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The susceptibility and quasiparticle self-energy are found to exhibit anomalous behavior in
nested-Fermi-liquid (NFL) systems that have nearly parallel sections of the Fermi surface.
Electron-electron scattering yields damping much stronger than the conventional electron-gas result
and predicts a linear temperature variation of the resistivity. The susceptibility YNgL(q,@) for nest-
ed fermions is calculated at q=Q, where Q is a typical nesting wave vector. The NFL susceptibility
is linear in frequency up to a crossover region near w==4T where a saturation to a constant value
occurs. The above features, as well as various theoretical constraints, are highly sensitive to the
strength of the electron-electron coupling and to the degree of nesting. The relevance of the NFL
results to superconducting oxides is briefly examined, with emphasis on the resistivity and the pho-
toemission data, which supports the calculated damping I'(w > T) ~aw with an intermediate on-site

Coulomb coupling.

I. INTRODUCTION

A conventional Fermi liquid (FL) is characterized by
electrons with a long lifetime near the Fermi energy, in
part because of the limited phase space for electron-
electron scattering. Thus the electron processes yield a
resistivity p=AT2, where the constant A4 is small and
barely detectable in ordinary metals.

Puzzling deviations from FL behavior have been ob-
served in high-temperature superconducting oxides, even
though the photoemission data demonstrate the existence
of a well-defined Fermi surface. For example, the cu-
prates exhibit large resistivities with a linear temperature
variation down to 10 K in some cases, and anomalous
electronic features are seen in photoemission spectra, as
well as in other experiments.

Motivated by the above anomalies, and the two-
dimensional electronic structure of the Cu-O supercon-
ductors, we analyze the response of a system of electrons
or holes whose Fermi surface allows ‘“nesting” in a sub-
stantial region of momentum space. The susceptibility
x(q,®) and the quasiparticle self-energy =(k,w) are cal-
culated including the strong electron-electron scattering
terms corresponding to a typical nesting momentum Q.
The resulting analytic structure for y and X are quite
different from the conventional FL, and the novel energy
dependence has a direct impact on the quasiparticle
response to external probes.

We begin with a single-quasiparticle energy E(k) and
the Hamiltonian

H=l(§:E(lt)c,1,c,<(,+U2n,Tn,-l , (1)
g 1

where U >0 denotes the on-site Coulomb repulsion,
c,:ro(cko) are the creation (destruction) operators for an
itinerant electron or hole within a band E (k) of width W.
Measuring energies e(k)=E(k)—pu relative to the chemi-
cal potential ., we consider the Green’s function G given
by
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G Ukiw)=io—ek)—3(k, i) , ()

where the self-energy caused by electron-electron scatter-
ing is S=3'+3". The imaginary part is'

(2717-)4 fdwlF(wr)fdqun(q’wr)

3"(k,0)=g?

XImG(k+q,0—o'),
(3)

where the coupling is g =UV, with V, the cell volume,
and

’

W o' —w

F(w')=coth 2

—tanh 4)

The imaginary part of the susceptibility is

x'(q,0)= (21 v fdw'M(w')fd3kImG(k,w'+w/2)
T
XImG(k—q,0'—w/2),
(5)
where
N 7a>'+a)/2 . o' —w/2
M(w')=tanh T tanh T |- (6)

Within the Born approximation the Green’s function
G(k,iw) is replaced by the unperturbed value
1
(0) — — 7
G io—e(k) @
Then the corresponding self-energy diagram for the
lowest-order damping is of the form shown in Fig. 1.

