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EfFective Lagrangian for a system of nonrelativistic fermions in 2+ 1 dimensions coupled
to an electromagnetic field: Application to anyonic superconductors
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We study here, in two spatial dimensions, the effective Lagrangian of nonrelativistic charged fer-
mions in an electromagnetic field. The fermionic integration is performed yielding a one-loop
effective action that is evaluated using the inhomogeneity (derivative) expansion technique. The
effective Lagrangian involves a Chem-Simons (CS) -like term with a coeScient that is a "staircase"
function of B, the magnetic field. We then discuss the application of this effective Lagrangian to a
system of anyons, showing that the cancellation of the induced CS term against a CS term included
in the beginning to change the fermions to anyons, is favored energetically, together with the expul-
sion of B from the system of anyons. The cancellation implies the existence of a massless mode.
This, together with the fact that B =0, implies superconductivity.

I. INTRODUCTION

It is well known that, in a relativistic theory of mass-
less charged fermions in 2+1 dimensions, there exists an

anomaly that manifests itself as a Chem-Simons (CS)
term involving the external electromagnetic field at the
one-loop level. ' The anomaly is usually thought to arise
due to the presence of Dirac fermions. However, recent
studies seem to indicate that a CS-like term is also gen-
erated in 2+1 dimensions for nonrelativistic fermions
subjected to an external electromagnetic field. ' We ad-
dress this issue in Sec. II by computing the effective La-
grangian of a system of nonrelativistic (2+ 1)-dimensional
fermions in an external electromagnetic field.

We then use this effective Lagrangian to study a system
of anyons interacting in 2+1 dimensions with an external
electromagnetic field. This system has been of consider-
able interest recently because of its relevance to high-T,
superconductors, following the pioneering work of
Laughlin and co-worker. The system of anyons was for-
mulated and studied extensively by Wilczek and co-
workers as a system of charged particles (anyons) in a sta-
tistical magnetic field b which is proportional to the
anyon density. The system is also equally well described
by CS field theory. Therefore, the system is described by
a nonrelativistic Schrodinger field interacting with an
external electromagnetic field A„and a statistical field a„
with a CS term involving a„. If we integrate out the
Schrodinger field, we obtain an effective system described
by a„ interacting with A „.The effective Lagrangian con-
sists of the original CS term and the terms generated by
the fermionic integration as obtained in Sec. II. We ana-

lyze this effective theory and find that in the large range
of field configurations of a„ the CS term generated by the
fermionic integration precisely cancels with the initial CS
term. This was anticipated in the studies by Hosotani
and Chakravarty and Banks and Lykken. We shall de-
scribe this analysis in Sec. III.

H = f dx
~ [V ie A(x—)]f(x ) ~

1

2m

+ef(x )tg(x) Ao(x) (2.1)

where A0 and A are the external scalar and vector po-
tentials, respectively. We define the partition function by
Z(A)=trexp[P(JLtN —H)] and the effective action by
W[A]= —lnZ, which is a functional of A . p is the
chemical potential of the system, P= 1/k~, where k~ is

the Boltzmann constant, and T is the absolute tempera-
ture of the system.

Using standard path-integral techniques, one may ex-
press Z as a path integral over fermionic variables. The
integration over the fermionic variables gives the effective
action.

The partition function is written as

II. COMPUTING THE EFFECTIVE LAGRANGIAN

We present a detailed account of the calculation of the
effective Lagrangian for a system of nonrelativistic fer-
mions in 2+1 dimensions coupled to an external elec-
tromagnetic field.

The Hamiltonian of the system is assumed to be given

by

Z(A)= fDQDgexp —f dx f dr/(x, r) c),+ (P —e A) +eAo(x, r) —p 11(x,r)
0 2%i

(2.2)
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so

W[ A ]= —tr ln i 11,+ ( 11„+II» )
—p (2.3)

where

A, =iAO, II,:—P, —eA, (x), II, :—P, e—A, (x), i=x,y .

