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Charge fluctuations: Spin fluctuations and superconductivity in a Cuoz sheet

A. Sudbg and A. Houghton
Department of Physics, Brown University, Providence, Rhode Island 02912

(Received 4 December 1989)

A Ud = ~ Anderson lattice model with a tight-binding band structure is used to model the Cu02
sheets of the high-T, oxides. The model is treated within a strong-coupling slave-boson method

treating spin and charge fluctuations on equal footing. At the mean-field level the normal state is a
Fermi liquid at finite doping with a transition to a charge-transfer insulator at half-filling for a large

enough charge-transfer gap. Charge fluctuations give rise to a repulsive quasiparticle interaction,
but spin fluctuations give rise to an antiferromagnetic exchange interaction and it is shown that this

leads to strong-coupling s-wave pairing for physically reasonable values of the charge-transfer gap.

I. INTRODUCTION

In recent years new and unconventional methods for
treating strongly correlated electron systems have been
developed, initiated in part by the discovery of the
mixed-valence heavy-fermion compounds and more re-
cently by the discovery of the high-temperature super-
conducting oxides. Various "slave-boson" approaches
have been introduced. Following the early work of
Barnes, ' Coleman, and Read and Newns showed how
the single-occupancy constraint of the infinite-U Ander-
son model (thought to contain the essential physics of the
single-impurity Kondo problem) could be implemented
by introducing an auxiliary spinless Bose field (slave bo-
son) to describe the empty (full) state of the rare-earth im-

purity. Derived thermodynamic properties, when com-
pared with Bethe ansatz results, were exact in the limit of
large quasiparticle degeneracy N and could be systemati-
cally improved upon by 1/N expansion. Transport prop-
erties for which few exact results are available could also
be obtained within the same technique. In the corre-
sponding lattice model, slave-boson-mediated interac-
tions have been shown to lead to an instability of the
Fermi-liquid phase with a transition to a superconducting
ground state with d-wave symmetry at leading order,
0 (1/N), in the residual quasiparticle interaction. s 6

Later it was shown that a complete description of the
physics of the Kondo lattice problem could only be
achieved with the inclusion of spin fluctuations; these
effects although formally of order (1/N) could be large
and in particular could lead to a superconducting insta-
bility in both d and p channels. Indeed the latter possibil-
ity had been suggested by several authors ' drawing on
the analogy with He in many respects the archetypal
heavy-fermion system. In this context ferromagnetic spin
fluctuations are known to drive a p-wave instability and
dominate the physics in the low-temperature regime. "

Until recently the Gutzwiller' variational approach
was the only microscopic basis of the Fermi-liquid
description of He. An important advance in technique
was made when Kotliar and Ruckenstein' (KR) formu-
lated a slave-boson approach to the Hubbard model in
which spin degrees of freedom were incorporated explic-

itly and treated on an equal footing with the charge de-

grees of freedom. It was shown that the mean-field
theory of this model is equivalent to the Gutzwiller ap-
proxirnation' to the Gutzwiller ansatz. This then pro-
vides a means of extending the Gutzwiller variational
scheme to finite temperature as well as a systematic way
of improving on the classical approximations involved in
the Gutzwiller approximation. Calculations beyond the
mean-field approximation of KR have been reported in

both weak- (Ref. 16) and strong- (Ref. 17) coupling limits.
However, as the KR formalism in its original form was
not spin rotationally invariant (SRI), attempts to calcu-
late the T'lnT contribution to the specific heat of He,
arising from fluctuations about the mean field, within a
Hubbard lattice gas model were off by a factor of 3 due to
the neglect of transverse spin fluctuations. The slave-

boson approach of KR has recently been developed in a
manifestly SRI form' ' and used to study the Hubbard
model with isotropic band structure at half-filling. The
T ln T spin-fluctuation contribution to the specific heat
determined within this formulation reduces at weak cou-
pling to the result obtained from paramagnon theory.

