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Superfluid kinetic equation approach to the dynamics of the He A-B phase boundary
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The dynamics of the A-8 phase boundary is studied using a nonequilibrium theory inspired by
the microscopic approach to flux flow in type-II superconductors, namely a generalized two-fluid

model consisting of coupled dynamical equations for the superfluid order parameter and the quasi-

particle fluid. The interface mobility is obtained to lowest order in the front velocity in three
different dynamical regimes: the gapless, hydrodynamic, and ballistic. Experiments have so far
only been performed in the ballistic regime, and in this regime we find that, if only Andreev scatter-
ing processes are accounted for in the interface mobility, then the theoretical predictions for the ter-
minal velocity of the planar interface are too big by a factor -2. From this we conclude that there

may be other important contributions to the interface mobility in the ballistic regime, and we dis-

cuss a few possibilities.

I. INTRODUCTION

The A and B phases are the stable bulk superfluid
states of liquid He in zero magnetic field for tempera-
tures in the millikelvin region. ' The phase boundary be-
tween the two bulk phases is a distortion in the He
superfluid order parameter —a generalization of the
textural inhomogeneities that can exist in the bulk phases
alone —and the dynamics of the phase front is in many
ways similar to the dynamics of Abrikosov vortices in
type-II superconductors in the mixed state. The prop-
agation of the A-B phase boundary is also an example of
a first-order phase transition taking place under highly
nonequilibrium, dissipative conditions, and as such has
obvious similarities with the motion of domain (bubble)
walls between false and true vacuum states in the early
universe.

The high-temperature A phase can be substantially su-
percooled below the thermodynamic (first-order) A ~B
transition temperature, T~~. Over the majority of the
pressure (P)—temperature ( T) phase diagram the super-
cooling is so great that one says that the liquid is hyper-
cooled at a temperature T (T„~,which roughly means
that the latent heat evolved per unit volume, L, in the
A ~B transition is incapable of heating the phase bound-
ary region back to T„tt from T; i.e., L/C & T„tt—T,
where C is the specific heat per unit volume of the
liquid. In contrast to what happens in conventional su-
percooled transitions, the flow of latent heat does not
play a dominant role in the dynamics of hypercooled
transitions; instead, some microscopic mechanisms con-
trol the speed of front propagation " and govern the
front's stability properties. ' ' Here we are interested in
the hypercooled dynamics of the topologically stable pla-
nar phase boundary between the bulk A and B phases,
which (to use common parlance) is a kink solution to an
appropriate nonlinear field equation. The path traced out
in the 18-dimensional order-parameter configuration
space by the planar A-B interface takes the system out of
any one degenerate manifold, and it is found that the dy-

namics of this type of inhomogeneity in the liquid is in-
herently nonlinear and dissipative.

The dynamics of the A-B interface is interesting both
from the general point of view of the dynamics of first-
order phase transitions and as a testing ground for the
well-developed theories of superfluid dynamics. The mi-
croscopic nonequilibrium theories for Fermi superfluids
are generalized time-dependent mean-field theories and
are one of the few examples of quantitatively accurate
mean-field theories for strongly interacting many-body
systems such as liquid 'He. In this paper we use the mi-
croscopic superfluid kinetic equation formalism, which in
the semiclassical limit is a generalized two-fluid model
consisting of coupled dynamical equations for the
superfluid order parameter and the quasiparticle fluid, to
calculate the mobility of the planar A-B interface that
may form and subsequently propagate when the stable B
phase nucleates in the hypercooled metastable A phase.
Since (for T not too close to T, ) the A Binterface wi-dth

d is believed to be of the same order of magnitude as the
superffuid coherence length go, the semiclassical approxi-
mation is not at first sight appropriate. Thus we might
expect that the semiclassical method that we adopt here
must be treated as a model calculation, whose results
ought to agree with those of a more appropriate quasi-
classical calculation only in the limit go/d « l. As we
shall discuss below, remarkably, the semiclassical and
quasiclassical results for the part of the interface mobility
due to Andreev processes appear to be in exact agree-
ment.

The organization and principal results of the paper are
as follows. In Sec. II we describe what we mean by an
A-B interface and give an outline of the different levels of
theoretical description appropriate for treating its dy-
namics. We then briefly discuss the five different dynami-
cal regimes (diff'usion limited, gapless, hydrodynamic,
ballistic, and pair-breaking) for the motion of the inter-
face and describe how the dynamics is governed by
different physical processes depending on the location in
the pressure-temperature phase diagram.
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In Sec. III we review the previous theoretical work on
the interface dynamics in the ballistic regime (the only re-

gime to be studied experimentally so far), where the
quasiparticle mean free path is much greater than the in-
terface width, and show that the two previous computa-
tions of the part of the interface mobility due to the An-
dreev scattering of thermal quasiparticles (the quasiclassi-
cal Green's function calculation of Kopnin" and the
semiphenomenological calculation of Leggett and Yip '

are in disagreement.
In Sec. IV we use the superfluid kinetic equations to

study the dynamics of the A-8 interface in the gapless,
hydrodynamic, and ballistic regimes. In each regime we
attempt to obtain an expression for the mobility of the
planar interface, which can then be used to predict the
interface's terminal velocity. After explaining why a
semiclassical calculation of the interface mobility in the
ballistic regime should be able to decide between the two
previous conflicting results, we show that the semiclassi-
cal superfluid kinetic equations lead to a prediction for
the part of the mobility due to Andreev processes that is
in exact agreement with the full quasiclassical calcula-
tion; we find this agreement somewhat puzzling, for the
interface width d-g, and the semiclassical approxima-
tion is not expected to be quantitatively accurate (unfor-
tunately we have not been able to find a transparent phys-
ical explanation for this agreement).