The technique we adopt in evaluating W[ A ] is to compute the current from W[ A ] and then to functionally integrate
the currents over the electromagnetic fields to get the effective action:

5W A 1
(J~(x ) ) — = le x X

l'ft, +(1/2m )ft, —p
(2.4)

and

(J„(x)}= x ft„e 1 + 1 ft„x
1(),+() /2m )(),' —y, ((),+() /2m )fl,' —p )

To regulate the currents, we use the Pauli-Villars regulator. So

( j,( x) ) =i e+ C; x 1
X

((),+()/2m)()(' —y+M, )

and

(2.5)

(jk(x)}= gC; x ftk +
2 ftl, x

ift, +(1/2m )ft —@+M; ift, +(1/2m )ft. —@+M;
(2.6)

where Co=1, g;C;=0, and M&=0. At the end of the
calculations, we set M;~ ~. However, in what follows
we shall for simplicity not mention the regularization ex-
plicitly. Formally, the current in Eqs. (2.3) and (2.6) may
be shown to be conserved in a very straightforward
fashion. Accordingly, the effective action is gauge invari-
ant. The effective action in Eq. (2.3) is also invariant un-
der space reAection:

W[A]= W[A'],

where A„'=+A„(~,xy); + for JLl=r, y and —for )M=x.
The currents in Eq. (2.6} are now evaluated using the in-
homogeneity expansion technique. '

First, we expand A„(x ) around the point x:

A„(x ) = A„(x)+(x—x )„B,A„(x)

the reason being that in the imaginary time method the
Euclidean time direction is compactified, and hence non-
trivial boundary terms will be generated by any transfor-
mation involving time explicitly.

The currents are then given by Eq. (2.6) with

[x)-(0)=[X=0}
and

A,~p, eA, (x)+b,„ ft—
k ~ftk+Zk .

Here,

ftk =Pl X)F)k(")

e(rA, + 2)r—A, +ex;8;—A,

+-, (x -x)„(»—x }.a„a.A„(x)+ (2.7) +-,'x, x, a, a, A, + (2.9)
Then we translate x to the origin using the translation
operator exp[ip„x„]. Further, we make a unitary trans-
formation involving x and y to express the current in
terms of field strengths as far as possible, without violat-
ing boundary conditions.

The unitary transformation is given by
I

0=exp ie[x; A, (x)+ —,
) x;xl 8; A (x)

bl, = e(rAk+ )r —Ak+T)x, x;B,F—k+ . .
) .

So the denominator in Eq. (2.6) now looks like

ip, ieA, ( )—+xib +Ho —p — (ft;6; b+, ;ft; 8+; ),
2m

(2.10)

where

+ X;X&Xkd, BJ Ak+ ' ] (2.8} '(ft„'+ ft,') . —
2m

Notice that the operator f}does not involve r explicitly, Performing another unitary transformation,
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tP„+[P» e—xB(x)] I . (2.11}

Since Po is the Hamiltonian of a two-dimensional elec-
tron in a uniform magnetic field in the missing z direc-

tion, 1/(iP, +Br)—tu) is exactly soluble, where P'
=p+ie A, (x). We consider the b, 's as perturbations.

Let

po= —ip, +A'o —p' .

So

and

(j (x)) =le g C; 0 1
0

P, +iE,+(1/2m)(A, E, +2, A, +a. ,')+M,

(j»(x)) = C; 0 ft»2m, . '
pa+id, ,+(1/2m )(A;8,;+6,;A;+b,; )+I;

1

P 0+(k,+( /)2m )(A, E, +s, fl;+Z~)+M,
(2.12)

Let eB(x) & 0. Then,

[ft„,ft ]=ieB(x)= i IeB(x)—
I

= —2—l
(2. 13)

& x,y In, x)=,e'x»" u„
2~l

(2.19)

X' =x —1'A„$'=y+1'A„,
we have

(2. 14b)

where 1 is the magnetic length, and ft is like a coordi-
nate, A„being its momentum. For eB(x))0, the roles of
ft„and A are reversed. Consider, eB(x) &0, and define

a = (ft„—ift, ) .1
(2.14a)

2

It can be shown that

l2
[a,a'] =—(ft„—i ft„ft„+iA, ) =1 .