In the analysis of the self-energy in Eq. (3), we consider
the case that the temperature 7, the frequency w, the
quasiparticle energy (k) and the damping I'=—2" are
all small in comparison to the bandwidth W. Moreover,
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FIG. 1. Diagrams for the quasiparticle self-energy in the
Born approximation. A solid line represents the unperturbed
Green’s function G'?, the dotted line is the on-site Coulomb
coupling g, and the susceptibility in lowest order is shown by
the electron-hole “bubble.”

we assume that the quasiparticle density of states N(g)
can be approximated by a constant N(0) in the vicinity of
the Fermi energy, such that

~ 1

Nw)==——= [ d*ImG(k,0)

1 le
=—— | deN ~N
T f ¢ (E)(a)—Z’—e)2+(E")2

and N(0)=~1/WV,. These approximations allow an ana-
lytic solution of the higher-order self-consistent equations
which become important as the dimensionless coupling
g=gN(0)=U/W approaches unity. A constant N(0)
approximation is familiar in the original derivation of the
Fermi liquid lifetime.?

A one-dimensional electron gas is exceptional because
momentum conservation in the scattering process deter-
mines the energy of the scattering electron in terms of the
allowed states of the target electron. Luttinger realized
that this dimensionality constraint yields a quasiparticle
damping linear in frequency . By comparison, his clas-
sic proof of the quadratic variation of the damping in
three dimensional systems relies on treating the energies
of the scattering electrons as independent variables.?

The case of an ordinary electron model is summarized
in Sec. II, and the nested region analysis is presented in
Sec. III with emphasis on the self-energy and susceptibili-
ty. Renormalization of the effective mass is considered in
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Sec. IV, and the theoretical constraints are in Sec. V.
Conclusion of our analysis in Sec. VI emphasize the
necessary ingredients for dominant electron-electron
scattering of the NFL form.

II. CONVENTIONAL FERMI LIQUID

A conventional electron gas in three dimensions yields
the following Fermi-liquid (FL) behavior.>® The suscep-
tibility xp (q,®’'), in general, does not correlate with
ImG(k+q,0—w’) with respect to the variable q, and
therefore the product yy; ImG in Eq. (3) can be factor-
ized using a susceptibility averaged over momentum q.
The appropriate averaging procedure in Eq. (5) then
yields

TN (0)w

(X(go))g= T2 9)

and a resulting quasiparticle damping

_ T8 202 2
I'e(w) 2W(77' T +w%) . (10)

(b)

FIG. 2. Phase-space restrictions for the electron-electron
cross section at finite temperature T in (a) conventional electron
gas, and (b) a Fermi liquid with nesting wave vector Q. The in-
coming quasiparticle momenta are k and k', with a scattering
momentum transfer q. Shaded regions are allowed by the Pauli
exclusion principle. The nesting broadens the range of momen-
ta available to the scattering electron to a width proportional to
W in comparison to the free particle width proportional to T.
In the NFL case q=Q. The solid curves represent the Fermi
surface.
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This conventional Fermi-liquid damping is quite small in
ordinary metals because the bandwidth is much larger
than the typical temperatures of interest. Physically the
variation [ ~T? follows from the Pauli exclusion re-
quirement that limits the scattering electron energies
within an interval ~ kT of the Fermi energy. As shown
in Fig. 2(a), the limited phase space for the scattered elec-
tron and the other electron that does the scattering re-
sults in a cross section that is proportional to (T /u)?
~(T/W)>

Exact calculations®> for electrons with an effective-
mass model in two dimensions yield
2

T B
r - , 11
L™ In T (11
which exhibits a small derivation from the T2
dependence. Evidence for the FL behavior has been

found in resistivity measurements of superconducting
Nd, 5Cep sCuO;, films.®

However, most of the high-temperature cuprate super-
conductors exhibit a resistivity which is linear in temper-
ature. The observed linearity extends to as low as 10 K
in some oxides.” Such a behavior can originate from Fer-
mi surface nesting, as we demonstrate below.

III. NESTED FERMI LIQUID

In the case of quasiparticles on a Fermi surface that ex-
hibits nesting, i.e., e(k)+e(k—Q)=O0, there is an extend-
ed region of phase space for the scattering events as illus-
trated in Fig. 2(b). This feature enhances the electron-
electron cross section and also alters the constraints on
the momentum integration which ultimately determine
the frequency and temperature variation of electron (or
hole) lifetime.