We show in Sec. V that if only the Andreev processes
are accounted for in the interface mobility, then the
theoretical predictions for the terminal velocity of the
planar interface overestimate the experimental data by a
factor -2. This leads us to conclude that contributions
to the interface mobility not previously accounted for
may play an important role; in particular, we demon-
strate that some of the quasiparticle states with rnomenta
in or close to the plane of the interface (grazing angle
states), which are neglected in the Andreev contribution
to the mobility, seem to give rise to a contribution that is
of the same order of magnitude as the Andreev contribu-
tion. (Since we have not been able to obtain a full quanti-
tative prediction for the grazing angle state's contribution
to the mobility, we are not in a position to make a com-
parison with the data. )

Finally, in Sec. VI, we present a conclusion and sum-
rnary and point out that the superfluid kinetic equation
formalism ought to be useful in calculating the interface
mobility in the low-temperature pair-breaking regime and
in obtaining a quantitative estimate of the e6'ective iner-
tial mass for the interface, two quantities for which at
present there are only rough estimates.

Even without the agreement between our semiclassical
calculation and the seemingly more appropriate quasi-
classical one, the semiclassical approach is interesting in
its own right as a model calculation for the dynamics of
the A-8 interface, especially since it gives us insight into
what is happening locally in the region of the order-
parameter domain wall, where both the gap and the
quasiparticle (QP) distribution function are changing on a
length scale -d (such a local description did not arise in
the previous investigations of the interface mobility).
Furthermore, our kinetic equation approach allows us to

treat quasiparticle collisions in a simple manner and also
handle in a unified and physically transparent way the
hydrodynamic and gapless regimes for the motion of the
interface (which were not previously discussed). In the
ballistic regime it also allows us to estimate in a simple

way a part of the seemingly important contribution from
the quasiparticle states not accounted for in the Andreev

part of the interface mobility. One of the shortcomings
of the method, however, is that it seems to be difficult to
handle in a general way the nonunitary superfluid states
that appear in the interface region.

The dynamics of domain walls and first-order phase
fronts is often modeled by a time-dependent Ginzburg-
Landau (TDGL) equation. Here we show that a general-
ized TDGL description does hold, but only in the gapless
and hydrodynamic regimes, which make up only a tiny
portion of the available, phase diagram (or parameter
space). Over the major portion of the available phase dia-
grarn a TDGL description completely breaks down, and
this breakdown leads to an interesting and unconvention-
al type of kink dynamics. The study of the dynamics of
nonlinear distortions like the A-8 interface as well as of
defects such as vortices is naturally the next step in un-
derstanding nonequilibrium phenomena in superfluid He
(cf. Ref. 14), and this study has only recently begun. As
we will see below, the dynamics of the A-8 interface pro-
vides a valuable probe of kinetic processes in the liquid
that may otherwise be difficult to study.

II. NONEQUILIBRIUM SUP ERFLUIDITY
AND A-B INTERFACE DYNAMICS

A, (p, r, t) =A„(r,t)p, , (2)

where we have introduced the complex bivector order pa-
rameter b,„(r,t). The order-parameter configuration
space can then be regarded as an 18-dimensional real Eu-
clidean space.

The stable bulk phases in zero magnetic field are the
anisotropic A phase, which has

The characteristic atomic momentum and frequency
scales associated with the He liquid are pz, the Fermi
momentum, and sz =(p~/2m ")—Fermi energy —1 K,
where m ' is the quasiparticle (QP) effective mass (we use
A =k~ = 1 throughout, and energy is measured in temper-
ature units). The Cooper pairing in the superffuid phases
of He is believed to take place in a p-wave (L =1, odd
angular momentum), spin-triplet state, and for
sufficiently slow time and space variations (slow on the
microscopic time, sr ', and length, pz ', scales) the order
parameter or gap matrix can conveniently be written as

b t3(p, r, t)=i(&,&2) &b,, (p, r, t),
with A, (p, r, t) the components of h(p, r, t), which is a
(generally complex) spin vector. '

For L =1 pairing, b, (p) can be expanded in L =1
spherical harmonics or more conveniently in terms of the
components of the unit wave vector p:
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where A~ is the rms value of the energy gap, and the
pseudoisotropic B phase, which has

b„=bs R„(8,co)e'~,

where w, and v&2 are a pair of real orthogonal unit vec-
tors in real space that describe the orbital part of the
Cooper-pair wave function, d is a unit vector in spin
space that describes the spin part of the wave function, P
is a phase, and R„(0,co) is an orthogonal rotation matrix
that describes a rotation through an angle 0 about the
axis defined by Q. The B phase has an isotropic energy
gap Az, while the A phase has an isotropic one with
nodes at +l,

where I =w, X@2 is the A-phase liquid-crystal-like an-
isotropy vector along which the angular momenta of the
Cooper pairs point. Both the A and B phases separately
form distinct, topologically inequivalent, degenerate
manifolds of states with states in each manifold differing
only by the choice of orientation for the symmetry-
breaking variables (d, w„etc). A static A-8 interface
can exist at the thermodynamic first-order phase transi-
tion temperature T„s(P,H), and from the above con-
siderations we see that the planar phase boundary is sim-
ply a path in configuration space 5,"; (x) parametrized by
a coordinate normal to the interface, say x, connecting A
and B phase states having particular orientations, i.e.,

for x~+ ~
gAB(x) (5)for x~ —~ .

