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Our critical-state model, which includes the effects of both flux-line cutting and flux pinning, is
applied to a current-carrying cylinder in an axial magnetic field. The time evolution of the internal
magnetic-field distribution is computed for currents just slightly above the critical current at which
a longitudinal electric field first appears. According to the theory, when an axial magnetic field is
nonzero, a unique magnetic-field distribution is ultimately produced. On the other hand, when the
axial magnetic field is zero, the final magnetic-field distribution, longitudinal magnetic moment, and
critical current all depend upon the sample’s magnetic history.

I. INTRODUCTION

A great amount of both experimental and theoretical
work has been devoted to the problem of the internal
magnetic-field distribution just above the critical current
of a type-II superconductor subjected to a parallel ap-
plied magnetic field.! 8 In a recent series of papers we
have developed a macroscopic theory, the general
critical-state model,'®~1%3773% to attack a related prob-
lem, that of the response of a type-II superconducting
slab in a parallel magnetic field that varies in both magni-
tude and direction. This model incorporates flux-line cut-
ting**° into the usual critical-state theory describing flux
pinning.**~%? Flux-line cutting (intersection and cross
joining of adjacent nonparallel vortices) provides a mech-
anism by which the magnitude B of the magnetic-flux
density is reduced inside the sample. It also allows J and
E components parallel to the local magnetic field.

Several workers!®30:3:3761 have found that under
some regimes, when vortices are forced to tilt, they
somehow escape from the sample, although the magnetic
pressure or Lorentz force in the surface region is directed
inwards, leading to a quasi-steady-state B value which is
smaller than the magnitude of the internal magnetic in-
duction B at the beginning of the experiment. According
to our theory, flux-line cutting consumes B. This reduc-
tion of B is a natural consequence of Faraday’s law,
which when written as Eq. (1) of Ref. 37 states that when
flux-line cutting occurs, B is not conserved. From the
empirical models suggested in Refs. 10, 30, 31, and
53-61, one can show that in the active regions of the
sample, those where fluxoids are moving and tilting, both
the induced current density J and the electric field E have
components J; and E; parallel to the local magnetic in-
duction B. This parallel component of E can be under-
stood in terms of flux-line cutting. Recently, it has been
shown that for a sufficiently large current density J,
parallel to the vortices, instabilities of the vortex ar-
ray’ %1320 can occur which lead to flux-line cutting,
thereby generating a component®'4'* E | parallel to B.
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In this paper we use our critical-state theory to
show how to calculate the unique time-independent
macroscopic-magnetic-field distribution B just above the
critical current of a type-II superconducting cylinder in a
parallel applied magnetic field. We also calculate B in
the absence of the applied field and demonstrate that the
internal B distribution and the critical-current density de-
pend upon the specimen’s magnetic history, resulting in
larger critical currents for larger remanent longitudinal
magnetic moments.

II. THE GENERAL CRITICAL-STATE MODEL

We consider a high-«, irreversible type-II supercon-
ducting infinite cylinder of radius R. Applied to the sur-
face at r =R is a parallel magnetic field B, =B,Z, where
B,=|B,|. A current I is applied to the cylinder, such
that the azimuthal field on the surface is H,(R)=1/27R.
We assume that to good approximation B =puyH inside
the sample, and we neglect any surface barriers against
flux entry or exit. We further assume that in steady state,
the magnetic induction B inside the sample is indepen-
dent of time and depends only on the coordinate . Thus
B(r)=B(r)a(r), where B =|B| and

&(r)=¢sina+%cosa . (1)

The surface boundary condition is B(R)=B;=Bd,,
where

B,=(B2+B2)>=[B2+(u,l /2mR)*]'"* )

and @, is the direction of B at the surface; see Fig. 1.

Resolving the current density J and the electric field E
into their components parallel and perpendicular to the
local B (i.e., writing J=J,@+J,B, and E=E &+E B,
where B=a XT), we obtain from Ampere’s law

_ d i
Ju = 1B da. + sinacosa , 3)
or r
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(b)

FIG. 1. (a) Experiment considered, and (b) local coordinates
used in the calculations. Note that & and B are perpendicular to

A

I.

_,| 0B sin’a
= — 1 —_— + —_
Jy Ho or B ; (4)
From Faraday’s law, VX E =3B /9dt, we obtain
0B _ oF, cos’a da , sinacosa
ot or E, r E, ar + r > O
da _ 1 | 9E, +E, sin‘a _E, da _ sinacosa
ot B | or or r
(6)

In steady state the left-hand side of Egs. (5) and (6) are
zero, and VX E =0 dictates that E =E 2, where E,, is a
constant independent of r.

The general critical-state model'®™ %3773 gtates that
metastable stationary distributions of B, in which E | =0,
occur only where the magnitude of J, is smaller than
J..(B), the transverse critical-current density at the
threshold for depinning of the vortex array. Similarly,
metastable distributions of a, in which E I =0, occur only
where the magnitude of J is smaller than J.(B), the
parallel critical-current density at the threshold for flux-
line cutting in the vortex array. We assume that the pin-
ning and flux-cutting properties are isotropic, such that
J.. and J, depend upon the magnitude of B but not upon
their orientation.