Formally, the influence of nesting may be seen in the
correlation between the susceptibility and the Green’s
function that enter in the definition of the self-energy in
Eq. (3). In fact, there is an extended momentum region
near q=Q where a crest in ¥"'(q,®’) coincides with large
values of ImG(k+q,w—®'): An illustration of such a
situation is shown in Fig. 3 for a ““nested” Fermi surface
reminiscent of a nearly half-filled tight-binding energy
band in two dimensions. Under the nesting cir-
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FIG. 3. The dominant regions of the momentum q integra-
tion which determine the quasiparticle self-energy in Eq. (3).
For the NFL the function ImG is peaked at the Fermi surface
shown by the solid curve, while the susceptibility y" is
enhanced on the dashed curve as a result of nesting at wave vec-
tors q=Q. The shaded overlap region yields the NFL damping.

cumstances, we may derive the quasiparticle self-energy
from Eq. (3) by replacing the susceptibility by y"'(Q,w’)
and then performing the standard integration over q for
the Green’s function to obtain

FnpL(@)=1g’N(0) [ do'F(0')x"(Q,w') . (12)
2

The magnitude of I'yg will be considerably larger than
I'gr, and the temperature variation of I'yg (7)) turns out
to be unorthodox as we show below.

A self-consistent set of equations relating to the self-
energy and susceptibility is derived by using the Green’s
function including the self-energy, as indicated in Fig. 4.
Thus the susceptibility at the nesting wave vector Q fol-
lows from the condition e(k)+e(k—Q)=0 in Eq. (5),
which yields

r_

" p— 1 ’ ’
X (Qo)= - [do'M(w') [ de N(e)

[(0—3"),—e]+T% [(0—2')_+e)?+TZ

) (13)

where the subscript * denotes the argument (0'tw/2). Performing the € integration, we find

r,+r_

XRpL(Q @) =1N(0) [ do'M(w')

Neglecting, for the moment, the mass renormalization,
i.e., assuming X' ~0, Egs. (12) and (14) form a closed sys-
tem for Ynp(Q,®) and I'yg(w) which is amenable to a
self-consistent solution.

[(0—2), + (=) P+, +T_)?

(14)

W
A. Weak coupling

The physical origin of the strong anomalous damping
can be traced to the enhanced susceptibility YN (Q,®)
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FIG. 4. Quasiparticle self-energy Zyp and susceptibility
XnrL in the self-consistent treatment that is needed for inter-
mediate coupling §=U/W ~1 in the event of substantial nest-
ing of the Fermi surface. The double lines refer to the dressed
Green’s function G which includes the self-energy Sy, .

even in the weak-coupling limit §—0. In this limit T |
and I' _ tend to vanish and the lowest-order response
function becomes

X{(,FL,O(Q,w)z%N(O)fdw’M(w')B(Zw’) , (15)
which becomes

XNFLo(Q, @)= 171\’2(0) £

4T

tanh . (16)

This noninteracting quasiparticle susceptibility is much
larger than the conventional FL average, and it exhibits a
crossover at w=4T as shown in Fig. 5. Hence it is
reasonable to expect the temperature and frequency vari-
ation of YNgp olQ,®) to influence the self-energy of Eq.
(12) in a substantial way.

The Born approximation (as in Fig. 1) should suffice
for small g <<1, and it yields the self energy from Egs.
(12) and (16)

=2
I'NFLB = Ei— fdw'F(w' )tanh . 17

o
4T

FIG. 5. Susceptibility as a function of frequency at T=290
K. The dotted curve is the conventional Fermi-liquid (FL) aver-
age for W=4 eV. Nested regions of the Fermi surface yield the
NFL contributions in the Born approximation (dashed curve)
and in the higher-order self-consistent analysis indicated by the
solid curve with g=1.

The asymptotic forms of the quasiparticle damping fol-
low from Eq. (17), and already show anomalous varia-
tions, i.e.,

3

FNFL,B(1w|<<T)2%§2T (18)
and
gl
rNFL,B(|O)|>>T)2—2‘““JCOI . (19)

The static case provides an explanation for the linear T
variation of the resistivity, and the evidence for the linear
frequency variation of the damping has just been
discovered in Bi,Sr,CaCu,0O4 by photoemission spectros-
copy.! However, the magnitudes of the damping suggest-
ed by the transport and optical data require at least inter-
mediate values of the on site Coulomb coupling g, and
therefore a self-consistent analysis of the self-energy and
susceptibility is considered in the next section.