If we let b,0=6,o(T) denote the typical equilibrium gap
magnitude at a temperature T, then in the Ginzburg-
Landau (GL) regime where ho~ && T, the thickness of the
phase boundary is d ( T) —g( T), where

' —1/2

is the temperature-dependent coherence length (usually
the natural scale for spatial variations in the superfluid
order parameter) and

1/2
7g(3) UF

(7)
48vr T,

0
in A. (T, is the second-order superfluid transition tem-
perature and u Fp / Fmis the Fermi velocity. ) At low
Twe expect d-go.

(Fermi) superfluid dynamics. We briefly summarize the
different levels so that we can recall the different methods
that can be (or have been) used to study the A-8 interface
dynamics and keep firmly in mind the formal domain of
validity of each. At the lowest level of interest in con-
densed matter phenomena, there is the microscopic
Green's function formalism, ' which can be used to de-
scribe the dynamics (with a characteristic frequency co

and wave vector q) right down to atomic frequencies
( —EF) and wave vectors ( —pF). The full microscopic
formalism is extremely heavy, and since most phenomena
of interest take place on time and length scales much
slower than atomic, it is desirable to derive more tract-
able dynamical theories that are valid on these slower
scales.

In the superfluid state there are new quantum length
and time scales, specified by the coherence length

gp vF /T, »pF ' and the inverse gap frequency
'~ T, '&&cF', which are considerably slower than

the atomic scales. At these quantum length and time
scales the appropriate reduced descriptions are the
quasic!assical Green's function theory' and the matrix ki
netic equations. ' At this superfluid quantum level the
superfluid order parameter and the fluid of quasiparticles
(QP'S) are strongly coupled, interconversion (pair-
breaking) processes can be important, and both the order
parameter and the QP's can both be far from equilibrium.

In the semiclassical or Boltzmann limit, co((h and

qg, (hor) ' « llew is the inelastic QP collision time),
where the dynamics is slow on the scale of the quantum
length and time scales, both the quasiclassical Green's-
function (GF) theory and the matrix kinetic equations
simplify substantially, leading to generalized two-fluid
models consisting of a fluid of Fermionic excitations and
a superfluid condensate whose behavior is governed by
coupled dynamical equations. The condensate order pa-
rameter is close to local equilibrium and obeys hydro-
dynamiclike equations, while the QP fluid is described by
a distribution function. The semiclassical kinetic equa-
tions are written out and discussed in greater detail in
Sec. IV where we use them to study the QP response to
the nonlinear, dissipative motion of the A-B interface.

If in addition to the semiclassical approximations the
QP mean free path (MFP) I «q ' and mean free time
(MFT) r«co ', then the system is never very far from
local equilibrium and a hydrodynamic description is pos-
sible. We will show below that there is a part of the
pressure-temperature phase diagram where the response
of the QP fluid to the motion of the interface can be treat-
ed hydrodynamically.

A. Levels of description for superfluid dynamics B. Dynamical regimes for the motion of the interface

When TATE&, unless the phase boundary is pinned,
there is no equilibrium state with the phase boundary in
the system, and to understand the dynamics of the inter-
face we must use a nonequilibrium theory. In particular,
we must allow for the possibility that the fluid of normal
excitations may be out of equilibrium with the nonequili-
brium condensate degrees of freedom.

There are four basic levels of theoretical description for

The effective force driving the A-B interface when
TW T~~ is AG~~, the difference in Gibbs free-energy
density between the two bulk phases. For the A-B
transition propagating at a velocity v, we can identify five
difFerent dynamical regimes in the P Tphase diagram (see-

Fig. I). In each regime the dynamics is dominated by
different physical processes. We briefly describe them in
the order in which they occur with decreasing tempera-
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FIG. 1. A schematic diagram of the various dynamical re-
gimes for the motion of the A-B interface in the P-T phase dia-
gram (not to scale).

ture. The inequality v &(UF is well satisfied over the
whole phase diagram (perhaps becoming marginal in the
low T-pair-breaking regime ), and this inequality plays
a crucial role in determining the various dynamical re-
gimes outlined below. The important length scales enter-
ing the problem are the superfluid coherence lengths (0
and g( T), the thickness of the phase boundary d, and the
QP MFP 1 = uFr. The important time scales are the col-
lision time ~, the characteristic time associated with the
motion of the interface d /u, and the characteristic
Cooper-pair adjustment time ho . The five dynamical
regimes are the following:

(i) Difjusion limi-ted regime, which exists for T very
close to T„ewhen the liquid is not hypercooled (see Ap-
pendix A) and the latent heat from the transition limits
the speed and governs the stability of the phase front.
We will not investigate this regime at all, since it is im-
portant only for a very small part of the phase diagram
and is already a well studied problem in the context of
other first-order phase transitions. '

(ii) Gapless regime, which exists only for T very close to
T, [which for the A Binterfa-ce dynamics means in prac-
tise only near the polycritical point (PCP), since the B
phase cannot be superheated very much at higher pres-
sures] in the region where the liquid is hypercooled and

~ho&&1. Here the energy gap is smeared out by quasi-
particle collisions, and the liquid behaves as a gapless
superAuid with the dynamics governed by a simple time-
dependent Ginzburg-Landau (TDGL) equation.

