~ for k ))2Mv and (2M/A, ~)'~

2M

For e&0, the Goldstone-Nambu boson joins with the
transverse photon to form a massive vector field V, which
leads to the above formulas for col and co„consistent with
(i) —(iii).

For the coherence length g, we may set cv&(k) =0 and k
becomes complex, which gives a boson amplitude, say
exp(ikx), that decreases exponentially with distance (e.g. ,
along the radius of a vortex filament). The decay rate in
x determines g. From (1.8), the root

k:i&2@+ —for co&(k) =0

satisfies

(1.12)

=(2eBO) /M

is the inverse square of the London length, e =4m /137, v

is the "sound" velocity of the boson-fermion system, and
M the mass of )t). The electron spectrum is of the BCS
form

with R and 0 both Hermitian. Write p+ = (Mv } +[(Mv) —(M/A L ) ]'~ (1.13)
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4=1/l - .

(2) For v & (MA, I ) ', p+ are complex with

e (M/g )1/2 ia

(1.14)

(1.15)

where

The amplitude exp(ikx) becomes, then, exp( —&2p+x).
To conform to the usual definition (as will also be dis-
cussed in Sec. III), the coherence length g is given by
[Re(p )] ', which is always & [Re(p+)]

(1) For u &(Ml.l ) ', p+ and p are real and

g
'~ M/A~ ~ (T, —T)'i' (1.24)

1 ArL

H,
&

—
z

const+ ln
e

(1.25)

and

1
H, 2

2eg
(1.26)

As is well known, the critical fields H„and H, 2 are given
by (see also Sec. IV)

and

cos2a =MAL U
2 (1.16)

Thus, for Tbelow but near T„

H, ~- ( T, —T)'i (1.27)

sin2a=[1 —(MA, L v ) ]' (1.17)
and, neglecting the relatively slow variation of the log
term in (1.25),

correspondingly, H —T —T.c1 c (1.28)

g= QA, L /M scca . (1.18)

A complex p+ implies the condensate amplitude inside a
vortex filament also contains an oscillatory component,
which may lead to new observational possibilities.

In the case v &(MA, r ) ', according to (1.16) cos2a
varies from 0 to 1; therefore cosa is between I/v'2 and 1.
Hence

+2k,L/M &g&QA, L/M . (1.19)

[Recall that A, L =(2eBu) /Mc . The product A, L times
the Compton wavelength R/Mc is independent of c, the
velocity of light. ] Assume a boson condensate density Bo2

(at T«T, ) between 10 —10 ' cm . On account of
(1.9), M =—2m, and e /4n =—„'„the London length is

g,' —10" cm-',
o

3800 A, 8 —10 cm
(1.20)

0
Since the Compton wavelength M ' is -2 X 10 A, we
see that in case (2), (1.18}and (1.19) give

g- few A (1.21)

BD~T~ T (1.22)

Case (1) holds only if u is larger than (MA, L } 'i —10
times the velocity of light; hence, depending on U,

g-(Mu) ' & few A, or g-&2ukL «AL. In either case,
the theory predicts a very small g, consistent with experi-
mental observations. Because A, L »g, the boson-fermion
model gives, in general, a type-II superconductor.

In case (2},besides complex p+ there are other interest-
ing consequences, which we shall discuss. As shown in
Ref. 6 (and also in the next section), the spectra (1.7),
(1.8), and (1.10) are valid at any temperature T & T, .
When T~T, —,the number of bosons in the condensate
varies as

So far we have not taken into account the Coulomb
screening effect on g due to the electrons. This will be
discussed in Sec. III. As we shall see, it introduces only
minor changes for T((T, . When T~T„ its effect may
become important; depending on the parameters, (1.24)
can be modified to

(1.29)

and therefore both H„and H, 2 become ~T, —T, but
with H, 2/H„»1, as in the low-temperature region.

In order to make the essential features of the model
clear, we restrict ourselves in the above discussion and in
Secs. II—IV to the idealized situation of an isotropic and
homogeneous space. The analysis given here can be
readily extended to any lattice space. This will give a
somewhat larger coherence length, g-10 A, in a more
realistic case. The details are planned to be given in a
subsequent paper.

T, ccp*/m*, (1.30)

where p' is the number density of superconducting
charge carriers, deduced from XL, and m * their effective
mass; the proportionality constant is the same for all ma-
terials, about

C. Bose-Einstein condensation and high T,

In the boson-fermion model, the long-range order pa-
rameter 80 is due to Bose-Einstein condensation. Conse-
quently, the phase transition can be of statistical origin,
in contrast to the usual BCS theory. As we shall see, the
critical temperature T, may then be much higher. Let us
first examine the evidence supporting such a picture.