Now, defining guiding center coordinates" as

where the u„*s are the standard harmonic-oscillator wave
functions. %e note that

f dX I & x,y I n, X & I
= (2.20)

Before proceeding with the actual calculations, we
would like to outline a few calculational tricks. Note, if
0 and 0' consist ofpo, ft„, and A,

&oIoxo Io& = &0Io(X'+1'A, )o Io&

= &0IXoo Io&+1'&oIoft, o Io&

=I (OI[O, ft 0']Io) . (2.21)

Furthermore,

and

[X', ft, ]= [ Y, A, ]=0,
[i',A', ]=[i,B,]=0,
[X,Y]=il

& oIoX'o'Io &
=1'&oI[ft„,o]o Io),

&0Iorw Io) =(0Io[~,o ]Io) .
(2.22)

[r,p, ]=i, 1

Po

1
)

Po

(2.15}
The commutators can be computed using the formulas

ft„= — (a+a ), ft = — (a —a ) .
21 &21

Hence

(2.16) 1

Po

i 1 1

ml'P, 'P, ' (2.23}

X=x— —(a —a ), Y=y+ —(a+a ) . (2.17)
2

' v'2

1ft„„
Po

l 1

m1 Po

We work in the basis In, X), where In, X)—:In )(8) IX);
In ) is the occupation number basis for the harmonic-
oscillator problem, and IX ) is the basis where X' is diago-
nal:

etc. Armed with these results, we start the actual compu-
tations of the currents (the details of the calculations are
given in Appendix A). The perturbations are done using
the formula

YIX)=il'
ax

So the eigenfunctions of Ho are given by

(2.18) B +—B B +—.
, (2.24)—

A



42 EFFECTIVE LAGRANGIAN FOR A SYSTEM OF. . . 4039

A= I"—,, B=—iS,+ (Z, A, +it, E, +Z, ),
2m

(j,(x))o=ie 0 0)
1

0

ie f„(oln,x)(x,nlo)
P „ i/ +E„—p'

ie 1 1

I3 2ml „i( +E„—p,
'

(2.25)

Up to first order,

(j,(x)) = leBly(leBl, A, )
2m

y+~ (a.E.+a,E, ),eB Bco

where

00
1

y(leBI, A, ) = (2.26)
0 1+exp I P[E„—p i—e A, ( x)] )

leB(x)
2m „1+exp [P(E„—p') ) and

The last equality assumes the regularization mentioned
above. Here g are the Matsubara frequencies:

eBE„=F,„(x)=B,A, —8, A„

= ( m + —,
' ), E„=( n + —,

'
)

m It may be shown explicitly that

(J,(x))I„=(q ( ))„,=o,
e

2m
o ii„„iit—IA,,a—

, +K, A, +a,'I „'
o)

+ Q 'Q Q +Q ++2 Q

y{ leB(x)l, A, (x))F, (x)—
2

X( leB(x) I, A, )a,B(x), (2.27)

where

Similarly,

Qo
1(n+ —,

'
) 1+exp[P(E„—p' ) ]

temperature. However, the current is conserved in the
case of zero temperature or in the case of finite tempera-
ture but static electromagnetic fields. We therefore re-
strict our attention to these two cases.

It is now straightforward to obtain the effective action
at T=O. It is given by

(j,(x))t„=— y(leB(x) I, A, (x) )F,„(x)
277

2

+ &(leB(x) I, A, )a„B(x) .
2vlm

(2.28)

W[A]= fdxd«(eB)yA, (x)B(x)2'

Note that at T =0, y( l
eB l, A, ) is independent of the real

part of A, and it possesses the property of being a "stair-
case" function of (p+ie A, ) leB Accordingly. ,
A, =y /2+y. For finite T, y is given by a smoothened
out staircase function so that we do not have a simple re-
lation between A, and y. Up until now we have assumed
eB(x) (0, but we can check that the same expression
holds for eB(x))0. This was expected from parity con-
siderations.