In a different context, one- or two-band extended Hub-
bard models which contain in the Hamiltonian an antifer-
romagnetic spin-exchange term, often referred to as t-J
models, have been used by many authors ' to discuss
the physics of the high-T, Cu02 superconductors. In
particular in Ref. 24 it was shown that, even within
mean-field theory, such a formulation has the appealing
feature of allowing a transition to a non-Fermi liquid
phase away from half-filling. On the other hand as noted,
it has been shown in a strong-coupling calculation that
hybridization in the Anderson lattice model generates a
Ruderman-Kittel-Kasuya- Yosida (RKKY) interaction
between local f moments via the polarization of conduc-
tion electrons, albeit at two-loop order. Similar con-
siderations in the present context would lead to the su-
perexchange J between copper moments via the oxygen
orbitals. Therefore the procedure of adding exchange
terms to the description by hand is unsatisfactory within
a consistent loop or (1/X) expansion about the saddle
point. This becomes even more apparent, as we shall see,
when charge and spin fluctuations are treated on an equal
footing, generating spin exchange at one-loop order.
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These mean-field theories have predicted spin-exchange-
mediated superconductivity with s-wave symmetry, al-
though the mixed s+id state discovered by Kotliar
and, equivalently, the flux phase of Aleck and Marston
were later shown to be the stable solutions at half-filling.
Indeed in a model constrained to no double occupancy on
the Cu sites, U = ~, and no interorbital correlations, spin
exchange would appear to be the only way of producing
s-wave pairing. The constraint fluctuations originating in
the local no-double-occupancy constraint generally pro-
duce a repulsive interaction even in the extended s-wave
channel, irrespective of the details of the band structure
and Fermi surface. ' '

In this paper we consider the Anderson lattice Hamil-
tonian (ALH) with a qualitatively accurate band struc-
ture appropriate for Cu-0 planes in which a nearest-
neighbor hopping is assumed, and all other overlap in-
tegrals viewed as negligible. ' The Coulomb repulsion on
the Cu sites, Ud, is clearly the largest energy in the prob-
lem ' and can be safely set to infinity, following a pro-
cedure commonly used in the treatment of heavy-fermion
systems. This excludes the possibility of double-hole oc-
cupation on Cu sites. The on-site repulsions on 0 sites,
as well as intersite Coulomb interactions will be neglected
in what follows. This version of the ALH has been con-
sidered previously by several authors; ' however, the
strong-coupling formalism used in these discussions total-
ly neglects spin fluctuations at leading order in the quasi-
particle interaction. Within this formulation of the
model the system undergoes a metal-charge-transfer-
insulator transition at half-filling for large enough
charge-transfer gap, a feature which does not seem to de-
pend on the intrinsic oxygen bandwidth. By consider-
ing coupling constants in various symmetry channels it
was found that over a wide range of values for the
charge-transfer gap and in the doping regime 0.05-0.20
only the Bzg-symmetric d-wave channel was attractive, as
conjectured in Ref. 32. This situation is similar to that
found in the one-band Hubbard model, considered in a
similar context in Ref. 29.

It is our purpose here to study the ALH within a
slave-boson technique that treats charge and spin fluctua-
tions on an equal footing and in a spin rotationally invari-
ant manner. We believe that, within a necessarily low-
order fluctuation calculation, this provides a better treat-
ment of the CuOz system than the earlier asymmetric ap-
proaches previously described. ' Since the Cu-0 over-
lap is another large parameter in the problem, ' the dy-
namics of the model is assumed to be dominated by the
Cu-0 hybridization. We will show that within the
present strong-coupling approach this generates, at the
Gaussian level, not only a hard-core charge-fluctuation-
mediated interaction between the quasiparticles of the
theory but also an antiferromagnetic exchange interac-
tion. As a consequence we have within the model the
possibility of a spin-fluctuation-mediated attractive in-
teraction in the spin singlet state, and hence a supercon-
ducting ground state with s-wave symmetry. %'e find in
fact, a strong-coupling attractive interaction in the s-
wave channel with A

& symmetry, whereas the attractive
interaction in the d-mave channel with 8&g symmetry is

weak coupling, due to the weak dispersion of the quasi-
particle interaction, and hence does not compete in ener-
gy. The Fermi-liquid parameters Fo and F; are positive
and hence in accordance with general theorems both
spin- and charge-density waves can propagate.

II. MODEL AND FORMALISM

To be specific, we mill assume that the Ud = ~ ALH
with a qualitatively accurate band structure, appropriate
for a square lattice, provides a relevant description of the
CuOz sheet. In the hole representation the Hamiltonian
is given by

H= QEdd, d, + QE~p; p;
JO' I CT

+2V+y(k)[dzt pz +H. c.],
k

(2.1)

when the additional operator constraint,

gdI d, 81, (2.2}

is imposed at all sites at all times. Here d creates a
hole on a Cu 3d ~ & orbital, while p; creates a hole in

an 0 2p„or 0 2p„orbital. Ed and E are the site ener-
gies of the 3d» orbital and the degenerate 0 2p„and

X

0 2p orbitals, respectively; V is the Cu-0 hopping ma-
trix element and

and

~oj&= gs,t. .d,
t . ~vac& . (2.3b)

Here ~vac) denotes a site with no Cu orbitals, e creates
a 3d' state on the Cu orbital, whereas the composite
operator in Eq. (2.3b) creates the 3d state on the Cu or-
bital. To preserve SRI, s . ~ must be a 2X2 matrix, ' '
which is conveniently expanded in Pauli matrices as fol-
lows:

3

s, &= g (s, „/V2)r„. &,
p=o

(2.4)

here Vo is the 2X2 identity matrix. The normalization of
the s „fields has been chosen so that

3

Tr(s, s,. )= g s „s „;
p=O

y(k) =[sin (k„/2)+sin~(k /2)]'~~

when lengths are measured in units of the Cu-Cu bond
length. The charge-transfer gap we referred to in the In-
troduction is defined within this model as 24:—E~ —Ed.