Recently, Uemura et al. " discovered that in all (high-
temperature) cupric superconductors there is a universal-
ity law:

Hence, from (1.9) and (1.19), 40 K to 4X10 cm /m, , (1.31)

but

~T, —T (1.23) assuming each carrier bears a charge e. In the boson-
fermion model, both bosons and fermions contribute to
superconductivity. However, according to (1.9), the Lon-
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don length A.L is determined by the bosonic component.
Thus the p* in the muon-spin-rotation (@SR) experi-
ment" should be interpreted as due to bosons of charge
2e; the proportionality constant would then be reduced
by a factor 4, and the experimentally determined propor-
tionality constant (1.31) becomes

In the BCS theory, T, depends sensitively on the in-
teraction between electrons and phonons (or other excita-
tions). In the Bose-Einstein condensation, T, is deter-
mined by A, T-d, which is of statistical origin and there-
fore can be much higher (T, exists even without interac-
tion). In the boson picture, on account of (1.36), we have

40K to 10 cm /I, . (1.32) (MT, )' d=const . (1.39)

c—=6 A (1.33)

Introducing a two-dimensional density

In these cupric superconductors, the charge carriers
concentrate on the two-dimensional Cu02 plane; their
tunneling between these planes gives rise to the three-
dimensional character. The average separation c between
Cu02 planes is approximately constant for different ma-
terials:

"Empirically, " this product varies by only a factor less
than, or -2, from ideal boson to He, and to cupric super-
conductors. For He, d =—3.58 A, T, —=2.2 K, and
M —=8000m„whereas M-2m, for cupric superconduc-
tors; i.e., a mass change by a factor -4000. Thus, if one
could have smaller d, then T, would increase according-
ly. Of course, d must not be too small; otherwise, the
pair states overlap, and the boson approximation breaks
down (as in the case of cold superconductors).

0=P c

one may express (1.30) as

(1.34) II. COULOMB GAUGE

A. Hamiltonian density

T, ~cr/m' . (1.35)

In a Bose-Einstein transition, the following two lengths
should be of comparable size:

r 1/2

d:—0 and AT=
—1/2

B c
(1.36)

where d is the interparticle distance, A, T is the thermal
wavelength, kB is the Boltzmann constant, and M the bo-
son mass. Set T, =40 II and M=m'. Using (1.32) and
(1.33), one finds the corresponding two-dimensional
density/mass to be

o /M=p'c/m* =—6X10' cm /m, .

Hence, in terms of the boson picture, the experimental re-
sults (1.30)—(1.32) may be stated as A, To =2M cr /
MkBT, —=8; i.e.,

X,/d -=2&v (1.37)

for all cupric superconductors. (Note that this number is
independent of M; i.e., m ".)

For a two-dimensional boson system, there is no Bose-
Einstein condensation; the corresponding values for
(A, r/d ) would be logarithmically ~. However, the cu-
pric superconductors are three-dimensional structures,
made of parallel layers of Cu02 planes with spacing c.
Even without a definite theoretical idea, one may ap-
proach the problem heuristically by writing

(A.T/d ) —=const+1n(c/I), (1.38)

where I is a characteristic two-dimensional distance.
When the spacing c~~, A, T~ ao and consequently
T, =O for a two-dimensional system. We recall that
for an ideal three-dimensional boson system
A, r /d = (2.612)' = l. 377 and for liquid He II
A, rid -=1.65. Here, because of the log term in (1.38), it
seems reasonable that the ratio kT/d for cupric super-
conductors could be somewhat larger —=2.8.

In Ref. 6 [and as outlined in (1.7) and (1.8)], the energy
spectrum of the massive vector boson V is obtained by
following the standard (relativistic) Higgs mechanism for
spontaneous symmetry breaking. In this section, we will
repeat the derivation of the same formula by adopting the
Coulomb gauge; this approach is more appropriate for a
nonrelativistic theory. It will also be useful for the
analysis of the Coulomb screening effect on g due to the
fermions.

The Hamiltonian density in the Coulomb gauge is

H H~ +H~ +Hatt +HcoU] +Hint

where

(2.1)

H„=—,'[E,„+(VXA) ], (2.2)

H&=2vog P+ [(V+2ie A)P ] (V 2ie A)P—1

2M

+f2(f p)2 (2.3)

8 = [(V+ie A)g ] (V ie A)1(, —1
(2.4)

and

Hc,„)=——(IVA )0+eA0(2$ P+g g p,„,), (2.5)—

H. =g(4 PtPt+4t4t0» (2.6)

in which t denotes the Hermitian conjugate, A satisfies
the transversality condition V. A =0, E„is the transverse
electric field, conjugate to A,

describes the fermion (electron or hole) field, Ao is the
electrostatic potential, —ep,„, is a constant external
charge density to keep the whole system electrically neu-
tral, P is the boson field, 2vo is its unrenormalized excita-
tion energy related to the renormalized value 2v by '
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2v=2vo+ g P v-
2n , 2m

(2.7)

f =2~a/M . (2.8)

with P denoting the principal value. The coupling f
gives a repulsive force between the bosons; for hard-
sphere bosons' of diameter a,

f
2

HcoUld r g p pkp —k
2k

(e '~bk+e'~b
k )

k

X(e '~b k+e'~bkt )+ (2.19)

(The inclusion of such a repulsive force is useful for a
later purpose, but not essential to our discussion. For
simplicity, we neglect the paramagnetic interaction of the
electrons. )

In the Coulomb gauge, the dynamical variables are g,
p, and A; their conjugate momenta are ig, ip, and—E„, which satisfy the following equal-time commuta-
tion and anticommutation relations:

with

fd r&:——pN+fd rH (2.20)

N= f (2P P+g g)d r (2.21)

where . . . denotes terms cubic and quartic in a&, b&
and their Hermitian conjugates. On account of (2.18),
the k=0 term is absent in the above sum.