In the approach followed here, the higher-order
corrections are given by the higher-order derivatives of
the fields. The calculations are straightforward, albeit
tedious. Up to the given order of calculations, the
current does not appear conserved as it stands, at TWO.
The origin of the problem is that the inhomogeneity ex-
pansion does not respect the boundary condition for finite

2

+ fdxdry B2(x)
8am

+ fdxdr E'(x),
4a (2.29)

where

+ 1, for positive eB—1, for negative eB '

Thus we see that a CS-like term has been generated in
the efFective action after doing the fermionic integration.
This form of effective action may now be used to discuss
anyonic superconductivity.
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III. ANYONIC SUPERCONDUCTIVITY
AND THE EXISTENCE OF MASSLESS EXCITATIONS

In this section, we use the effective Lagrangian com-
puted in Sec. II to discuss anyonic superconductivity.
Anyons are quasiparticle excitations of fractional statis-
tics. So we are looking at a system of charged particles of
fractional statistics whose Hamiltonian is given by

mines the statistics of the particles. Solving Eq. (3.2) in
the Coulomb gauge, we may write the partition function
for the system as

Z= fDPDQDa;5(r);a, )5 . b — Pf exp( —S),1

Po

(3.3)

H= fdx l[V ie—(a+ A)]g(x)l
1

2m

+eg(x)P(x) Ao(x)

where a is the solution of

(3.l)

where
r

S=fdxdr l( 8, i A,—+ [p —(A+a)]' —p

Let

b—=a, a —a a„=
Po

(3 2) 5 b— = fDa, exp i fdr dx(Pa, g poba—, )
Po

For simplicity, we hereafter set e = 1, which can be done
by rescaling the gauge fields. According to this Hamil-
tonian, the charged particles (anyons) are in the statistical
magnetic field b, which is proportional to the anyon den-
sity. As a consequence, the anyon acquires an extra
phase when it goes around other anyons. The phase de-
pends on the parameter po, and the value of po deter-

So the partition function can be written as

Z= fDQDQDa;Da, 5(B;a;)exp( —S'),

where

(3 4)

(3.&)

S'= dxdv ipoba+ i p, —a+ A, + p —A+a —p

We do the fermionic integration to get

Z= fDa, Da, 5(d;a; )exp — i@0fdxdr ha, + W,ff(a+ A ) (3.6)

b(x) = —V P(x),
whence, formally,

B~
a, (x)= —e,

' b(x) . (3.7)

Using Eq. (3.7), the functional integral is trivially con-
verted from one over a, to one over b. It is also worth
noting that the signature of b +B is crucial in defining
the creation and destruction operators in Ho. The signa-
ture manifests itself in the expression for (j;(x)).

Now, after carrying out the fermionic integration, we
get

Z = fDb Da,exp(T, + Tz+ T3+ T4), (3.g)

Weff ( a + A ) has already been computed in Sec. II with A

of Sec. II replaced by (a+ A ) here.
Thus we have an expression for the partition function

of the system of anyons. It is interesting to note that

f'dxdr ba,

is the full CS term in the Coulomb gauge. The Coulomb
gauge condition yields

a, (x)= eB, Q( )x

and

where

T, = —i f dxdp~, ,ab,

T2= — ' f dxdryl b(+Bl)(a, +A, )

T ——
3

T =—
4

fdxdr (e+E)',
4m

1 f dxdry (b+B)
Sam

where y is given by (2.26) with B~(b+B ) and
A, ~(a, + A, ). It is to be understood that the potential
a;(x) appearing in the statistical electric field has been ex-
pressed in terms of b(x) Amore expl.icit expression will
be given later when we study the spectrum of the collec-
tive excitation. At this point we intend to study two as-
pects of the system. First, we want to show that the can-
cellation of the tree level and the induced CS term mini-
mizes the free energy of the system. Second, we want to
demonstrate the existence of a massless mode once the
cancellation of the CS term is achieved. The exact
analysis being quite complicated, we, in what follows, use
the fact that the higher derivative terms in the Lagrang-
ian are much smaller compared to the CS term and that
they are negligible in the first approximation.