To treat the nonholonomic constraint, Eq. (2.2}, by
field theoretical techniques we slave-bosonize the Hamil-
tonian, Eq. (2.1), in a spin rotationally invariant
manner. ' ' We define two boson fields e and s . ~ in
the following way:

(2.3a)
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Q =e'e +s „s „=1,
or equivalently, in the Ud = ao case,

Q =e ei+ gdj dj =1,

(2.5a)

(2.5b)

and in addition

from now on we adopt a notation in which repeated p in-

dices are summed over. Constraints must be imposed on
the system to enforce conservation of spin and charge
and to ensure that the Cu sites can never be doubly occu-
pied. ' ' These constraints are given by

as both Q, and L, „commute with the Hamiltonian, the
constraints are rigorously enforced at all times. When
considering fluctuations around the mean-field theory, to
be described below, it is more convenient for computa-
tional purposes to use the form of the constraint given in
Eq. (2.5a). This form involves fewer couplings between
Lagrange multipliers and fermion fields thereby reducing
the number of contributions to the boson polarizabilities.

Using the representation Eq. (2.3) for the physical
states together with the redefined Hamiltonian, Eq. (2.8),
the grand canonical partition function for the system can
be written as an imaginary time functional integral

and

ioio ~i~ (2.6) Z = fDs„Ds„De De DA, ' "DA,„' 'exp — X(r) de

(2.9)

L, = gd, r .d, [s, os—+s,s, o+i(stXs, )]=0.
o.a'

(2.7)

where P is the inverse temperature and the Lagrangian
X(w) in the absence of an external magnetic field is given
by

The constraints are implemented in the usual way by
coupling the operators Q~ and L, „ to Lagrange multi-
pliers and redefining the Hamiltonian as

Z(r) =X'(r)+X',yr), (2.10)

H~H+i

QADI"(Q

—1)+i g A. „'L „;
J J

(2.8)
where the pure boson contribution to the Lagrangian,
X (i), is given by

2 (i)= ge, e + gs „+Ed+i'" iA. '0—s „, +i gA, '"(e e —1)—i gA, ' '[s Os +s s o+i(s Xs )] .
J ' J J J

(2.1 1)

The contribution to the Lagrangian from the fermion sector X,s(r) is obtained when the fermion degrees of freedom are
integrated out and is defined by

exp —f d~X,s(~) = fDd Dd Dp Dp exp —f d~X (r) (2.12)
0 0

where

L(r)= gd,
JcTo'

+ gp, ~ +EI, —p p, ~+ g 2Vy(k)(pk ~zq «dk+q ~ +H. c. ),
l, o k, q, o, o'

(2.13)

and the field z is defined by

Zj;oo' Sj.o.o. ej (2.14)

The functional integral over X, Eq. (2.9), is a faithful rep-
resentation of the partition function provided a gauge is
fixed to avoid multiple counting of gauge equivalent field
configurations, e.g. , BA.' "/8~=0, BA, ' „'/8 =0, the
"Cartesian gauge. " The fields e and s 0 transform as
scalars under spin rotations, whereas the fields s- trans-
form as a vector, hence within the present context they
are naturally interpreted as charge constraint, charge and
spin fluctuations, respectively. The former have been

shown to actually represent the removal of degrees of
freedom. ' The charge and spin fluctuations have the op-
posite property and are thus additional degrees of free-
dorn in the system. ' ' ' Correspondingly the Lagrange
multipliers A,

'-" and A,
'

0 may be viewed as local chemical
potentials fixing the occupation number on the Cu sites
appropriately, whereas the A,

' ' are to be regarded as local
magnetic fields fixing the direction of spin polarization.