Let p be the chemical potential. The eigenstates of

and

[g(r), g (r') j =5 (r —r'),

[P(r),P (r')]=5 (r —r'),

(2.9)

(2.10)

determine the thermodynamical properties of the system.
The function ff will be called the "generalized" Hamil-
tonian density.

B. Fermion system

&o(r')
Ao(r)=e(4vr) ', d r',

[r —r'/

where

(2.12)

[E„(r);,A (r')J ]=i (5, —V V;V )5 (r —r'), (2.11)

where the subscripts i and j vary from 1 to 3 denoting the
space components of E„and A. The electrostatic poten-
tial Ao(r) is regarded as a dependent variable:

Substituting (2.15) and (2.16) into (2. 1)—(2.6) and (2.20)
and (2.21), we collect all the terms in the generalized
Hamiltonian that are quadratic in annihilation and
creation operators; the fermion part of the quadratic
terms in f d r% is

k
2m I k~ k

~0(r) =2&+0 0 p; (2.13) +gBQ(e '
ak ta k $+e' a k $a„$ )

The neutrality condition

f Jo(r)d r =0 (2.14)

will be used as a subsidiary relation satisfied by the state
vectors.

Expand the field operators in Fourier components in-
side a volume 0 with periodic boundary conditions:

(2.22)

where the repeated index cr is summed over 1 and $.
Let

ak $
=ay )cosI9k —e a k )sinek,sy

a k $
=e' ag )sinek+a g )cos|9k,

(2.23)

q (r)= g II '~~a„e~k'
k

(2.15) k~
sin20k =gBo/Ek, cos28k = —p2m

Ek
and

P(r)=B e' + g Il ' b„e'"'
k

(2.16} Ek

'2
k +g2B 2

2m

1/2 (2.24)

with Bo and y both real c numbers, o = 1 or l,
(ak, ak', ~' I 5kk' 5 ., and [bk, bk'] 5kk" The parame-
ter Bo is the long-range order.

Similarly, Jo can be written as

(2.17) d ref = g p Ek+E&a k ak
k

2m
(2.25)

Evidently [ak, a k, .
I =5kk5 ., and the transformation

(2.23) and (2.24} is therefore canonical. ' ' Correspond-
ingly, (2.22) becomes

where pk=p k and, because of (2.14),

pg=O at k=O . (2.18}

in which the last term gives the fermion spectrum (1.10).

C. Boson spectrum (g =e =0)

In terms of pk, the integral of the Coulomb energy densi-
ty (2.5) becomes

We first discuss the hypothetical limit g =e =0, keep-
ing only the "hard-sphere" interaction f&0. In this
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case, v=v0 and the relevant generalized Hamiltonian

density % can be written as
and substituting (2.36) into (2.35), we obtain

(V$) VP+ V(P P),
2M

(2.26)
d r =OV B0 + ~k +g ig]~k

2 2M

where

V(4 4) =2(vo p)—A+f'(A')' . (2.27)

In the expansion (2.16) of the boson field, the constant Bp
depends on p,' it is determined by requiring V to be a
minimum at B0', i.e.,

The last term gives the boson excitation spectrum
co& =[(k /2M) +k u ]'~, which agrees with the well-

known formula' ' for a system of Bose hard spheres of
diameter a; in this case, f =2ma/M, Vo'=2f, and
therefore u =4~aB o /M . The above spectrum also
agrees with the general conditions (ii) and (iii) mentioned
in Sec. I [in the paragraph following (1.11)].

dV(Bp )

Vp
——

q
=2(vo p+f—Bp )=0,

dB0
(2.28} D. Boson spectrum (general case}

which gives

Bo =(V—vo}/f' (2.29)

P(r) =Boe'r+y(r), (2.30)

Spontaneous symmetry breaking occurs only when

Bp+0; therefore, p) vp. The expansion (2.16) can also be
written as

In the general case, g, e, and f are all nonzero. We
must include the nonlinear boson-boson interaction in-
duced by (2.6), the coupling between the boson and the
fermion pairs. The summation over all one-loop fermion
graphs is equivalent to the transformation (2.23). Follow-
ing the steps shown in Ref. 6, we see that the long-range
order parameter B0 is now determined by, instead of
(2.28),

where

y(r)= QQ '~b e
k

(2.31)

dU(Bp)
U0= =0

dB

where

(2.39)

Substituting (2.30) into (2.27) and using (2.28), we have

V(P P)= V(8 )+—'V" (P P 8) +—O(P P —8 )

(2.32)

BEk
Up=2[(vp p)+f Bp]+Q g &

( 1+a k ak )
BB0

(2.40)

where

Vo'=—dVo/dBp=d V(Bo)/d(Bo)

Since

Bo=Bo(e '—r+e' X')+X'X,

neglecting the ~y term, we find (2.26) to be

(2.33)

(2.34) 2

2(vo p+f Bo)=fl ' & (1 a kcrak, cr ),
2Ek

(2.41)

in which the first term with the square bracket is simply
the previous V0 and the second term is obtained by
differentiating (2.25) with respect to Bo. Hence (2.39) and
(2.40) give

&=V(Bp)+ (Vy ) Vy+ —,
' Vp'Bo(e 'ry+e'~y )

(2.35)