In accordance with the above arguments, we write



42 EFFECTIVE LAGRANGIAN FOR A SYSTEM OF. . .

Z= fDa, Db exp —i fdxdr gob+ ~(b+8)~ a,

= f Da,Db exp i—f dxdr ij,ob — (b+8) a,b+B (0 2m

+f Da,Db exp i f—dxdr gob+ (b+8) a,b+B)0 2~ (3.9)

8 (x) being the external field, we first choose it to be posi-
tive: B(x)&0. Now, since po is a parameter in the
theory, we fix it to be {uo= —N/2m. The case N=2 cor-
responds to that of semions. So

We solve this equation graphically:

Z= Db b

Z=f Dbg yb+
b+B &0 2' 2iT

+ Db B —N —
y

y b

b+B &0 2K 2' (3.10}

or

Z=XII
0

(3.16)

Since y )0 and N )0,

g(b}=y(b+8)+Nb~b b
=0

0

does not have a consistent solution for b+8 (0 and
B &0.

Thus the first term in the partition function is zero. In
the second term let

where bo is obtained from (3.15). Also,

ay
ab ab

=(2—y) — (b+8)

=(2—y}—g 5 b+8-
(n+-,') (3.17)

f(b)=(N —y)b yB . —

If f(bo)=0,

(N y)bo=y—B .

Defining f=p/(b+8 ), we get

(3.11)

(3.12)

Now, from the graph, we see that if

2PPt
b 8 2@Pl

b =p/g —8,
and hence

—B =yB,

or

(N y) =NB . —
0

(3.13)

In our calculations, at a point x, 8(x))0, and p is fixed.
go changes due to changes in B.

Also, at T=O, 2pm 2pm (3.18}

then y =2. Equation (3.15) has a solution provided 8 =0.
In this case, ~af /ab~ '= oo and gives a large contribu-
tion to Z. If, however, bo lies somewhere else, a solution
to (3.15) exists even if 8%0. In this case y%2 so that

~ af /ab
~ b I, is finite.

A similar analysis may be carried out for B(x)~0.
This is done in Appendix C. The conclusion reached,
however, is the same. We conclude, therefore, that the
free energy has a strong minimum at B(x)=0.

With this in mind let us look at the partition function
more carefully. Z gets its maximum contribution from
the region of the b(x) integration that yields N=y. So,
for N=2,

y= +8 n+—1 1

=0, 2 m

For semions, X=2, and so

(3 14) and

Z = Da,Db exp A, + A2+ 33+34+ 35+ A6

(3.19)
i 1

2 —g 6 n+ ———(02 m go
~ =2B . (3.15}

where
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dx b+B A, +Ba,

A~= — fdx(b+B)
27Tm

fd, ,
[(D,b)'+(a, , )'

+28,a,e,,D, b ],

and

34= dx E

A5= —2f dx e, Db(x. )E;,
A6= 2—f dx 8;a,E;,

D, =

But from an order of magnitude estimate, we note that))A 2 i4 3 +4 3 5 i4 6 Also, in the low-momentum
regime, (8;a, ) (((D;b) . So even though we may drop
(B,a, ) when doing the a, integration, we may not drop
(D; b ) in the b integration. So

Z=5(8)fDb exp(P+Q+R),

where

(3.20)

1P= —— dx bA, ,
7T

Q= — f dx b',1

277m

h(b)=P+Q+R .

For the extremum,

(3.21)

0= ——V A, —2

n.m
v't,

,E, . (3.22)

Since A, is the external scalar potential, V A, =O. E,
the external electric field, is time independent. So
bo =const is a solution of Eq. (3.22). bo lies in the range

2pm ( ( 2pm0—

Further,

R= f dx
l l

[(D;b) +E 2e,)Dib(x—)E;] .

This indicates that 8(x)=0, which is the Meissner
effect. Further, in doing the b(x) integration we would
like to do a saddle-point calculation. Let

where

2

s[„]=— ' fd. „ 1+, a', v
7Tm ibo

(3.25)

Thus, if we rescale as

1 1 ),(nm)'" IP

where as p~~, (lip)g„—+(1/2n)f d'po, we see that
the propagator of the g(x, r) field is

'2 —1

m
P

(b )&/z Po
0

(3.26)

which is the propagator for a massless excitation. So the
fluctuation around a constant background is a propaga-
ting massless mode. With the above arguments, we have
shown, at least at T=O, that the anyon gas is a superfluid
that expels the external applied magnetic field.