(iii) Hydrodynamic regime (or local approximation),
which occurs when the liquid is hypercooled, ~60»1,
and the MFP I (&d. In this regime the quasiparticle Quid
is always close to being in local equilibrium, and the dy-
namics of the order parameter can be described by a gen-
eralized time-dependent Ginzburg-Landau (TDGL) equa-
tion.

(iv) Ballistic regime, which occurs when 1 )&d and
Cooper pairbreaking processes are not important (i.e.,
when d/u )& ~Ao~ '). In this regime the dynamics of the
front depends strongly on the transmission and An-
dreev' reflection of ballistic thermal QP's, and this pic-
ture should be valid for roughly T/T, &0.5. Al-
though the ratio rl(d /v) does not play an important role
for most QP states as long as v/uF «1, it becomes im-
portant when the QP states with a small group velocity in
the x direction (normal to the plane of the interface) are
taken into account. These are the QP states with energies
near the local gap edge and/or momenta making a small
angle with respect to the plane of the interface (grazing
angles) It w. ill turn out that the QP states with small
group velocity in the x direction can be treated hydro-
dynamically provided r/(d/u) «1 (i.e., u/uF «d/1),
which will be seen to hold provided the temperature is
not too low. We will then find that the grazing angle QP
states, although generally small in number, seem to make
an important contribution to the interface mobility, even
in the extreme ballistic limit (EBL), 1 »d.

(v) Pair breaki-ng regime, which occurs when the veloci-
ty of the interface increases and the equilibrium number
density of thermal QP's decreases to the point where the
dissipative Cooper pair-breaking processes induced by
the time-dependent pair potential begin to dominate over
the dissipation due to the processes discussed above in
the hydrodynamic and ballistic regimes. This crossover
should occur roughly in the temperature range
T/T, &0.5.

In Secs. IV E, IV D, and IV C we study the dynamics of
the A-8 interface in the gapless, hydrodynamic, and
ballistic regimes. The gapless and hydrodynamic regimes
have been discussed in the context of flux fiow in dirty
type-II superconductors or pure ones very near to T,
[where the inequality 1 «g(T)- uortex core diameter
hold], and the ballistic regime, where 1(T))&g(T), has
been investigated for the Aux flow problem in superpure
superconductors. ' The work on the dynamics of the
A-B interface should also be helpful in theoretical studies
of the dynamics of both singular and continuous vortices
in 'He, a subject that has barely been touched on until
now. '

So far experiments on the dynamics of the A-B front
have only been conducted in the ballistic regime, ' and
we will therefore focus on the superPuid kinetic approach
to the dynamics in this regime. To study the hydro-
dynamic and gapless regime requires working with small
magnetic fields very close to the PCP in order to satisfy
the appropriate constraints (see above) and still be in a re-
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gion of the phase diagram where the liquid is hyper-
cooled, and it is not yet clear whether the experiments
can be carried out. (Perhaps the B~ A transition can be
studied near the PCP where the 8 phase can be su-
perheated ).

III. REVIEW OF PREVIOUS WORK
ON THE BALLISTiC REGIME

Leggett and Yip (LY) (Refs. 7—9} have used a semi-
phenomenological QP scattering method to study the dy-
namics of the A-8 phase front in the temperature regime
where the Andreev scattering of QP's off of the propaga-
ting kink in the order parameter provides an important
contribution to the frictional force on the moving inter-
face. In their approach the A-8 front is treated as a
black box QP scattering potential characterized by
transmission and reAection coefficients, T and R. By as-
suming that the incoming QP s are in thermal equilibri-
um in the rest frame of the cell walls (which play the role
of a thermostat) and then explicitly calculating the
momentum transfer from a steadily moving planar A-8
phase front to the QP fiuid, LY find an expression for the
friction coefficient I,„d(inverse of the mobility) due to
Andreev scattering processes to lowest order in v/vF,
where v is the front velocity. They found that the fric-
tional force on the moving interface is a factor (50/sF )

smaller than the value one would find if the QP's were
scattered in the normal way rather than by the Andreev
mechanism. Their expression for I,„dexplicitly contains
the coefficients T and R and is defined so that the power
dissipated per unit area during the motion of the planar
interface is I,„dv . T and R must be obtained from a
separate and relatively difficult calculation. The termi-
nal velocity of the phase front, v„s=b,G„&/I, is then
determined by equating the power dissipated per unit
area with the power per unit area, v b G„~,released dur-
ing the transition from the metastable A to the stable 8
phase. (We use v to denote an arbitrary steady interface
velocity and v„&to denote the interface terminal velocity