In analogy with the usual critical-state model, we as-
sume that the electric field behaves as

E,=p,(J,FJ,) 7
when E |20 and
E\=p(J, FJ) (8)

when E, 20, where p, and p, are the effective flux-flow
and flux-cutting resistivities of the material. Since we as-
sume here that |E,| <<p,J,, and |E,| <<pJ,, the com-
puted B fields are independent of p, and Py
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III. RESULTS IN LONGITUDINAL FIELD

In this section we use the preceding formalism to cal-
culate the field distribution inside the cylinder. For sim-
plicity we take J., and J; as constants independent of B.
We consider first the time evolution from a state in which
the applied current is zero but the external parallel mag-
netic field B, is different from zero, to a state in which
the external field remains unchanged but a current
exceeding the critical current I.(B) is suddenly applied.
We assume that the magnitude of B, is between B, and
B, such that initially the B distribution inside the
cylinder is uniform and numerically equal to B,. Using
Egs. (5) and (6) we can calculate, with the aid of Egs. (3),
(4), (7), and (8), the time development of the B and «
profiles. Figure 2 illustrates this behavior for the case in
which the initial state is nonmagnetic,”® B=1 T and
a=0 in the whole sample. We consider R =1.5 mm,
J. =J.,=4X10° A/cm? and

cl

=0, t<0, (9a)
I: =6.4X10°A /cm?, t>0. (9b)

This plot exhibits several zones in which different phe-
nomena occur depending upon different regimes inside
the sample. For example curves (2b) correspond to the
case in which only the fluxoids near the surface (0.65
mm =7 =< 1.5 mm) have had time to start tilting. In this
regime there are three regions: An O zone (0=<r =0.65
mm) in which neither flux-line cutting nor transport
occur; a cutting (C) zone (0.65 mm <r =1.395 mm) in
which flux-line cutting occurs but flux transport does
not; and a cutting and transport (CT) zone (1.395
mm <r = 1.5 mm) in which both flux-line cutting and flux
transport occur, such that flux transport replenishes the
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FIG. 2. Time development of the B and a profiles as dis-
cussed in Sec. III starting from a nonmagnetic initial state.
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FIG. 3. Internal magnetic-field distribution at the critical
current. In this case B,=0.145 T and J=J.=9.367X10}
A/cm?.

B that flux-line cutting consumes. Curves (2e) show
another case with two CT zones and a C zone in between.
Curves (2h) correspond to the final metastable state ex-
hibiting a unique CT zone where flux-line cutting is con-
tinuously occurring and consuming B but transport from
the surface is continuously replenishing it.

When the applied magnetic field B, is different from
zero and the current slightly exceeds the critical current
I1.(B), B evolves into a unique critical-state distribution
given by the solutions of

dB sin’a
-—= B)—B—— |, 10
or .U/O‘,cl( ) r (10)
Oa _ Bolo)(B)  sinacosa (1n
or B r )
015 T T T
B
0.10F B, =
B
(T)
0.05+ —
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FIG. 4. Same as Fig. 3 but B,=0.087 T and J=J,
=6.924X10° A/cm?.

ANTONIO PEREZ-GONZALEZ AND JOHN R. CLEM 42

0.15 T T T
@g=90° Bg=0
0.0k 8 -
B
(T)
B;
0.05 Bo —
0.0 1 | ]
00 05 1.0 1.5 20
r (mm)

FIG. 5. Internal magnetic-field distribution produced when
B, is reduced from B, >0 to B,=0 with I=1,. In this case
J=J.=6.591X10° A/cm>.

These equations easily can be solved numerically. Figure
3 shows the internal B distribution for a sample with
J. =10° A/em?, J, =10* A/cm® at I,(B); in this case
B,=0.145 T. Figure 4 shows the same characteristics
but at B, =0.087 T.

When B, =0, the field distribution depends upon the
specimen’s magnetic history. Figure 5 shows the distri-
bution which arises when B, is reduced from B, >0 to

B,=0 with I=1.(B). Figure 6 shows two different dis-
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FIG. 6. Two final field distributions in zero applied field,
which depend upon the specimen’s magnetic history. (a)
J=J,=3.646X10° A/cm’. (b)J =J,=2.488X10° A/cm’.
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FIG. 7. Critical current density vs applied field. In zero ap-
plied field J. depends upon the remanent longitudinal magnetic
moment.

tributions for B,=0 at I.(B). They correspond to
different values of B ,(r =R) which itself depends upon I.

From Fig. 7, a plot of the average critical current den-
sity

J.=(J,»=J,(cosa)+J, (sina) , (12)

it can be seen that when B,=0, since po{M,)
=(B,) —uoH,, J. depends upon the remanent longitudi-
nal magnetic moment. For these calculations we have
taken J., =0.1J,, =const., independent of B.

cll
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IV. SUMMARY AND DISCUSSION

In this paper we have applied our general critical-state
theory for calculating the internal magnetic-field distribu-
tion for a type-II superconducting cylinder at the critical
current when an external magnetic field is applied. We
also calculated the behavior when the applied field is
zero. We found, as in the experiments of Walmsley,>°
that above the critical current in ‘““zero” longitudinal
field, “spontaneous” longitudinal magnetic moments ap-
pear, and that the longitudinal voltage level at a fixed
value of the current depends upon the magnitude of the
magnetic moment. A larger magnitude of the magnetic
moment yields a smaller voltage for a given above-critical
current. In summary, spontaneous longitudinal moments
appear, and the bigger the moment, the bigger the corre-
sponding critical current.

The general critical-state theory, which includes the
effects of both flux-line cutting and flux pinning, predicts
a unique internal magnetic-field distribution at the criti-
cal current in an applied longitudinal field. In zero ap-
plied field it predicts a magnetic-history dependence of
the final magnetic-field distribution, longitudinal magnet-
ic moment, and critical-current density. Those results
agree with experiments of Walmsley.*
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