IV. CONCLUSION

We computed the effective action using the inhomo-
geneity expansion method. The perturbations are carried
out about a local vacuum consisting of filled Landau lev-
els, because of which a CS-like term appears in the nonre-
lativistic Schrodinger field theory. This result agrees
with that of Abuelsaood. However, unlike in Ref. 2, the
fields here are space-time dependent. The calculated
space-time action was then used to study the low-energy
behavior of anyons. Free-energy considerations revealed
that the cancellation of induced and tree-level CS terms is
favored and the external magnetic field is screened
(Meissner effect), indicating that the system is a supercon-
ductor. Once cancellation is achieved, the higher deriva-
tive terms in this effective action describe the density
fluctuations of anyons, exhibiting a massless mode.

It is worth pointing out at this point that the current as
computed in the text is not conserved at TWO. The cause
of this problem lies in the inhomogeneity expansion
method, which does not respect the boundary condition
for finite temperature. For the special case of T=O and
the static electromagnetic fields at finite temperature, the
current is conserved. Accordingly, only in this case is the
effective Lagrangian (3.23) gauge invariant. Because of
this, we are hesistant to draw any conclusions regarding
the case of finite temperature. We feel that more careful
analysis should be undertaken as regards this question.

h(b)=h(bo) —f dx g(x) + g', V ' rl(x),
~m ~lbol

'

(3.24)
and

Z =5(a)e ' D~ e'(~),(bo)

6 h(b) 1 1 m
5b( )5b(y) lb l

So
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APPENDIX A: GUIDING CENTER
COORDINATES AS A MEANS

OF DOING HIGHER-ORDER CALCULATIONS

where

and

(A3)

Typically, a calculation for (j„(x)&'" involves a ma-
trix element of the form

OA, „xr 0}.1 1

PO Po

So we may choose a basis that is diagonal for 80 and X'.

Thus the extended Hilbert space would be

in, X&—:fn &eiX&,

where

It is then convenient to choose a basis where 80 is diago-
nal. To deal with the spatial operators, however, we ex-
tend the Hilbert space of 80 by taking the direct product
of the harmonic-oscillator basis with the eigenbasis of an
operator that commutes with Hp.

Po= i(p, —eA, )+— (ft„+ft ) —p, ,
2m

where

Boin & =(n+-,') in &,
i'(x}i

2 ix&=xix&,

$'Ix& =it' Ix& .
X

(A4)

ft„=p„, ft» =p» —eB(x )x,

The operators X and Yare defined in Sec. II:
X'—=x —/'ft, ,

$'—=y+ I'ft„,

(A2)
But

So

1'P. 1 1 1
[Po r"]

0 0 pp

x =X'+i'ft„r"IO& =0 .
(A5)

On. '""' O=o „'"', 0

1 + l2 1

=0 „X 0+ 0 „0
= —I 0

p
0+1 0

p 0

2 0 1 ~ 1
0x p JP pp

=—oA, A, o ro oi. —l 1 1 . 1

m "po "p03 Po
Hence Eq. (Al) reduces to

(A6)

(A7)
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Now there are no guiding center coordinates in Eq. (A7). Recalling that

f dX&X, n ~n'X) = 5„„
2+i

OH xw 0=
2

— m n „Q 3
n m —m m n

3
n m

7

(AS)
& n/ft„/n') & n'/ft„/n ) 1m—g2nl~mP ~ „(ig +E„p—) (if +E„'—p) ~ „(ig +E„—p)

where g =(2m+1)(n/P) 'and E„=(n+—,')(1/ml ) So. , from Eq. (AS), defining I „=1/(ig~+E„—p), and recalling
ft„=(1/&21 )(a+a ),

0 ft„xr 0 = g [(n+1)5„.„+,+n5„„,] —m g1 1 i 1 1 1

1 o ~o 2@i mP „„21 I „I„ p3

From (A9),

(A9)

l'p 1'p 2rrl mP 21 „ I„I„+, I„I„
Further, from Appendix B,

1 1Pg p(E ) Py
mn n n e " +1

and

1 c) 1——m
2 c)p2 „ I „

(A 10)

n+1 ++ n

I pgI g+] m, g

From Eqs. (A10) and (Al 1),

a' 2 ay+ 1+co y .
2co c)p

2
co c)co

(A 1 1)

Oft„xr 0=1 1 i
"

Pp Pp 2m 12mP

m co P c)2 2P c) P 5y+ 1+a) y —m —
2 y

2 2c0 c)p co BG7 2

i 2P c) mP 81+N
2n.l mP co c)co 4 Bp

(A12)

Thus

1 1 i 2 8 m 8
2@i m co co 4 c)p,

This the technique for computing the matrix elements that arise in the perturbation expansion.