It has been shown' that if double-hole occupancy on
Cu sites is allowed, use of a matrix field z . , which
reduces to Eq. (2.14) in the Ud = ~ limit, leads to spuri-
ous results in the weak-coupling limit, when the kinetic
energy of the system must remain unrenormalized from
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X [( 1 —e, e/ )70—s s ] (2.15)

Here f creates a doubly occupied Cu orbital and s is
the time-reversed version of the matrix field s. All
choices of renorrnalization of the z fields compatible with
the rigorous constraints, Eqs. (2.5) and (2.6) are

its free-particle value. We find that even in the present
context of the Ud= ~ ALH, a renormalization of Eq.
(2.14) is necessary to obtain meaningful results for ther-
modynamic properties when Gaussian fluctuations about
mean-field theory are included; similar conclusions have
been reached by others. ' The problem of obtaining
the correct weak-coupling limit was partially resolved at
the mean-field level by KR who chose a specific renor-
malization of the z . ~ such that the free-particle result
was regained, a procedure which has recently been gen-
eralized to the SRI case' ' as

equivalent if no approximations are made. In the
strong-coupling limit considered here f~ ca.n be set equal
to zero and Eq. (2.15) reduces to

(
( ~ +~ )

—)/p ~(~t~
)
—)/pz. = e. e-70 s s e-s- s s. (2.16)

which will be used in the following.
In the mean-field approximation all boson fields are

taken to be independent of ~ and the Cu-site index. It is
then possible by a global SU(2) transformation, together
with a corresponding global rotation of the spinors d.
and p to diagonalize the matrix field z simultaneously
at all sites. Hence at the mean-field level the SRI forrnal-
ism is equivalent to KR. We will now consider the mod-
el, which has a perfectly nested Fermi surface at half-
Sling, only in a doping regime suSciently far away from
half-filling that the ground state is known to be paramag-
netic. Then in the saddle-point approximation the
effective action per unit cell in the paramagnetic phase is
given by

SMF IPN, =so(Ed+A. '"—ko ')+A, '"( e 1)—— g in[[iso„—(Ek ' —(u)][&'~„—(EI,+' —(u)] j,
k~ co

(2.17)

where X, is the number of unit cells and
(()„=(2n +1)m/P is a Fermionic Matsubara frequency.
The energies of the upper and lower (a=+1) quasiparti-
cle bands are given by

=—IE +g /+(z[(E ))( ) + 16V p (k)z ](/2~

and the coherence factors u and v are given by

( )2 (+)2 4V z y (k)
(E' ' —I, ') +4V z (k)

Q =U =1 0
(2.21)

(2.18)

where z =e /[e +(so/&2) ] and Ao(
' plays the role of

the renormalized d-level energy. Note that the top of the
lower quasiparticle band is located at A,o

' and the bottom
of the upper one at E when E &ko '. The c numbers so,
k'", e, and A,o(' are determined self consistently by ex-
tremizing the effective action SMF', in addition the chemi-
cal potential is positioned in accordance with Luttinger's
theorem. In the low-temperature regime kz T (&E
—

Ao
' it can be seen by performing the Matsubara sum in

Eq. (2.17) that the tertn involving Ek(+' does not contrib-
ute to the effective action. The system is therefore de-
scribed by an effective one-band Hamiltonian,

H, (f=EO+ g (E), ' —(M)CI, ~' CI, ~',
k, a

here

E =~ [s'(E +g(') —g('))+g(')(e' —1}]

(2.19}

pk cr
—U k Ck 0 + U k ~T Ck «T

( —) ( —) (+) (+)

dk ~
—uk Ck~ +uk Ck ~,

(2.20)

The quasiparticle operators CI,
' (CI,+'), pertaining to

the upper (lower) quasiparticle bands with dispersion
E), ' (EI,+') are related to p(, and d), in the following
way:

Mean-field theories of this type have been studied ex-
tensively. ' ' ' ' ' ' ' Here we only summarize the
main features. In the paramagnetic phase at half-filling
there is a transition from a metal to a charge-transfer in-
sulator ' ' and a corresponding breakdown of Fermi-
liquid theory above a critical charge-transfer gap 6, . For
the particular model we consider here, and within the
KR scheme, for V=1.6 eV, 2A, —=9.8 eV. When com-
pared with the actual values appropriate for the La-Cu-0
compounds, for example, this is a rather large value, as
expected, since the charge-transfer gap should include
the interorbital Coulomb interaction U~d (Ref. 39)
neglected here. The KR formulation also provides a
good starting point for discussion of the antiferromagne-
tism of the Cu02 planes. It has been shown that, within
mean-field theory, the ground state at half-filling is an an-
tiferromagnet, itinerant or localized depending on
with antiferromagnetic gap h~„=—h. It has been sug-
gested that the antiferromagnetic state is unstable to
metallization at very low levels of doping, although this
point needs further study. In general, away from half-
filling the system is metallic with mass enhancement
(m'/m) depending on the size of the charge-transfer
gap. Whereas doping produces rapid metallization of the
insulating state close to the transition point, ' ' for
6((I), (m'/m) is essentially doping independent. Fur-
ther, at the moderate doping levels, e.g., at xI, =—0. 10 that
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we will consider here the system is well into the paramag-
netic phase and physical quantities are insensitive to the
size of the oxide gap.