I

obtained by solving I v = v 6 6&s.)
Since the A-8 front is a rather sharp distortion in the

superfluid with a thickness d-g, ' we might expect
that quantum Andreev (over the barrier) QP scattering
off of the kink in the order parameter should be impor-
tant, and it seems unlikely that one can get away with a
semiclassical ballistic description of the QP response to
the motion of the front. Naively, a semiclassical descrip-
tion should apply only when d ))g (cf. Ref. 25). Kop-
nin, "however, has used the same microscopic nonequili-
brium GF formalism used for the vortex problem in a su-
perpure superconductor to calculate I,„dto lowest order
in v/vF, and within a quasiclassical approximation,
d ))pF, but with apparently no other approximations,
he finds that, due to a unitarity principle that accounts
for the conservation of current, the T and R coefficients
drop out of the final expression Wh.ile Kopnin's quasi-
classical calculation of I,„d requires the inequality

pF '/d &(1, it makes no use of the ratio go/d, and there-
fore implies that the semiclassical and quasiclassical re-
suIts for this quantity should be the same; we find below
that this is indeed the case.

The Andreev friction coefficient, or inverse of the inter-
face mobility, I,„d,is composed of contributions from the
individual QP states specified by an energy E and a
momentum direction p, so that I,„dhas the form of a
sum over all contributing QP states. In general it is pos-
sible to write

I,„=2v 'N(0) J H(b, „(p),b, ,„(p)},4~ lp

with

b, ,„(p)—:max[ b tt, b, „(p)I,
b, ,„(p)—=mini b,~, b, „(p)l

[N(0) is the single spin density of states. ] After some ma-
nipulation we find that Kopnin's result [Eq. (33) of Ref.
11]for H can be put in the form

max
H =2 dE — ' E E —5 p + dE — ' E E —6 p

' —E —6 p
m&n max

(9)

which is non-negative; fo is the Fermi function and
f0=(ufo/BE) ~0.

The LY result for H, H [see Eq. (4) of Ref. 7], ex-
plicitly contains the transmission coefficient and therefore
appears to be incompatible with Eq. (9}. In evaluating
their expression numerically, however, LY made a serni-
classical ballistic approximation by setting the transmis-
sion coefficient T=6(E —b, ,„(p)},where 8 is the step
function (since transmission processes give rise to a nega-
tive contribution to the friction coefficient, this approxi-
mation provides a lower bound on I,„dand hence an
upper bound on v„s). If we integrate H by parts we
find

H (6;„,b, ,„)=H (b, ;„b,„)
(10)

and therefore the two results for H differ by a simple
term. Thus if Kopnin is correct, then LY overestimate
I,„d. [The expressions for I,„dnaively diverge if the in-
tegral over p„is not cut off at some (small) value. The is-
sue of the physically correct choice of cutoff is addressed
in Sec. V and Appendix C.]

Here we tackle the problem in a completely different
way, using the semiclassical superPuid kinetic equations,
which are strictly speaking only valid in the semiclassical
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limit, co/ho, gq « 1 and ~ho)) 1 (for the moving A-8 in-

terface we expect that co- v/d and q -d '). The method
we use here appears to be similar in spirit to, but some-
what dift'erent in detail from, the kinetic equation ap-
proach to the motion of vortices in superpure supercon-
ductors (see especially Ref. 26). Even though our semi-
classical approach to the dynamics of the A-B interface is
not a priori justifiable (since d -(), as a model calculation
it can certainly be used to decide between the semiclassi-
cal approximation to the LY result for I,„dand Kopnin's
quasiclassical result (which should obviously remain valid
in the semiclassical limit).

Using a simple relaxation-time approximation (RTA)
for the collision integral, we exactly solve the nonlinear
kinetic equation for arbitrary MFP I and MFT ~ to find
the nonequilibrium QP distribution induced by the planar
A-8 interface moving at a steady velocity U. Employing
v/v~ as a small expansion parameter, we find the non-
equilibrium QP distribution to first order in v/v~ and
then directly calculate the irreversible (nonadiabatic) rate
of energy transfer (per unit area), 8;„,from the moving
phase front to the QP fiuid and identify the friction
coefficient I from 8;„=Iv, where the dot denotes the
time derivative d /dt.

In the extreme ballistic limit [1(T)»d(T)], which
holds over the major portion of the experimentally acces-
sible part of the phase diagram (see Fig. 1), the vast ma-
jority of the QP states in the interfacial region (where the
energy transfer actually takes place) do not feel the effects
of collisions, and we can set the collision integra1 to zero.
Assuming that the gap does not have a maximum in the
region of the interface and using the collisionless solu-
tions to the kinetic equations to calculate l,„dto lowest
order in v/vz, weland complete agreement with Kopnin's
GF calculation, which implies that the semiclassical and
quasiclassical results are in exact agreement (at least to
lowest order in v/v~). Because we are working strictly at
the semiclassical level we cannot within our theory in-

dependently assess the accuracy of our semiclassical re-
sults; this can only be done by reexamining the derivation
of the semiclassical kinetic equation from the lower-level
quasiclassical quantum kinetic equations to see why the
expected corrections to the semiclassical results do not
appear in I,„dto lowest order in U!U+, but this has not
yet been carried out.