Introduce

which, when f =0 and with a k ak evaluated for a
grand canonical ensemble, reduces to Eq. (4.3) in Ref. 6.
As in (2.22), we collect in the generalized Hamiltonian
density % all quadratic terms in the bosonic operator y;
the resulting expression is, in place of (2.26) and (2.32),

with

b „=b], cosh L9k +e '~b
i, sinh8k, (2.36) (Vy ) (Vy}+ ,'Up'Bp(e 'ry+e—'ry ) +Hc,„, ,

(2.42)

and

sinh20k =2k, /~k, cosh20k = where, as in (2.33),

U0' =d U0/dB0, (2.43)

and Hc, „& is given by (2.19). Set in the present case, in
place of (2.38},

'2 1/2

2M M
(2.37}

VIIB 2
0 0 (2.38)

Since [bk, b k ]=5kk. , the transformation (2.36} is canoni-
cal. Setting

2 2

+ B2

k
(2.44)

and use the transformation (2.36) and (2.37). It can be
readily verified that
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k
r b

— cok +6 g6) cok, 2.45
2 2M

where to„ is given by (2.37); i.e., on account of (2.44),
2 1/2

IG

cot, =cot(k) —= +k U At, (2.46)

the same as (1.8) with the sound-velocity squared

U = Uo'Bo/M

2B 4

f + Q 'g (1—aq aq )
k ~k

(2.47)

and the inverse square of the London length

=eB/M (2.48)

PE~(a t„,tt„, ) =(n it, ,n„, ) =(1+e ")

and therefore

(2.49)

For a grand canonical average at P=(k~ T) ', we have

gai, ai, k /2m.
(ii) In Sec. I C we mention that the London length A,t

and, therefore, also the pSR experiment measure the bo-
son condensate density Bo. On the other hand, the
stoichiometric analysis determines the total carrier densi-
ty p (in units of e). As may be deduced from the estimate
(3.40) in the next section, these two densities can be com-
parable but diferent, with 4Bo (p.

III. VORTEX PILAMKNT

We now turn to the problem of a single vortex filament
trapped inside a superconductor. In the literature, the
same problem has been extensively analyzed based on the
Ginzburg-Landau equation. '6 Our method differs in the
following way: The Ginzburg-Landau equation describes
phenomenologically a thermodynamical system, while the
boson-fermion model of this paper refers to a mechanical
system. By applying the ensemble average, we will be
able to derive the equivalent of the "Ginzburg-Landau-
like" equation; as we shall see, the result is similar, but
there are also some essential differences.

( I tt i, a—i, ) =tanh —,'PE& . (2.50) A. Basic equations

Applying these averages to (2.41), we rederive the same
formula [Eq. (4.3}of Ref. 6], that was obtained previously
by using the grand partition function directly. The spec-
trum (2.46) is valid "mechanically" as the energy-level
formula; in addition, it can be used thermodynamically
with an appropriate ensemble average, as in (2.49) and
(2.50). The resulting formulas are valid for any T (T, .

Substituting (2.16) into (2.3) and combining it with
(2.2), we see that in & the quadratic terms in A and its
conjugate momentum are given by

We begin with the same Hamiltonian density H
(2.1)—(2.6), and the same % introduced in (2.20) and
(2.21}. In this section, we approximate the electromag-
netic potentials A and Ao as classical fields. Let r, 8,
and z be the cylindrical coordinates. We assume that

A(r) =HA (r), (3.1)

where 8 is a unit vector along the direction of the polar
angle, A (r) is a c number function which satisfies the
boundary condition for a vortex filament

1 4e 80
E„+(VXA) + A

2
(2.51) 1A(r)~ as r~00 .

2er
(3.2)

which gives the spectrum ai, (k) of (1.7):

to, (k)=(k +At )'~ (2.52)
P(r)=B(r)e' +y(r), (3.3}

Instead of (2.16) and (2.30), the quantum field operator
P(r) is written as

E. Remarks

(i) The use of local fields makes it easy to have gauge
invariance. The same spectra (1.7)—(1.10) have also been
derived in Ref. 6, based on the unitary gauge. These
spectra do not explicitly contain the plasma oscillation
(which includes fermions, and will be discussed in the
next section, together with the Debye length). In this
connection, we must differentiate a "microscopic" excita-
tion formula [such as (1.7)—(1.10)] from a "macroscopic"
collective mode (such as plasma oscillations, nuclear gi-
ant resonances, and the sound vibration of a fermionic
system). By putting more quanta in the same bosonic mi-
croscopic excitation level, one can always generate a
macroscopic collective motion. Ho~ever, not all macro-
scopic collective motion can have an obvious microscopic
excitation-level realization in the Hamiltonian. A simple
example is a free fermionic system: Its sound vibration
does not explicitly appear in its Hamiltonian,

where B (r) is a c number function and g(r) is the same
operator given by (2.31), so that the commutation rela-
tion (2.10) holds. We assume the whole space is filled
with the superconductor; therefore,

B(r)~Bo as r~ 0, 0 (3.4)

where Bo is determined by (2.41}. In (3.3}, because 8 is
the polar angle, we must have

B(r)=0 at r =0 (3.5}

in order that the operator y be well defined at the origin.
Likewise,

A (r)=0 at r =0 . (3.6)

Next, we make the Thomas-Fermi approximation for
the fermion field g. The details are given in the Appen-
dix. As shown there, the result for the ground state is to
replace the following terms in the generalized Hamiltoni-
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an density %:

H&+H;„, +(eAo —p)g P, and

k
EI, (r)= +eAo(r)

2fn
(3.9)

(3.8)

with

where H& and H;„, are introduced in (2.4) and (2.6), by

&f(r)=(2m) f d k[Ek(r) p—E&—(r)],

Ek(r)=[(EI, (r) p,—) +g 8(r) ]' (3.10)

For the ground state we can neglect the boson excitation
Thus, on account of (3.1), (3.3), and (3.8), the total

generalized Hamiltonian density becomes

2 2

1 1 d 1 d~p%(r)= —— (rA)
2 rdr 2 dr

1—eAop, „,+2(vo —p+eAo)8 +
2M

'2 '2

+ ——2eA 8 +f 8+&
dr r f '

Setting the variational derivatives of fd r & with respect to A (r), A o(r), and 8 (r) zero, we derive

(3.11)

d 1 d 2eB2 1(rA) = ——2eA
dr r dr M r (3.12)

and

dip
r

I dr dl

~k P=e(28 —p,„,)+ef (2n)d k. 1—
k

(3.13)

1 1 d dBr
2M r dr dr

2

——2eA 8 =[ 2(f 8—+v —p+eAo)+G)B,
1

(3.14)

where

G = —2(vo —v)+g (2n. ) f d k(2EI, ) (3.15)

B. Linearized equations

At large distances, we may regard

By using (2.7) and (3.10), we find [as given by Eq. (5.2) in
Ref. 6]

a(r)= —A (r),1

2er
(3.18)

2 3/2

(p —eA, )'"

8(p —eAo)
X —4+2 ln

gB
(3.16)

(ra) = —
AL a,d 1 d

dr r dr
(3.19)

P(r) =Bo 8(r), —

and Ao as small. Equations (3.11)—(3.14) take on the
linearized form

in which we neglect (gB /p) ((1. Equations
(3.12)—(3.14) plus the boundary conditions (3.2),
(3.4)—(3.6), and Ao(r}~0 as r~ ~ determine the shape
and fields of the vortex filaments. At infinity, the left-
hand sides of (3.12)—(3.14) all tend to zero, so do then the
right-hand sides. Hence, (3.12) implies the boundary con-
dition (3.2), (3.13) insures the neutrality condition, and
(3.14) determines Bo

dip
r

r dr dr
A o 2qBoP, —

r = —(2Mv) P+ 2qMBo A o,
1 d dP
r dr dr

where, as before,

(3.20)

(3.21)

f Bo+v—p=
'2 3/2

&p —2+in Sp
gBp

(3.17)

=(2eBo) /M,

kD is the Debye length,

=—-,'e Pf/P

(3.22)

(3.23)

Equations (3.12)—(3.15} are valid for the ground state
subject to the boundary condition that there is a vortex
filament in the system. It is clear that these equations are
different from the Ginzburg-Landau equation; of course,
both share similar features.

28o 1 BGo
(3.24)

with pf = ( 2m p )
' /( 3' ) the fermion density, U is the

same sound velocity given by (2.47),
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and the "effective" charge q is p+ =(Mu')'+[(Mu') (—M/AL )']'i' . (3.35)

aG,
q =2e +e

RIM

(3.25)

G = g p' —4+ 2 ln
8

gBp
(3.26)

For practical applications, BGO/Bp turns out to be rather
small, &(1;hence,

g =2e (3.27)

Note that in (3.14), (r ' —2e A) B =(2ea) B is quadratic
in a, and therefore absent in the linearized equation
(3.21); in addition, we neglect (gB/p) « 1 in (3.20).

The solution of (3.19) is

a(r) = (2el I ) 'K& (r/AL ); (3.28)

correspondingly, the magnetic field is parallel to the z
axis (with z as its unit vector),

VX A=z(2eiL ) 'Ko(r/AL), (3.29)

where, in terms of the Bessel function J (x) and the
Neumann function N (x),

where Gp is a function of p and Bp, given by Gp =G of
(3.15) and (3.16) at Ao =0 and B =Bo, i.e.,

' 2 3/2

Without screening, we have A,D ~, therefore, A, L =A.L
and u'=u, which converts (3.31) into co&(k)=0, as given

by (1.12) and (1.13).

AD —1A (3.36)
0

From the observed London length A,L
—10 A and assum-

ing M =2m„by using (1.9) we may estimate

B —10' cm (3.37)

Together with a gap energy h=gBp-3 X 10 eV, the
coupling constant g can be estimated. We find the dimen-
sionless quantity

2 3/2

-3X10 '.
vp

(3.38)

Ignoring the hard-sphere interaction, we may set f =0
in (3.17) and find

C. Estimations

For a fermion density pf =(2m@) /3ir —10 ' cm
and assuming m =m„ the free electron mass, we have
p-0. 3 eV and

K (x)= —,'vari +'[J (ix)+iN (ix)] . v —p
——g'p —2+in " -7X10-'q;

gBp
(3.39)

As in (1.12), we may set k =i v'2p, then k satisfies

2

+k u' +(A.' ) =0,L (3.31)

where

and

u'=u +(2MAD) (3.32)

(A. 'L) =A,L +(u/A. D) (3.33)

Equation (3.31) is of the same form as col(k) =0 given by
(1.12), except for the modification

and U ~v' . (3.34)

Consequently, the solution p=p+ is given by {1.13), after
the same change (3.34); i.e.,

At large r, K (r/A. L ) ~(mAL/2r )' .
e, , and the

magnetic field has the same distribution as that given by
the Ginzburg-Landau equation. However, the matter
distribution is different even at large distances.