(A13)

APPENDIX 8: ON MATSUBARA SUMS

In our calculations complicated Matsubara sums played a big role. An algorithm has been developed to handle those
sums.

First of all, me establish the notation

I „=i( +E„—p, where g =(2m+1)—,
and

1 1 1E„= n+— CO

ml ml

=Pg
@ „, =Py(, p) .1 1

m, n ~ n e + 1

This the fundamental sum. %'e look at

(B1)
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n+1 n (n+1)
I co

m ~n~g+] ~gI n —] m n

1 1=—X
CO

In —]

(n +1) 1

n 1

+
CO

L

So

g C, =— y(~, p, )—,y(m, p, )+,y(a, p)= — y(~, p) .P~ P P P~
CO Bp ~3 ~ N Bp

z
+

3
=— y(co, p) .n+1 n P 8.„r'„r„„r'„r„, ~ Bp

(B2)

Now,

+1
.+1

n (n+1) 1

2(n+ —,
'

) 1

m In
n+1 1 n ~ 1

~2

Hence

gC, =—

2 8 1

X
co Bc& I „

2
P 1+co y(cop) .

2 ~ 1

N

(B3)

Further,

I n+] m I nI n —]

n+1 1 + ~r'„. r„,
n+1 1

I n+]
+ ~'r„ . r„ ,

So

1 1=—XN

2(n+ —') 1+ +1~ 1 n ~ 1

~n —]

X C3 y(~ p')+
g

y( p')+, Py(~ p )
P 8' 2P 8 2

2@7 Qp2 ~ Bco

a'
y(~, p)+ 1+ y(co,p),2 ci)B

2co Qp~ ~3 Bco
(B4)

=X —X = XI n ~n+] I n+]

2(n+ —,') n+1 1

I n+]

=—(n+ —') g2

CO m n

Therefore,

1 1 n+1 1

I n+]
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g C4= —— y(co, p) —, y(co, p)= —, i+~ y(~ JM) .p a' p a p a a

~ alua~
' ~' ap

' ~' ap a~
(B5)

These are the results that we need in our calculations.

APPENDIX C: MINIMIZATION OF THE FREE
ENERGY IN THE CASE OF SEMIONS (N =2)

DUK TO THE CANCELLATION OF THE INITIAL
AND THK INDUCED CS TERMS AND

THE MEISSNKR EFFECT

From Sec. III the partition function at T=O for the
system of anyons is

Z= Da; Da, ;a; exp A+C+D+E, C1

and

oo

N=y= lim X, =2mpo,p-~ 0 expo+1

where ri=P(E„—p') and p'= p i(—A, +a, ). For real a,
and A„ there is no contribution from i(A, + a, ) at
T=O. Now the dominant term comes from the term
with one derivative since we are interested in the low-
momentum regime. Therefore, consider

f dx f dr[(N N, )B—+NB]a, .2'
where

f f dx dr(N N, )b(a—,+ A, ),

x wNB a, +A,

4 f f ~(b+B)~

f fdx drN (b+B)

So, even though there is a quadratic term in a „we ignore
it as a first approximation and look at

fDa,exp i f dx fdr[(N N, )b+—NB]a,

=5((N N, )b+—NB ) . (C2)

This 5 function, so far as the integration over a;(x), or,
equivalently, over b (x) is concerned behaves like
5[f(b)], where f(b)=(N, N)b —NB, whe—re

"Staircase" Function

OQ

1N= +6 n+-
n=1

Now

(C3)

fDb 5(f(b))= g fDb 5(b b)—
bo

where f(bo)=0;

e/2m 3e/2m 5e/2m 7e/2m

=(N, N) (b+—B) —.
5b ' 5b

b0 is obtained as follows:

0=(N, No)bo NOB—, —

(C4)

(C5)

(2-N0) P/ x

2-N0)/m

-5/2m
2S=O

-1/2m 3/2m
1

7/2m

26 (B$0)

28 0
(2-N 0) p/x 28

(p $0 )/m

x= &/b+B

FIG. 1. The staircase function y(T=O) as a function of
x =p/(b+ B). It is also shown that the solution to
(2—No)(p/x)=2B for B=O occurs for 3e/2m x ~5e/2m.
No =y( T=O).