Our main purpose here is to study the effective interac-
tion between quasiparticles and possible superconducting
instabilities of the Cu02 model with physical parameters
in a range thought to be approximate to the high-T, ox-
ides. To this end, we consider the model in a doping re-
gime well into the paramagnetic phase; the solutions of
the stationary point conditions are necessary input for
the study of fluctuations to which we now turn.

and s.
IO

J JP
J J ' JP JP (3.1)

(3.2)

The Lagrangian Eq. (2.9) can then be expressed in terms
of real valued Bose fields by promoting the Lagrange
multipliers to gauge fields in the following way:

III. FLUCTUATIONS AND THE EFFECTIVE
QUASIPARTICLE INTERACTION

The system defined by Eqs. (2.9)—(2.13) can be treated
directly, but to study low-frequency effects it is more con-
venient to perform a Read-Newns gauge transformation
separating the amplitude and phase of the boson fields ei

I

Then X and X, Eqs. (2.11) and (2.13), become

X (T)= gs, „(E„+iA,"' i,A'—')s, „,

JP

+i g X,
"I(e,' —1)—2i g s, P,,'" s, ,

J J

and

(3.3)

j;eo. '

+ g 2Vy(k)(pizq. «di, +q ~ +di, +q ~zq. ~ ~p«) .t

k, q

(3.4)

(3.5)

here D cF' and D sF' are the inverse propagators for
charge and spin fluctuations, respectively and are deter-
mined from distinct Dyson equations

D CF (D CF} ~CF ~ (3.6)

In Eq. (3.3) the terms involving the time derivatives of
the amplitudes e and s „have disappeared due to the
periodicity in ~ of the boson fields.

The fermion fields are now integrated out in the usual
way contributing the term X,QT) to the effective La-
grangian which is now a functional of the fluctuating
Bose fields only. The inverse boson propagator is a
10X 10 matrix. However, at the Gaussian level it is block
diagonal comprised of a 4X4 matrix representing the
charge fluctuations and a 6X6 matrix representing spin
fluctuations. This is a consequence of the fact that the
Pauli matrices are traceless, therefore a trace over a sin-
gle Pauli matrix vanishes precluding any coupling be-
tween charge and spin fluctuations at one-loop order.
Consequently, the inverse boson propagator is given by

DCF 0
D

0 D,,' '

where I is the 3 X 3 unit matrix. Similarly
lg(1)

(&d +&' "—
Ao ') —is() is()

(D CF) '=2
0 () 0 . (3.9)

0 0

lsp

Ee lsp

The leading-order contribution to the boson self-energy X
is obtained from the expansion of X,ir to lowest, quadra-
tic order in the fluctuating fields. These terms are of two
distinct types, shown in Fig. 1; either a particle-hole bub-
ble generated at second order from the simple three-point
vertex, one boson and two fermions, or the Hartree-like
closed loop generated from the four-point vertices, two
bosons and two fermions, which are now possible in the
presence of the composite operators z . All contribu-
tions to the self-energy matrices Xc„and X s„are given in
Appendix A.

By inverting the resulting matrices Eqs. (3.6) and (3.7}
the propagators governing the boson fluctuations are ob-
tained. These fluctuations give rise to residual quasiparti-
cle interactions, and the resulting effective Hamiltonian
for the system can be written

DSF (D SF) ~SF ' (3.7) (3.10)

(3.8}

The bare boson propagators, which can be read off from
Eq. (3.3), are given by

(E,+X"'—A,,i2')I, —is,7
(D sF) '=2

lsp I 0

where H', si is given in Eq. (2.19) and

H",~ =
—,
' g [I'(q)5 iifirs+I"(q)o & a'Ts]

k, k'q
a, P, y, 5

( —)1 ( —)t ( —) ( —)X Ck+q aCk q yCk gCk P (3.11)
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FIG. 1. Generic boson self-energy diagrams at one-loop or-
der.
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In Eq. (3.10) the solutions to the stationary-point condi-
tions appearing in H', & should be one-loop corrected.