To derive the exponential decay rate of Ao and p in

space at large distances, we may assume both to vary as
e "", as r~~. In (3.20) and (3.21), we may replace
(d/dr) by —i/2p and neglect 1/pr This gives. two cou-
pled linear homogeneous equations for Ao and p. On ac-
count of (3.27), the eigenvalue p satisfies

2p 4eBp

—4eMB (2M )
—2p

(3.30)

from (3.24) and (3.26), we have, in the same approxima-
tion f =0 and in units of c = 1,

2 —2I 10
—9

M
0

Thus, even with A, D
—1 A we have

(3.40)

(uk, L /A. D ) —10 (3.41)

which can be neglected, and therefore

(3.42)

The discussion on the coherence length g given in Sec.
I depends only on (1.13), and is valid for arbitrary v;

hence the replacement of v by u' in (3.34) and (3.35) does
not alter any of the previous analysis, nor does it affect
the conclusion of a small g-few A.

For A, D
—1 A, we have (2M', D) '-10 which gives

v -=(2M', D) —10 . Since (MA, I )
' is also —10

these two are of the same order of magnitude. From
(1.14)—(1.21) and depending on the material, we may
have either case (1) v

' & (MA, L )
' or case (2)

u' &(Mll ) ', exactly the same as in Sec. I. Note that
all high-T, superconductors are ionic crystals. It is ques-
tionable whether the type of "free" electron model used
here is applicable. In the following, we shall regard A.D as
a phenomenologica1 parameter, which may be greatly
modified from (3.23). For a heuristic approach, assume
(3.31)—(3.33) remain valid.

Two extreme limits may be of interest.
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1. No screening ( A.z ~ 00 ) F, =F. ,
—

( tr /e )I.H . (4.3)

In this case U'=U and A,I =A,I, we expect, on account
of (3.40), U ((MA.t ) ', and therefore

' 1/2

(3.43)

in accordance with (1.19). At T near (but less than) T„

Because A, &)(, by using (3.18) and (3.28) we find the
difference E& —Eo to be dominated by the following in-

tegral over the region r )g:
'2

1 1E —E„=—L —8 ——2eA d r2 2

2M r

k 2 T —TL c (3.44) mBoln(A, t /g),L
M

(4 4)

but

as discussed in (1.23) and (1.24).

2. Perfect screening (A~ ~0}

(3.45)

on account of K, (r/kt)~. A, t /r for r ((A,t. This, to-
gether with (1.9) and F, =Fo, gives, as in the usual
Ginzburg-Landau case for type-II superconductors,

(4.5)

In this case, U' =(2MAD) and (At ) =(U/AD) .
The two roots of (3.25) are p+ =2(MU') =(2AD) ' and

2 1 -2—=p =
—,'(O'A, t ) =2(MU) (3.46)

Because of (3.24) and the boson condensate density
Bo —(T, —T) as T is less than but near T„U -(T, —T)
also; therefore,

-(T —T) (3.47)

instead of (3.45). In this case both H„and H, 2, given by
(1.25) and (1.26), vary as T, —T when T is near T, . But
the ratio is very large,

Hc2 2A, I. »1. (3.48)

IV. CRITICAL FIELDS

A. H, i

F=E — d r h-H, (4.1)

Let h be the magnetic induction (usually called B) and
H the magnetic field in the Maxwell equations for materi-
al. Consider a long cylinder of superconductor with its
length L parallel to the z axis. Apply an external field Hz
where z is the unit vector ~~z. Since V X H =0, the field H
is uniform inside the superconductor. For simplicity,
consider the special case when T =0. The free energy F
is defined by

B. H, 2

When one steadily increases the external magnetic field
H, more vortex filaments appear inside the superconduc-
tor, until they reach saturation when the spacing between
filaments is -g. To conform to the usual convention we
define H, 2 to be the critical field which, when multiplied
by the area 2m.g, gives a product equal to the quantized
Aux m/e of each filament; i.e.,

H, z=(2eg ) (4.6)

C. An alternative derivation of H, ~

We start from a normal state with a uniform magnetic
field H, and at a given temperature T and chemical po-
tential p. Write

Because the material inside the vortex filament r (g is
essentially normal [since 8(r)=0 at r =0], a supercon-
ductor saturated with vortex filaments becomes a normal
conductor.

Conversely, one may turn the argument around by
starting from the normal state under a very large external
magnetic field, then decreasing the field steadily until a
bubble of superconducting material appears inside the
normal state. It is possible that these two procedures
may give different results (like the superheated liquid and
the supercooled gas in a liquid-gas transition); however,
when T = T„ it seems reasonable that they should agree.
This alternative method will be discussed in the following
section. Although the Ginzburg-Landau equation is not
used, our approach follows the standard line.

where E is the total energy. At a fixed H, the function F
should be a minimum.