The agreement between Kopnin's quasiclassical and
our semiclassical calculation of I,„dstrongly implies that
the LY result misses something. It now appears that this
is in fact the case, and it is likely that the discrepancy
comes about from LY's use of an incorrect semiclassical
approximation for the transmission coefficient when the
interface is in motion. For a planar interface moving
with a velocity v the physically correct semiclassical ap-
proximation for the QP transmission coefficient is still a
step function, but with the energies measured in the rest
frame of the interface. With this correction LY s semi-
classical result appears to agree with Kopnin's result,
although at the time of writing this has not yet been com-
pletely cleared up. Even if this modification brings LY's
semiclassical result into agreement with Kopnin s, there

still remains the discrepancy between LY's general result
(with a nontrivial transmission coefficient) and Kopnin's
result.

IV. SUPKRFLUID KINETIC EQUATIONS

To study the dynamics of the A-8 front using kinetic
equations, we make some simplifying assumptions along
the lines of those adopted by LY. The cell walls are
taken to establish a laboratory frame with a fixed temper-
ature T (a thermostat) and the QP fiuid far (distances
)&I) from the interface region is taken to be at rest and
in thermal equilibrium with respect to these cell walls.
This approximation should be valid due to the large
viscosity between the cell walls and the normal com-
ponent as compared with the mutual friction between the
QP's and the moving A-8 interface.

A. Excitation (momentum) representation

In a uniform, global —possibly metastable-
equilibrium state with unitary order parameter b, &(p),
the distribution v of normal excitations (Bogoliubov
QP's) in phase space is given by the Fermi function

v(0) = 1
p &E(o)

e ~+1
with the scalar energy E&'=(sz+~E(p)~ )', where

e~ = v~(p —pz ) (unless we are dealing explicitly with
spin-dependent phenomena, the QP spin indices will be
suppressed). In those nonequilibrium situations where a
semiclassical theory is valid, a generalized two-fiuid type
of model makes sense (see Sec. II A) even when the liquid
is far from global and local equilibrium, and it is possible
to define a local equilibrium distribution function,
v (r, t), towards which a nonequilibrium distribution,
v (r, t), relaxes via inelastic QP-wall and QP-QP col-
lisions. The QP distribution function v (r, t) gives the
phase-space density of Bogoliubov excitations with
momentum p at the space-time point (r, t) v(r, t) h.as
the form of a local Fermi function

v,"(r,t) = 1
(12)p" (r, t)E (r, t)

e

with a local temperature T (r, t)=1/P (r, t) and a lo-
cal energy Ez(r, t) that depends on, among other things,
the instantaneous local order parameter 5 t3(p, r, t), the
local chemical potential shift 5p(r, t), the local normal ve-

locity v„(r,t), the local superfiuid velocity v, (r, t), and
Fermi-liquid (mean-field) terms due to the QP interac-
tions. ' ' ' Since they do not appear to play an impor-
tant role in the problems considered here, we will com-
pletely ignore Fermi-liquid corrections throughout this
work.

Because of the strong viscous coupling between the QP
fiuid and the cell walls and the extreme hypercooling of
the A-B transition, we take T = T, the temperature of
both the cell walls and the metastable A phase before the
interface appeared on the scene and also assume that the
local, instantaneous QP energy is given by



4016 JOHN PALMERI 42

[E (r, t)] tt=[e + ~3(p, r, t)~ ]'ti (13)

([Z(p, r, t)) ) t3=[)b(p, r, t)( 5 &+i& & (EXEAT*)] (14)

and is only proportional to 5
& for unitary states, which

have (b, X b, ') =0. Unfortunately, although the bulk A
and B phases are unitary, the superfluid states within the
A-B phase boundary region have been found to be nonun-
itary, ' ' and this complicates the analysis consider-
ably because we are then forced to use a 2 X 2 spin matrix
representation for the QP distribution function. In order
to simplify the analysis, we will at first neglect the nonun-
itary contributions to the local QP energy, so that the ap-
proximate QP energy gets further simplified to

E~(r, t) = [e~ +
I b (p, r, t)

/

]'~i, (15)

and the QP energy and distribution function become sca-
lar quantities. Since with the above approximations our
final result for I,„dis completely independent of the de-
tailed structure of the interface itself (which is what Kop-
nin also concluded without making any unitary or semi-
classical approximations), we believe our result is
valid —within the semiclassical approximation at least-
for general nonunitary states within the interface region,
but we have not yet been able to prove it. We will show,
however, how to generalize our kinetic equations calcula-
tions to allow for a special variational set of Kaul-
Kleinert (KK) (Ref. 30) nonunitary configurations for the
A-B interface, and we get the same result for I,„dthat we
got making the unitary assumption.

A steadily moving kink in the superfluid order parame-
ter will induce in the rest frame of the kink a steady-state
nonequilibrium distribution of QP's. We measure the
nonequilibrium QP distribution by its deuiation from lo-
cal equilibrium

5v~(r, t) =vz(r, t) —v" (r, t), (16)

(and not from global equilibrium). In the semiclassical
approximation and for nonmagnetic phenomena and uni-
tary order parameters, v is a scalar distribution function
that satisfies the nonlinear kinetic equation (KE),

d, v +V,vp VpEp VQ .Vpvp=I[5vp], — (17)

where the QP group velocity r=v~(r, t)=V E (r, t) and
force p=F= VQ (r, t)—are in general space and time
dependent with the QP energy Ez(r, t}acting as a Hamil-
tonian for the QP motion; the collision integral
I ( ——5vzlr) vanishes when v =v" (r, t) and conserves

which is in general a 2 X 2 spin matrix. Although this ap-
proxirnation only takes into account the modification of
the local excitation spectrum by the instantaneous gap
and neglects the other modifications discussed above (cf.
Ref. 26), which can be important in other situations, we
believe it captures the most important physics of the
present problem, namely the direct coupling between the
nonequilibrium collective field (the superfluid order pa-
rameter) and the Ferinionic QP fluid.