Alternate models of the density of states would be in-
teresting to consider in view of the present nesting
analysis. Another example of a two-dimensional tight-
binding band, with N(w)~Inw, was shown® earlier to
produce a linear T variation of the electron-electron
scattering rate as a consequence of nesting. Further cal-
culations'® on the latter model reveal a sensitivity of the
scattering to electron or hole doping which shifts the Fer-
mi energy. Nevertheless, even the partially nested Fermi
surface in the two-dimensional (2D) band is found to
yield a linear T dependence of the self-energy. Also, the
nearly half-filled tight-binding band yields a real part of
X'(Q,w) which is frequency dependent: Hence the Born
approximation is inadequate!® close to half-filling for two
reasons. First of all there is an instability!"!2 toward the
formation of an insulating SDW state, and the higher-
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order ladder series of diagrams that generate the phase
transition have also been shown'? to suppress the electron
(or hole) mobility. In addition, as the coupling increases,
the “dressing” of quasiparticle propagators by large self-
energy corrections becomes important, and that relevant
correction is considered next.

At some point of diminishing nesting, the net scatter-
ing rate should revert to an ordinary FL behavior. A
quantitative estimate of the nesting required for the
anomalous NFL behavior is presented in Sec. V.

B. Intermediate coupling

Our initial weak-coupling basis tends to break down if
the combined effect of the electron-electron coupling and
the extent of Fermi surface nesting exceed certain stabili-
ty requirements examined directly in Sec. V. By inter-
mediate coupling for a highly nested topology, we refer to
the crude estimate g < 1.

Since the quasiparticle damping I'ygp is substantial
even in the Born approximation results of Eqgs. (18) and
(19), we need to include the self-energy corrections in the
Green’s function G(k,iw) that determines the susceptibil-
ity ¥npL(Q,®) and simultaneously use the “dressed” sus-
ceptibility to calculate the self-energy. A graphical repre-
sentation of these contributions is shown in Fig. 4.

We have been able to deduce a solution for the damp-
ing and susceptibility in Eqgs. (12) and (14) by considering
the asymptotic behavior of the self-consistent equations.
We find that

MypLl@)=a max(BT, |wl|) , (20)

is a valid solution, with the constants a and 8 determined
by the coupling g, where 3 is of the order of unity.

Considering first the quasistatic limit w << T, the func-
tion M(w') in Eq. (14) reduces to the derivative of the
Fermi function: M(w')~—2wf'(w'). Then the sharp
cutoff for @' 2T allows us to use I' +I'_=2Iyp (@
=0)=2afT, which leads to

N(0)w

1, aff
_+__
4T

XNFL(Q,0 << T)= Y R (21)

where ' is the derivative of the diagamma function.
Equation (21) reduces to #N(0)w /8T for a <<1, and to
N(0)w/2afBT for a>>1.

At high frequencies w >>T, the M(w') function in Eq.
(14) simplifies to give

w/2 ry+r_
X}épL(Q,w>>T)=N(0)f—w/2dw'(Zw,)2+(r++r_)2 .
(22)
In this case
I, +T_~qflo'+0/2|+|o'—0/2|]=alol,
and we obtain
ArpL(Q,0>>T)=N(0)tan" '(1/a)sgn(w) . (23)

In essence, Eqgs. (21) and (23) suggest that xY''(Q,w) is
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linear in o for frequencies smaller than the temperature
and then saturates to a constant value for higher frequen-
cies. Clearly the following interpolation exhibits the
proper asymptotic behaviors,

YuFL(Q,@)=N(0)tan™ '(1/a)tanh

[0}

where y ranges from four in the weak-coupling (a <<1)
limit to 2f3 in the strong coupling (a >>1) regime.