The critical field H„ is determined by the condition
that the free energy Fo with zero vortex filament is equal
to the free energy F& with one vortex filament inside. For
the former, write E =Eo, since h=0,

P(r)= g 0 ' 'b„'e'"'
k

where

~bk&bk' ~ ~kk'

(4.7)

FO=EO . (4.2)

For the latter, we have E =E& given by the integral of
(3.11), since J h d r =zLvr!e; the free energy P(r) =b(rl+y(r}, (4.8)

Next consider a different expansion of the same opera-
tor P:
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b(r)=0 as r~ ~ . (4.9)

Let

6—=Tre t'~

be the grand partition function, and p be the pressure,
given by

p =ksTQ 'lna . (4.10)

We shall calculate p as a perturbation series in the cou-
pling g that appears in the interaction (2.6) between P and
the fermion pair; however, the product gb (r) is to be tak-
en as a zeroth order term. To any given order in g, the
pressure p(b, T,p) thus computed using (4.8) will be
different from that using (4.7). The latter will be denoted
by p (0, T,p ), since the c number function b (r ) is zero.

Regard p(O, T, i2, ) as the thermodynamic pressure of
the normal phase. Under any small variation of b from 0
to an infinitesimal b(r) at fixed T and p, the normal
phase is unstable if the change 5p:—p (b, T,p)—p(O, T,p)&0, stable if 5p (0. [Note that Eq. (4.9) in-
sures that the magnetic field H and the magnetic induc-
tion h at infinity are unaltered. ]

In the following we shall calculate 5p only to the
zeroth order in g, but to second order in b and gb. The
corresponding differences in the expectation values of the
electric current J and the electric charge Jo are 0(b ),
since the expectation value of g, at b =0, is zero. In the
approximation that the electromagnetic potentials A and
Ao are classical fields (but the matter fields P and P
remain quantum mechanical), the induced changes 5A
and 5Ao are likewise 0(b ), because of the Maxwell
equations. The validity of the Maxwell equations also in-
sures that the first-order variation of p with respect to
5 A and 5Ao is zero; hence, the part of 5p that is quadra-
tic in 5 A and 5Ao can be neglected, since it is 0(b ). To
0(b ), the variation 5p is entirely due to the matter part,
and can be written approximately as

5p=Q 'f d r — ~(V i2e A)—b~
2M

Bb
(4.1 1)

where g(r) satisfies (2.31) with [bi„bi, ]=5ii, , and b(r) is
a complex c number function, confined in space and sub-
ject to the boundary condition

—(2M) '(V+i2e A)y (V —i2e A)b+H. c. (4.12)

While (4.12) has zero expectation value, in the second or-
der perturbation it would generate an 0 (b ) contribution
to 5p. This contribution is neglected here. Therefore, its
validity depends on the thermal excitations at T near T,
being mainly fermionic, not bosonic.

When T= T, and p=p, (the chemical potential at the
critical point), the normal state ho =0 is the equilibrium
phase with H=O; we have

(4.13)
~po

Bbp 0, T,p
=0,

with the subscript c denoting the critical point. Next,
consider a normal phase configuration very near the criti-
cal point with p slightly different from p„T slightly less
than T„but keeping H=O, so that the normal state,
b p

=0, is not an equilibrium phase; hence

~po
(4.14)

Bbp
&0,

Bpp

Bbo

(T —T, ) +(p —p, )
&

8 5 ~po

~p Bbo o, r, ,p,

(4.15)

Let bo be the value that makes po(bo, T,p) stationary.
Therefore,

pp

()bp b~, z;„
(4.16)

Taking the difference between (4.16) and (4.13), we find

where the three subscripts outside the parentheses indi-
cate that we set bp =0 after the differentiation, and keep
T and p fixed during the differentiation. In order for the
normal phase to be stable, we inust have HAO. The ex-
pression 5p in (4.11) refers to the change of p from the
state ho=0 and HAO to one with b(r)%0, but keeping
the same H. [To 0 (b ), the part in p due to HAO is not
changed during this variation, and is therefore absent in
(4.11)].

Express the difference between (4.14) and (4.13) in
terms of a Taylor series:

where po=po(bo, T,p) is the pressure function evaluated
by using (4.10) with H=0 and for a b function which is a
real constant bo; i.e., in place of (4.8),

a2pp

Q(b 2 )2

0 pp

ab,'aT, (T —T, )

P(r) =bo+y(r) .

We note that the first term inside the square brackets in
(4.11) is simply the explicit 0(b ) term due to the substi-
tution of (4.8) into the negative of the bosonic kinetic en-
ergy

Ppa2

Bb 0BP

which, upon substitution into (4.15), gives

(2M) '(V—+i2e A)P (V i 2e A)P~ ;—
there is also an 0 (b) cross term

~P0
~bp 0, T,p

8 Pp
b —Mv

Q(b2 )2
(4.17)
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where v is the sound velocity given by (3.24). Because in
a constant local magnetic field h=hz=(VX A), the
lowest eigenvalue of (2M) '(V —2ie A) is eh/M, (4.11)
satisfies the inequality

5p ~ Q ' fd r — +MU ~b ~
(4. 18)

In order to have stability for the normal state, we require
5p &0 which implies

h )H,2=(MU) /e . (4.19)

In the above derivation, Ao(r) is regarded as a classical
field. In the present case, this is equivalent to assuming
A,L

= oo for the bosonic excitations: Recall that the
derivation of the Ar dependence in ai&(k), given by
(2.46), rests entirely on the k pole term in (2.44), which
in turn stems from (2.19). It can be readily verified that if
in Sec. II Ao(r) were a classical field, then the k pole
term would be absent in (2.44), and therefore co&(k)~0 as
k ~0. Since according to (2.46) a»(k) = [A.L +k U

+(k /2M) ]', the result is equivalent to setting
[On the other hand, in Sec. III since at T =0 P

is dominated by the c number function B(r)e', the clas-
sical approximation of Ao retains A,L dependence in
B (r).]