For an arbitrary spin-triplet (complex) vector order pa-
rameter h, (p, r, t) the instantaneous gap spin matrix is
given by

QP momentuin and energy (but not QP number in the
superfluid state). It is usually found that the semiclassical
KE method gives physically reasonable —if not exact—
results right down to its lower limit of validity, so it is
definitely a worthwhile method of studying the dynamics
of the A-8 interface, but its formal limitations ought to
be kept in mind (see Sec. II). [For magnetic phenomena
and nonunitary order parameters, the QP distribution
function becomes a spin matrix (V&) tt.] Throughout this
work we will consistently neglect terms of order
ho/eF —10 and assume particle-hole symmetry.

With the above approximations, we have a generalized
two-fiuid theory with a superfluid condensate [described
by an order-parameter collective field b, ~&(r, t)] and a QP
fiuid [described by the distribution function v&(r, t }]obey-
ing coupled dynamical equations: the KE [Eq. (17)] plus
a self-consistency equation ("gap equation") for the
order-parameter generalized to take into account devia-
tions from equilibrium. (Actually a third continuity equa-
tion, involving the dynamics of the condensate phase
variable and enforcing mass conservation, is needed to
fully specify the dynamics, but we will not go into further
details here. ' ' ' )

There are kinetic terms in the generalized gap equation
that will give rise at lowest order to an effective inertial
mass for the moving interface (cf. Refs. 7 and 9), and
higher-order (very likely nonanalytic) terms are expected
to account for the Cooper pair breaking induced by the
time-dependent gap, although such terms are really out-
side the scope of the semiclassical analysis. The details of
how the general dynamical order-parameter equation can
lead to an effective interfacial mass and dissipation
through QP relaxation and pair breaking have not yet
been fully worked out for the moving A-B phase front
problem, but they have been worked out by others for the
dynamics of the A-phase I vector, and we are now at-31

tempting to use the A phase results as a template for the
more difficult interface dynamics.

In a general nonequilibrium setting, the coupled
dynamical equations must be solved self-consistently, and
this is exceedingly difficult. Luckily, however, for the
moving interface problem we shall be able to solve the
equations iteratively in powers of the small quantity
v /VF.

The basic idea now is to calculate the rate of energy
transfer from the steadily moving planar A-B interface to
the QP fluid when the interface is moving at a velocity
v &&VF in the, say, +x direction. The total energy densi-

ty in the QP fluid is

and for the planar symmetry of the one-dimensional (1D)
A-8 kink (where all quantities can only depend on x) the
total QP energy density per unit interface area is

6P, = J dx QE~(x, t)v~(x, t) . (19}

Then it is straightforward to show that the time rate of
change of 6Ot„ is
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@at„=f dx g(vp B,E +5v B,Ep) . {20)

For a planar interface moving in the +x direction at a
steady velocity U, the QP energy gap assumes the func-
tional form

{21)

= —
V [8„lb(p, u) l]

lb(p, u)l

Ep u

and B,E~(u) ~ U. The first term in Eq. (20),

8,d;,b=—f dx g v~ B,E ~U,
po'

(22)

(23)

depends only on the local equilibrium distribution func-
tion, and therefore this term must be identified with the
adiabatic (reversible) energy transfer from the moving

I

where u:—x —ut, for in the steady state all space- and
time-dependent quantities can depend on x and t only
through u. With this functional dependence in mind, we
now discuss the two contributions to the time rate of
change of 8P, [Eq. (20)].

Using our approximation Eq. (15) for the local QP en-

ergy, we find that if the gap depends on time then the QP
energy is not conserved:

I ~(p,
E,(u)

phase front to the QP fluid; this adiabatic energy transfer
is proportional to u and has nothing to do with irreversi-
ble energy dissipation, which can only occur when a
nonequilibrium QP distribution deviates from and even-
tually relaxes towards local equilibrium.

The second term in Eq. 20,

6'~ =—f dx +5v (u)B,E (u), (24)
po'

depends explicitly on the deviation from local equilibrium
and therefore must be identified as the irreuersible energy
transferred to and finally dissipated in the QP fluid due to
the motion of the interface. Since to lowest nonvanishing
order both B,E (u) and 5v (u }~ U, we see that to lowest
nonvanishing order Cq ~ U, and the coeflicient of pro-
portionality in this relation is just the friction coefficient
I we seek.

In order to compute 6'~ (Eq. 24) in the steady state,
we must solve the KE (17) for 5v&(u), given the gap
lb, (p, u)l with the boundary conditions

b, „(p), the A-phase gap for u ~+ oo

lh(p, u)l~ '

bz, the 8-phase gap for u~ —~ .