Now we use these asymptotic expressions for the sus-
ceptibility to determine a self-consistent solution for the
damping '(w) in Eq. (12). This method needs to validate
the trial solution of Eq. (20) and fix the values of a and 8.
For w << T,

Pyr(0<<T)=g?N(0) [ X h((m’,‘;’T’) do’ (25)

is sensitive only to the low frequency (linear w) behavior
of the susceptibility, and yields

7T2§2
Tnplo << T)= 27 tan~!(1/a)T . (26)

By contrast, the high frequency limit o >>T reduces to
Cnprl@>> T)=gN(0) fo“’x"(Q,w' o' . 27)

Here the high frequency (constant) behavior of the sus-
ceptibility dominates to give

CnpL(@>>T)=g *tan" (1/a)|0] . (28)

Clearly the linear temperature and frequency dependence
of I'ygp in Egs. (26) and (28) is consistent with the start-
ing form in Eq. (20). Compatibility of the coefficients re-
quires

a=g*an" Y(1/a), (29)

and B=m"/8 for a << 1 whereas B=1/2 for a >> 1, which
indicates that 3 is of order unity in any event. Corre-
spondingly, the constant ¥ in Eq. (24) satisfies the self-
consistency condition with a value 4 (if @ <<1) and 7 (in
the strong-coupling a >>1 limit). Only a depends strong-
ly on the coupling g, in the weak-coupling case
a=mg 2/2<<1, and in the other mathematical extreme
a=g>>1. Nevertheless, the intermediate-coupling re-
gime g ~ 1 yields a~ 1 from Eq. (29).

The susceptibility of Eq. (24) is shown in Fig. 5, where
its unusual frequency variation contrasts with the con-
ventional FL result. The self-consistent susceptibility is
closer to the Born approximation result of Eq. (16) al-
though the slightly shifted crossover in the frequency
variation and the coupling-dependent magnitude of
YNFL(Q,@) in Eq. (24) reflect the influence of the self-
energy corrections.

The quasiparticle damping is shown in Fig. 6 for a rela-
tively strong value of the coupling g=1.0 which corre-
sponds to a=0.86. For a typical metal bandwidth of
W =4 eV, the NFL damping is much larger than the
standard FL result. The magnitude of the damping ex-
tracted from the photoemission data is a=0.6,% which is
at the upper end of the intermediate-coupling range in
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FIG. 6. Quasiparticle damping I'(w) caused by electron-
electron scattering for coupling g=1 at room temperature using
a bandwidth W =4 eV. The conventional FL result shows
small damping. Nesting yields the high damping I'yg curve
with a linear temperature dependence in the static limit and a
linear frequency variation for o X T.

our model of a fully nested Fermi surface.
Although quantitative estimates of the resistivity are
hampered by uncertainties, a crude estimate gives

p= 8771"/&)512 87TaBT/wg, ,

where w,, is the plasma frequency. At room temperature,
intermediate coupling of a=0.6 and w,=~=1 eV gives
p==300 uQ cm, which is in the neighborhood of measured
values for single-crystal high-T,, superconductors.!?

The long-wavelength susceptibility is also affected by
strong quasiparticle damping of the NFL type and yields
an unusual response to optical probes such as infrared
reflectivity. We consider the impact of nesting on
X"'(g =0,w) in a separate publication.'*

The scattering in nested regions of the Fermi surface
competes with the smaller conventional FL scattering of
the remaining regions. From Fig. 6 it is reasonable to ex-
pect that the NFL and FL contributions will become
comparable if the nested region is reduced to roughly
10% of the total Fermi surface. The extent of nesting
also has a strong influence on the stability criterion which
we examine in Sec. V.