At the critical point A, L, (, and 1/u are all ~, but ac-
cording to (3.23) the Debye length A,D remains finite. For
T less than but near T„our approximation makes A.L
remain oo; hence because of (3.32) and (3.33),
(A'L ) =(v/AD) and U' =(2MAD) . We are then led
to the case of perfect screening. In accordance with
(3.46),
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APPENDIX

To make the Thomas-Fermi approximation mentioned
in Sec. III, we assume the electromagnetic potentials
A(r) and Ao(r) to be classical fields. Divide the entire
volume 0 into small cubes of volume l, with l ))kF ',
the inverse of the top Fermi momentum kF, but l &&the
typical length scale over which A and Ao vary. Let

r„=center of the nth box . (A 1)

Equation (4.19) becomes

H, 2=(2$ e)

in agreement with (4.6).
The above alternative derivation holds only for T near

T, . In addition, we assume perfect screening, the neglect
of bosonic thermal excitations in (4.12), and the near
equality between the magnetic induction h and the mag-
netic field H in the normal state.

A full discussion of H„H„, and H, 2 will be given in a
subsequent paper. For realistic applications, the isotro-
pic and homogeneous nature of the space must be re-

placed by the appropriate crystal lattice. This extension
can be readily made, and will be discussed elsewhere.

1—=2(Mv)
2

(4.20) A complete orthonormal set of c number functions is

[f„i,(r)], where

I expi[k r+eA(r„) (r —r„)], if r lies inside the box n;
0 otherwise . (A2)

Expand the operators pt(r) and 1(i(r) in terms of these
functions:

and

g(4'4tpi+04—
& i()+e~oA (A7)

P (r)=pa„i, f„,i,(r),
n, k

(A3)
where o is the Pauli spin matrix, A(r) is given by (3.1),
and

where o =1 or 1, and the sum extends over all repeated
indices n and k. Because of (2.9), we have Q(r) =8 (r)e' (A8)

[a„i,~,a„ i, ~ ] =5«.5i,i,.5« . (A4)

Af:Pp+%)nt (A5)

Consider the generalized Hamiltonian density for the fer-
mion system

in accordance with (3.3) but with y neglected [because we
are interested here only in the ground state and low-lying
fermionic excitation levels, otherwise the operator y(r)
has to be expanded in terms of a similar set of c number
functions (A2), but with a diff'erent gauge factor]. Let

[(V+ie A)g ]2m
h=—VX A=zh(r) (A9)

X (V ie A)P —pg g (V X—A) i)'j
—ag,

2m

(A6)

be the magnetic induction parallel to the z axis. By sub-
stituting the expansion (A3} into && and integrating over
Q, we find to O(h),
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d r JV/

k
n, k, o n, k, o.~~ a~ a

n, k, o.

e—p, +ego(r) — a, h (r)

and

Since

[e 2 +g2B („)2]1/2 (A16)

+g QB(r)(e ' a„k ta„k t+H. c.),
n, k

(A10) fa.,|,.a', k,.I=&-~1|& (A17)

(V ie—A)f„1,(r) —= ikf„k(r) . (A 1 1)

in which the functions Ao(r), h (r), and B (r}are taken at
r=r„. In obtaining (A10), we approximate, within each
box n,

the transformation is canonical. Correspondingly, (A10)
becomes

eh
d r&I= g e„k E„k—+a „1, ta„1, & E„k—

2
n, k

The deviation A(r) —A(r„) contributes to A& the well-

known diamagnetic energy which is O(h ). Define
eh+a n k $a„,k $ E„,k (A18)

k eh (r}
p, +e Ao(—r)+

2m 2m
(A12)

n iga„k &
=a„k

&
cosO„k+a „k &

sino„ke

a„k $
= —a „k t

Sine™„
/, e +a„k $ cose„ /, ,

i0

where

(A13}

where the upper sign is for o = 1 and the lower for cr = l.
Just as in (2.23},(A10) can be diagonalized by introducing

a„k ~ and a „k ~. g =i f(2m. ) d k,

g=fd rf(2n) d k,
n, k

(A19)

Because the k vector here is defined for the small volume

i, we have

sin2e„k =gB ( r ) /E„k,
cos28„„=e„„/E„„1 )

&., k
—

—,(&., k, t+&., k, 1)

jc —p+ ego(r),
2m

(A14)

(A15)

and therefore, for the ground state, (A18) reduces to (3.8)
w&th &k(r) p, =e„ I,

—and Ek(r)=E„k. Note that unlike
(2.4) the .P& of (A6) contains the paramagnetic interac-
tion. The excitation energy E„k+(eho, /2m) has a
linear dependence on the magnetic induction h, but to
O(h), the ground-state energy has no dependence on the
magnetic induction.
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