Analytic expressions for I' and I ' involving one-boson
exchange are given in Appendix B. The spin-symmetric
and spin-antisymmetric parts of the quasiparticle interac-
tion, I' and I"', are shown as a function of q along two
different symmetry directions in the Brillouin zone in
Figs. 2 and 3, respectively. I is positive in sign as ex-
pected; it represents the hard-core interaction originating
in the local no-double-occupancy constraint on the
copper sites. The important point to be made here is thatI' is also positive and hence the spin-boson fluctuations
give rise to an antiferromagnetic exchange interaction be-
tween the quasiparticles. In the limit b && V, where we
can made contact with canonical perturbation theory
(CPT), I' (as well as I') is only weakly dispersive, and
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FIG. 2. Spin-symmetric part of the quasiparticle interaction
resulting from one-boson exchange, along two symmetry direc-
tions (1,1j and (0,1) with bare parameters taken to be V=1.4
eV, x& =0.10, and 25=4.0eV.

FIG. 3. Spin-antisymmetric part of the quasiparticle interac-
tion resulting from one-boson exchange, along two symmetry
directions (1,1) and (0,1} with bare parameters V=1.4 eV,
xl, =0.10, and 26=4.0 eV.

V, = —,'[I'(k —k')+I'(k —k') —(k~ —k)],
whereas the singlet sees

V, = —,'[I'(k —k') —3I'(k —k')+(k —k)] .

(3.12)

(3.13)

In view of the remarks made above, depending on the de-
tails of the system, Eq. (3.13) could lead therefore to an
attractive interaction between quasiparticles in a singlet
state and hence the possibility of pairing in a relative an-
gular momentum s state. I ' and I ' are screened interac-
tions and the boson self-energy corrections involved con-
tain both inter- and intraband terms. We have checked
and found that when interband contributions are includ-
ed only minor quantitative changes in the effective in-
teractions result. Therefore we have an a posteriori
demonstration that the physics is governed by an effective
one-band quasiparticle Hamiltonian. In the large 6 limit,
6&) V, the quasiparticles carry p charge and d spin.
When 5- V the d-charge degrees of freedom are no

therefore, under these conditions the spin-spin interac-
tion is short range in real space and will be dominated by
antiferromagnetic Kondo scattering, in agreement with
the findings of Zaanen 01es within CPT. In the limit of
interest in the high-T, oxides, however, 6—= V, the effects
of Kondo scattering, with a bare energy scale of order
V /b and superexchange with, in this model, a bare cou-
pling of order ( V /b, )( V jh ), cannot be disentangled
easily. Nevertheless, as can be seen from Figs. 2 and 3,
the result is an effective interaction with contributions
from charge fluctuations and spin fluctuations that are of
the same order and functional form. As remarked recent-
ly, ' such a relationship between spin and charge polari-
zabilities seems to be required to account for normal-state
data.

A quasiparticle spin triplet sees the interaction poten-
tial
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longer frozen in and a description in terms of a mixed
valence compound is more appropriate, as noted else-
where.

IV. SUPKRCONDUCTING INSTABILITIES

a function of doping xz and charge-transfer gap b, . As in
the Eliashberg theory of electron-phonon coupling, we in-
troduce Fermi-surface-averaged spectral weights of the
two-particle irreducible vertex I (q, co)

We now turn to consider the possible superconducting
instabilities of the model, and look at the behavior of the
coupling constants in various symmetry channels both as

F'(co) =—(ImI (q, co) )Fs .
1

The average ( )'„s is defined by

(4. 1)

[1/(2n)"]f (dS/~v„~ )f (dS'/~v„. ~)g, (k) A(k, k')g;(k')
(a &'„,=

f (dS/~v„)g, (k)
(4.2)

A, ,
—:f dao = (Rel (q, o) )„'s,

0 CO

(4.3)

where J dS is an integration over the Fermi surface,
( I/(2n ) )~vk ~

' the density of states, and g; a Fermi sur-
face harmonic; as we model Cu-0 sheets cubic harmon-
ics are used. The superconducting transition temperature
can be determined from these spectral weights. Here,
however, we only consider the one moment of F'(co)

g p ~
=cosk cosky (4.5)

We have determined the A, , by computing I (q) numer-
ically with parameters appropriate for La2Cu04 and con-
sidered its projection into different symmetry channels,
for scattering on the Fermi surface. The results are
shown in Figs. 4 and 5. For all dopings considered, and
over a wide range of charge-transfer gaps the d-wave
channel with B, symmetry

which measures the strength of the pairing interaction
between quasiparticles in a given symmetry channel;
hence only the zero-frequency limit of the irreducible ver-
tex is needed; then

and the extended s-wave channel A,

g z ~ =coskx +cosky 7x +y (4.6)

I triPlet(q ~ 0) I triPlet(q) V

I singlet(q Q) I singlet(q) V
(4.4)

together with the global s wave were found to be attrac-
tive. The B2 d-wave channel

where V, and V, are defined in Eqs. (3.12) and (3.13), re-
spectively. We use a convention such that negative A, ,
corresponds to an attractive interaction.

gzy sink„sin ky 7 (4.7)

as well as the p-wave channels were found to be repulsive.
The weak variation of the coupling constants on doping,
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FIG. 4. A.„as defined in the text, as a function of doping xz,
with V=1.4 eV, and 2b, =4.0 eV.