FIG. 2. It is shown that (2+No)(p/x ) =2B does not have a
solution for B=O. (2—N&)(p/x)=2B does have a solution
which corresponds to an absolute minimum of the free energy
of the system.
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where

Define

p
lb, +Bl

If b and 8 are positive,

b = —8.
x

So, from (C5) and (C6),

No= ge n+—1 p
n=1 2 coo

where

l(b, +8)l

(C6)

N, = ge
n =1

1 1n+ ———x
2 m

(N, N—o) is a modified staircase function of x. Now, in
(C8), (N, —No) is multiplied by p/x, which is an inverse
function of x. For a given p, p/x is a rectangular hyper-
bola when plotted as a function of x. From the above
graph it is obvious that for N, =No, (C8) will have a solu-
tion if 8 (x ) ~0.

Now, from (C4), if No =N„5N/5b =0,

fDb 5(f(b))= g fDb 5(b bo)—
bo 0 c

1

Now Z- fDb 5(f(b)). So

(N, —NO) B=N—OB . (C7}
1—lnZ ———ln =lnlNO N, l, — (C9)

So

(N, No) =—N, B . (C8)

This equation is solved graphically as NO depends on x in
a nontrivial fashion. Let N, =2. NO is a "staircase"
function of x as shown in Fig. 1:

which ~ —~ as No~N, . So the free energy is mini-
mized for No =N, . But if NO =N„we have argued that a
solution b = bO exists if 8 =0. This is the Meissner effect.
In the above analysis we started from 8 ~0 and obtain a
minimization of the free energy for 8=0. The same
holds even for 8 ~ 0 as the discussion below shows. As in
Eq. (3.9), we write

Z= fDa, Db exp i f dx—dr pob+ lb, +Bl a,

=f DaDb exp —i fdxdr gob+ lb+Bi a,
b+B (O, B ~0 2~

+ f Da,Db exp —i f dxdr gob+ lb+8 a,b+B) O, B &0 2m.
(C 10)

Let po= —N/2~. Thus Here x &0. Again, from (C13),

Let

Z = Db Nb+y b+8
b+B (O, B ~0

+ f Db 5( Nb+y(b+8)) —.
b+B) O, B ~0

p(b):Nb+ y(b+8—),
cr(b}: Nb+y(b—+8 } . —

(Cl 1)

(C12)

(C13)

(N —y) =NB .
x

(C16)

Here x &0. In (C15) let 8 &0 be such that the solution
exists when y =1. A solution for (C16) also exists simul-
taneously as is seen from Fig. 2. For these solutions,

—
1

Z, = g fDb5(b bo)—Bp
ab b=b,

Nbo+y(bo+8 ) =0 . (C14)

Now we require the zeros of p(b) and cr(b). From (C12},
+ y fDb 5(b b,)—

bo
Bb b=b

(C17)

Let x =p/(ho+8). If ho+8 &0, x &0. If ho+8 &0,
x &0.

So, from (C14), (N+y)(p/x 8)= —yB. Or we —have
Bo =(y N) . — (C18)

If, however, 8 =0, a solution for (C15) does not exist, but
a solution for (C16) exists with N =y. Now

(N+y)~=1VB . (C15)
So
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(C19)

So the free energy F, =——lnZ, &&Fz —=—1nZz. Thus an
absolute minimum of F is attained if 8 =0, even if we

start from 8 0. The above is illustrated in Fig. 2. Now,
with this rather crude estimate as guideline, we may
proceed to evaluate Z more carefully as has been done in
Sec. III.
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