IV. EFFECTIVE MASS AND
QUASIPARTICLE STRENGTH

Previously, a phenomenological hypothesis has been
proposed, which anticipated some of the spectral features
derived here. Starting with a representation of the anom-
alous Raman scattering with an empirical function

X"(0,|lo| <T)=N(O)w/T
and
x"(0,lo|>T)=N(0)sgnw ,

and then presuming that x''(q,®) is independent of q,
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Varma et al.'® calculated a self-energy 3 emanating from
x'' that is similar to our result in the case of weak cou-
pling. Furthermore, they deduced the quasiparticle
weight Z, which is found to vanish logarithmically at the
Fermi surface at zero temperature, thus naming the situa-
tion a ““marginal” Fermi liquid. Also, they calculated the
conductivity in connection with infrared data and
developed a correlation between the susceptibility and
NMR, specific heat, and thermal conductivity behaviors
as well as the observed linear temperature variation of
the resistivity.

Our NFL calculations reveal a substantial mass renor-
malization which follows from the real part of the self-
energy X'(w). Kramers-Kronig transform of Eq. (20)
gives

2aw ln (2F
7 max(BT,le|) ’

where the cutoff energy w, >>max(BT,|w|) is needed for
convergence. The renormalization energy o—2'(w)
should be smaller than the bandwidth W even at the
cutoff w ~w,, which requires o, —2'(0.)~0, taw, ~W.
Hence the cutoff is at most

- w
T 1lta

o, (31
This upper limit for max(BT,|w|) is more stringent
than the damping condition I' << W, which requires
max(8T,|w|) << W /a.

The mass enhancement in a nested Fermi liquid exhib-
its a frequency dependence given by

2a &

1+—In
ks

c

max(8T,|w|) ’ 32)

* _—
mMNFL =My

and this function is shown in Fig. 7. For electron-
electron coupling at the high end of the intermediate

/m0

NFL

0 | | I
0 0.05 0.10 015 0.20

o (eV)

FIG. 7. Effective mass in the NFL analysis as a function of
frequency for an electron-electron coupling a=0.6 (g=0.76)
and a bandwidth W =4 eV. The temperature variation is indi-
cated by the solid curve for 290 K and the dashed curve for 50
K.
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scale, i.e., a=~0.6, m*=>~2—3m,. The frequency varia-
tion of m* is weak, and therefore is unlikely to change
the functional dependence of the damping and suscepti-
bility. However, inclusion of the real part of the self-
energy in the self-consistent analysis will produce correc-
tions to the numerical coefficients a, 3, and y.

The self-energy allows the quasiparticle strength Z(w)
to be expressed as

1 mg

l_‘az;\]FL/aw B m:”:L(a),T) '

ZNFL(“’): (33)

The logarithmic temperature variation of Z and m* are
reminiscent of studies on ferromagnetic spin fluctua-
tions.!®!7 There are also analogies in the InT contribu-
tions to the self-energy of one dimensional systems, where
higher-order Parquet diagrams have been shown to be im-
portant.'8

It is also interesting to note that the restricted phase
space of a one-dimensional electronic system yields a
resistivity that is linear in temperature,'® with a natural
correspondence to the Luttinger? derivation of a linear
variation of the damping.

The prospect of a vanishing strength Z=0at T=0isa
key element in the phenomenological “marginal Fermi-
liquid” theory.'” At finite temperatures their functional
form for Z (T) is essentially identical to Zyg; in Eq. (33),
apart from the constants @ and 8 which are determined
by the electron-electron coupling in our analysis. How-
ever, Fermi surface nesting will not allow the limit
ZrrL =0 to be reached as the temperature is lowered. If
the electron (or hole) orbit deviates from perfect nesting,
there will be a temperature 7* below which the damping
reverts to ordinary FL behavior with a conventional finite
quasiparticle strength Z; even at zero temperature. Es-
timates'® of the crossover temperature T* for a simple
tight-binding band indicate that the crossover region may
be observable in the oxide superconductors, and it is in-
teresting to note that the resistivity p(7T) of
Nd, _, Ce, CuO, single crystals has been found**?! to fol-
low a T? variation up to T*~100 K, and then p(T > 150
K) shows a linear T variation.

In the rare event of perfect nesting, the hypothetical
Z =0 situation will be avoided because a phase transition
is expected at a finite temperature. As the temperature is
lowered for a partially nested Fermi surface, Z will
remain finite as a result of (a) the crossover at T* to ordi-
nary FL behavior, or (b) a phase transition at a tempera-
ture which may be greater or less than T*. The phase in-
stability is examined in Sec. V.