FIG. 5. k„as defined in the text, as a function of charge-
transfer gap 2b, for x& =0.10, and V = 1.4 eV.
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found in Fig. 4, and on the charge-transfer gap found in
Fig. 5, is to be expected. In the first instance at the value
of E —Ed =4.0 eV chosen, which is appropriate for the
La-Cu-0 compounds, 6 is much less than the critical
value 6, of the model; as a result, the coupling constants
are computed for a system well into the meta11ic regime
where the doping dependence of physical parameters is
known to be weak. In the second instance, for x& -——0. 10,
the model is again well into the paramagnetic metallic re-
gime where physical quantities are not expected to be
sensitive to the value of the oxide gap. As can be seen
from both Figs. 4 and 5, the coupling constant in both
the global and extended s-wave channels lies in the
strong-coupling regime for the charge-transfer gaps we
have considered. The present calculation does not distin-
guish between these two possibilities. On the other hand,
because of the weak dispersion of the quasiparticle in-
teraction the B,g and all other higher angular momentum
channels are weak coupling and therefore do not compete
in energy. Within the present model we are therefore led
to predict a superconducting order parameter that has ei-
ther global or A

&
s-wave symmetry, consistent with ob-

servation. Inclusion of next nearest neighbor, O-O hop-
ping, would resolve this degeneracy but would not
change the conclusion that the s wave would be the dom-
inant attractive channel.

V. CONCLUSION

In conclusion we have treated the Ud = ~ ALH with a
strong-coupling method that treats charge and spin fluc-
tuations on an equal footing. Fluctuations of the boson
fields generate an attractive interaction between quasipar-
ticles in a spin singlet s state. We believe, given the ex-
perimental evidence for the existence of strong on-site
Coulomb interactions on the copper orbitals together
with the omnipresent antiferromagnetic spin fluctuations,
that this provides a better framework for studying the
physics of the CuOz systems than either weak-coupling
methods or strong-coupling approaches that neglect spin
fluctuations.
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APPENDIX A

The contributions to the boson self energies at the Gaussian level involve two types of diagram. A particle-hole po-
larizability and a Hartree-like closed loop. In the paramagnetic phase there are only three distinct particle-hole bub-
bles, which we list:

2

H„(q, iso„)=— g [y (k+q)G~~+ (k+q)G" (k)+y (k)G"„+ (k+q)G~~ (k)
"~n

+2y(k)y(k+q)G~d+„(k+q)G~d (k)], (A 1)

and

H~, (q, ice„)=— g [y(k+q)G~ + (k+q)Gdd (k)+y(k)G~" (k)Gdd+ (k+q)]=H, &,
4V

k, ar„

H„q(q, ice„)= ——g G (k)G~~+„(k+q) .
2

"~n

(A2)

(A3)

k+
r~„—E„' ' (A4)G~~(k, i co„)=

)co —E'
n k

Here co„=(2n +1)~/P and co,=2m'/P are odd a.nd even Matsubara frequencies, respectively. The Green's functions
G, G, and G are the mean-field p electron, d electron, and mixed propagators, respectively, defined by

U(
—) U(+)

Uk

( —) ( —)
Qk Vk

GJ' (k,ia)„)=
(+) (+)

Qk Vk

i~„—E„'+' ' (A5)

( —)
2

Qk
(+)

QkG" (k, ice„)= +
im —E' ' im —E'+'

n k n k

H„(q, ice„)=16V g [ —,'[y(k+q)vI, +'uk '+y(k)uI, +qvI, '] R»(k, q, i~„)
k

+[y(k+q)v„' 'v„'+', —y(k)u„' 'u„' ', ]'R»(k, q, ice.)I,

The sum over Matsubara frequencies appearing in Eqs. (Al) —(A3} is easily evaluated to give

(A6)

(A7)
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II,„(q,i(v„)= —16zV g u„R„(k,q, i(v„)+ vt,
— u„+q R)2(k, q, iso, )

y (k+q} ( )2 . y (k+q) ( )' y (k) ( )2

Ek+q k+q k

and

( —) ( —
) ( —

) ( —)II~~= —2 g [u„'+qu'„' R»(k, q, i(v„)+2u'„+qvt, ' R»(k, q, i(v„)] .
k

Here

f (E'„' ) f(E—„' ')
R (kqi(v )=—

11 &q& v ~( ) ~( )L' k+q

(A8)

(A9)

(A10)

and

R)2(k, q, i(v„)= —
—,'[f(E(),+' )

—f(E&+')] +
Ek+q Ek ~ Ek+q —Ek + ~

(A11)

Eg ——[(E —g )
) + 16V2y2(k)z2]) ~2

all other symbols have been defined in the text. The Hartree-like diagrams are all proportional to

H= — g y(k}G» (k, (v„)=—8VQ y(k)u), )vt, 'f(E), ') .
kco„ k

With these definitions the boson self energies in the spin sector can be written as

x sF=H sF+rI sF,

where

q„HX OX

H SF
OX OX

and

(A12)

(A13)

(A14)

(A15)

II sF

ia) II ~l

i H~~3.
(A16)

here 1 is the 3 X 3 unit matrix,

1 —
s() /&2 (s() /&2)'

COS- +
so [e2+(s //2)2](~2 e2+(s /g2)&

(A17)

and

(1) (2)
~SS ~SS SS (A18)

where

3(s() /&2) e
7l

—1 + — [3(so/&2) —1]
e +(s /&2) [e +(so/&2) ]'~ (s /&2)[e +(s /&2) ]'

and

(A19)

(2)
—e Sp /+21— (1—

s() /&2)
s /&2 [e +(s /&2) ]' [e +(s /Q2) ]' 2

(A20)

The self-energy in the charge fluctuation sector can be expressed in a similar way as

X CF
—H CF+rI CF,

where

(A21)
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and

H CF

2
co H

co co H
p

l Q7 Hg

H„OI
OI OI

e~s Hss
p

co pH
Sp

Hg
p

ice, H, 0

lN H~ 0
p

& H&& 0

0

(A22)

(A23)

where

H„=
Qee H resp

g, ,H g, , H (A24)

In this case I is a 2 X 2 unit matrix and

1

[e2+ (s Q2 )2]1/2

2

e +(so/&2)
(A25)

1 —so/&2 (so/&2)'

[e +(so/&2) ]' e +(so/&2)

3e e

e +(so/&2) [e +(s /&2) ]'
(1) + (2)

QeSp resp leSp ~

where

3e (so/&2)

so[e +(so/&2) ]' e +(so/&2)

and

(2) 1

&2 [e +(s /&2) ]'~ s /&2

finally,

(]) + (2)
9$pSp 9$pSp 9$pSp

where

(1) — (])
9$p Sp ~SS

and

2

e +(so/&2)

(A26)

(A27)

(A28)

(A29)

(A30)

(A31)

(A32)

9$pSp

(so/&2)(1 —so/&2)
1+

(so/i/2} [ei+(so/v'2) ] [ei+(so/i/2) ]
(A33}

APPENDIX B

The effective quasiparticle coupling I was defined in Eq. (3.11)of the text

1(q)=1"(q)5 Pz s+I'( )qa ~ rrrs . .

The analytic form of the spin antisymmetric part I"' originating in the fluctuations of the vector bosons is

-+" x»x»~»i +' (~ i» x + "x»

(B1)

(B2}
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The boson propagators are obtained by inverting Eq. (3.7). The resultant expressions are quite simple in the paramag-
netic phase:

DSS= =DS s =DS $ (B3)

Dg(2)g(2)
I I

D g(2)
1 1

D
—1

$1$1

g(2)g(2) D g(2)g(2) 7

D 2 2 3 3

—1D &(2)

=D (2) =D (2),
D '22

(B4)

(B&)

where the determinant

D =D, ,' D~(z)~l, )
—(D )'(2) )

S
l

A,
l

The vertex functions I, I &(2), and I &(2)&(2) are given by

4~ l) (kl)Uk, uk, + +7k, +q" k, +quk, +quk, ill (k2 l)Uk —
q k V(k2)uk —qok ]

(
—

) ( —) ( —
) (

—
)

~kl ~k ~k +q k —
q

I |2)=2vu'k 'uk ' [y(k, )vk 'uk + +y(k, +q)uk + uk '] .

Similarly, the spinsymmetric part I, originating in the fluctuations of the scalar bosons, is found to be given by

(B6)

(B7)

(B8)

(B9)

Here

+i'r, „,, „D,„,,„,+ i~, (r .„g,„,+ r„„, D,„, )
0 0 0 0 0 SOAO $00 0 $0 0 $0

+ico,(r „D „,+I „,D„„)+2co,co, I „D„].eA0 ekp Ap e Ap 'e
(B10)

0 0 0

and the boson propagator matrix elements are obtained on inverting Eq. (3.6).
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