V. REGION OF APPLICABILITY

A strong constraint on the NFL theory is imposed by
the neglect of vertex corrections in the self-energy expres-
sion of Eq. (3). This approximation requires g
X'(Q,w=0)<<1. Otherwise, as the temperature is
lowered a phase transition®? is expected to a SDW, CDW,
or another ordered state determined by the details of the
nesting and the quasiparticle interactions. In the ladder
approximation for the multiple scattering of an electron-
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hole pair, the phase instability region is obtained from
the real part of the susceptibility x¥'(Q,w=0), which fol-
lows from a Kramers-Kronig transform of Eq. (24):

2N@Q)

X}QFL(Q,w=O)=—Tr—tan ‘1—

47/Ewc

4
Ty T ’ (34)

where y . =1.78 is the Euler constant. Then the NFL re-
gion is bounded by T > Ty, with

2a

4y ro
Ty= VED: ex
my

The limits imposed by Egs. (31), (32), and (35) define a
phase boundary which is presented in Fig. 8. In the case
of complete nesting the vertex corrections become impor-
tant for intermediate coupling g ~ 1 even at temperatures
T ~0.1W, which would restrict any realistic analysis to
weak coupling. However, in typical cases nesting is
achieved only over a partial fraction v of the Fermi sur-
face, and such a case extends the validity of the NFL cal-
culation. Clearly the reduced nesting implies that the
system is less unstable with respect to the low-
temperature phase transition, thereby increasing the
NFL region to a wider temperature range. We have es-
timated the effect of this reduced nesting by scaling down
the momentum integrals by v, in comparison to the previ-
ous equations which presume complete nesting. Conse-
quently x¥(Q,w) is reduced by a factor v, and g is replaced
by vg in Egs. (29) and (35) to make the dark shading re-
gion in Fig. 8 for v=1. Therefore the suppression of the
low-temperature vertex instability by imperfect nesting

. (35)

1.0 o=
E l*‘T‘T-L\_lLII"I\ I (\l\llllli
— ~ ~
C ™S
N cutoff ~ R
I ~
L ~
0.1 - . —
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0.001 Ll
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FIG. 8. Phase diagram for constraints on the NFL theory.
The dashed curve depicts the energy cutoff requirement, the
dot-dashed curve shows the bound for weak mass renormaliza-
tion m*, and the solid curve yields the phase transition instabil-
ity region. Forbidden regions are shaded: Sandy shading illus-
trates the fully nested case of v=1, whereas the darkly shaded
regions correspond to a more realistic v=0.25 fraction of the
Fermi surface which exhibits nesting.
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extends the NFL region by almost two decades in tem-
perature, even for intermediate coupling. As the temper-
ature is lowered further, the vertex corrections become
important in the shaded region and a phase transition is
expected with a clear need to consider higher-order
corrections to the theory.

An example of variable nesting may be found in a
tight-binding band as for example the two-dimensional
Fermi surface shown in Fig. 2(b). Maximum nesting
occurs exactly for a half-filled band which is unstable in
any event. A shift in the Fermi energy caused by doping
with electrons or holes will reduce the nesting fraction
and reduce the region of phase instability. Thus the NFL
theoretical development is more relevant to significantly
doped electronic structures, although extreme doping
would of course eliminate the nesting and restore the
conventional Fermi-liquid behavior to the entire Fermi
surface. From our estimates of the damping the NFL
contribution is comparable to the conventional scattering
when nesting occurs in less than 10% of the Fermi sur-
face.

VI. CONCLUSIONS

A nested region of Fermi surface is shown to yield an
electron-electron scattering rate that is linear in tempera-
ture at low frequencies and then becomes linear in fre-
quency from w R T. The NFL damping is typically an or-
der of magnitude larger than the conventional Fermi-
liquid result that a quasiparticle will experience in non-
nested regions.

Physically the expanded phase space for allowed
scattering in nested regions yields the anomalous damp-
ing even in the Born approximation. Estimates of the
magnitude of the scattering provided by resistivity and
photoemission data point to intermediate on-site
Coulomb coupling U comparable to the bandwidth of the
itinerant charge carriers, although uncertainties arise in
the high-temperature superconductors whose Fermi sur-
face topology has not yet been determined. A nested re-
gion comprising more than 10% of the total Fermiesur-
face orbit should allow the NFL scattering to dominate
over other ordinary contributions.

Nesting introduces analytic structure in the suscepti-
bility that is relatively model independent at low frequen-
cies as seen in an elegant proof shown to us by I. E. Dzy-
aloshinski. On the basis of the fluctuation-dissipation
theorem the mean-square fluctuation component (p;pq Yo
is related to the susceptibility y''(q,w). If the fluctua-
tions at wavevector Q are quasistatic up to a cutoff fre-
quency w,, then the fluctuation dissipation relation yields
a susceptibility whose frequency variation is qualitatively
similar to our NFL result. This view also elucidates the

correspondence of our NFL results for the self-energy
with similar behavior in one-dimensional systems® !
which are also a likely source of quasistatic charge and
spin fluctuations.

Deviations from perfectly parallel sections of the Fer-
mi surface will yield a corresponding crossover tempera-
ture T* below which ordinary Fermi-liquid behavior
should set in, thus assuring a finite quasiparticle strength
Zyg, at zero temperature. This scenario may explain the
recent discovery®2%2! of conventional T? resistivity con-
tributions at low temperatures in Nd, _, Ce, CuO,, and a
crossover to p(T)~T above 150 K in single-crystal sam-
ples.?*2! The nesting mechanism is sensitive to delicate
changes in structure and chemical composition which
may be related to the observed variations in the high-
temperature behavior of the resistivity in films® as well as
in crystals.

Theoretically, intermediate coupling requires the con-
sideration of higher-order corrections to the self-energy
and susceptibility which we have included by a self-
consistent method. The basic features of the weak-
coupling results prevail, although there are corrections to
the numerical coefficients at stronger coupling.

Nesting of the Fermi surface is amenable to changes in-
duced by shifting the Fermi energy with suitable chemi-
cal substitutions. Thus the case of a nearly half-filled
tight-binding band of the form expected in copper oxide
superconductors provides an ideal testing ground for the
predictions of our theory.

Our simple electronic structure model with a constant
density of states was chosen to yield analytic solutions for
the damping and susceptibility over a wide frequency
range. It would be worthwhile to extend the basic
analysis to sophisticated cases such as the pseudogap
structure invoked in spin-bag calculations,?® or the elec-
tronic spectrum derived from 1/N expansions.?*

The validity criteria for the theory as a function of
temperature and electron coupling suggest that vertex
corrections may be particularly important at lower tem-
peratures near a phase transition instability. The nature
of the phase transition requires further study, especially
in view of the variety of SDW, CDW, and other phase
transitions that often accompany situations with consid-
erable Fermi surface nesting.
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FIG. 2. Phase-space restrictions for the electron-electron
cross section at finite temperature T in (a) conventional electron
gas, and (b) a Fermi liquid with nesting wave vector Q. The in-
coming quasiparticle momenta are k and k', with a scattering
momentum transfer q. Shaded regions are allowed by the Pauli
exclusion principle. The nesting broadens the range of momen-
ta available to the scattering electron to a width proportional to
W in comparison to the free particle width proportional to T.
In the NFL case q=Q. The solid curves represent the Fermi
surface.
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FIG. 8. Phase diagram for constraints on the NFL theory.
The dashed curve depicts the energy cutoff requirement, the
dot-dashed curve shows the bound for weak mass renormaliza-
tion m*, and the solid curve yields the phase transition instabil-
ity region. Forbidden regions are shaded: Sandy shading illus-
trates the fully nested case of v=1, whereas the darkly shaded
regions correspond to a more realistic v=0.25 fraction of the
Fermi surface which exhibits nesting.