We first insert v&= v~ +5v& into Eq. (17), and then after
using the property that in the steady state all quantities
can depend on x and t only through the combination
u =x —ut and using a simple RTA for the collision in-
tegral, we find that Eq. (17) reduces to the nonlinear KE

—.a„5,( )+.",( )a„5,( )
—[a„la(p, )l] ' ' + '=.[a„la(p, )l]

l&(p, u)l ~5v 5v lh(p, u)l

where the right-hand side (RHS) plays the role of a driv-
ing term and U~(u)=[a~/Ez(u)]vFP„ is the x component
of the local u-dependent QP group velocity
vz(u)=V'&Ez(u}. In deriving Eq. (25) we have used the
identity

The first two terms on the left-hand side (LHS) of Eq. (25)
are streaming terms (the first term comes from the expli-
cit time dependence of the distribution function, the
second from the spatial dependence}, the third term is an
eff'ective force on the QP's due to the inhomogeneous
order-parameter field, and the fourth term is a RTA to
the collision integral. In the region of the interface the
gap is changing from the A to the B phase on a length
scale -d, and in this domain mall or core region we ex-
pect by dimensional arguments that the ratios of the four
terms on the LHS of Eq. (25) go roughly like U/UF: 1: I:
d /I, which allows us to get an idea of the relative impor-
tance of the various terins (these ratios are only valid for
P„nottoo small and for QP energies not too close to the
gap edge, see below); in particular we see that in the EBL
where d/i «1 only the second (spatial dependence} and
the third (eff'ective force) terms are important as long as
u/uz &(1.

When the interface is in motion the superfluid order
parameter should assume the nonequilibrium form

b, &(p, r, t)=h'ts(p, u)+b "&(p,u) . (26)

where b ~&(p, u) is a static order-parameter configuration
(not necessarily the minimum-energy one though, see
Refs. 7 —9 and Sec. V) and b, "&(p,u) is a correction pro-
portional to u. Equation (25) clearly shows that we only
need the static configuration 8' tI(p, u) in the driving term
on the RHS of the KE to get 5v (u) to first order in

u/UF. Although it is beyond the scope of the present
work, we can see at least in principle how the coupled
superfluid dynamical equations can be solved iteratively
in powers of u/uF for the moving interface problem:
The first-order nonequilibrium QP distribution function
can in turn be substituted into the generalized gap equa-
tion to get the first-order correction to the interface
configuration when it is in motion, and so on.

The RTA is really only justifiable in the limit T~T„
but it makes no di8'erence here at least for the part of the
interface mobility due to Andreev scattering, since in the
EBL the actual details of the inelastic QP relaxation do
not matter at all for these processes; we simply need the
existence of a relaxation mechanism to set the time scale

rfor QP rela-xation and to help fix the right boundary
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conditions on the nonequilibrium distribution. (In other
words, in the EBL ~ will not appear in the final expres-
sion for I,„d.)

The above KE contains nonlinear terms involving
products of the gap distortion -[B„~lk(p,u)~] with the
deviation from local equilibrium distribution function
5v (u); thus the KE is nonlinear in the perturbation in
the gap associated with the moving interface. It can be
shown that the Linearized version of the KE [Eq. (25)] can
describe the transmission of QP's across the interface, but
cannot account for Andreev reflection processes, which
are nonperturbative in nature; thus we must solve the
nonlinear KE, but due to the presence of the third term
on the LHS (the force term), Eq. (25) is not in a con-
venient form to be solved iteratively in the small quantity
vlvF. As we shall see below, this problem can be
remedied by going from the excitation or momentum rep-
resentation for the QP distribution function used above
(v~) to the particle or energy representation distribution
function f+(p, s;r, t) (with s of both signs), which gives
the phase-space density of excitations with energy c and
momentum direction p at (r, t} [Th.e energy variable, s,
appearing in the particle representation distribution func-
tion f+(E} is a completely independent variable, is not
connected with the momentum p by a dispersion relation,
and is distinct from and should not be confused with the
energies E and c, appearing in the excitation represen-
tation. ] We have introduced the excitation representation
KE because it will be useful when we try to deal with cer-
tain nonunitary forms for the 3-8 interface and when we
discuss the hydrodynamic regime in Sec. IV D.

B. Particle (energy) representation

For static inhomogeneous order-parameter fields the
energy representation is more convenient to use because
it incorporates a wiser choice of quantum numbers for
the excitations: c. and to an excellent approximation (val-
id to within small terms of order b, /sF) the momentum
direction p are both conserved during the ballistic propa-
gation of QP wave packets even when the gap varies with
position, while the momentum p is not conserved. As we
will see the advantages of the energy representation carry
over to situations with space- and time-dependent order
parameters, even though the QP energy is not then in
general conserved.

For nonmagnetic phenomena and unitary superfluid
order parameters the dynamics of the fluid of excitations
can be described by scalar distribution functions
f+(p, s;r, t), which obey Boltzmann-like KE's that can
either be obtained directly from the KE in the excitation
representation Eq. (17) by making the change of variables
p~(s, p) or be derived in a systematic manner from the
full nonequilibrium quasiclassical GF formalism' ' (for
magnetic phenomena and nonunitary superfluid order pa-
rameters, vector distribution functions must also be intro-
duced). To account for the twofold particle-hole space
that plays such an important role in Fermi superfluids,
there exist two branches of the excitation spectrum, f+
the distribution function for the particlehke branch and
f the distribution function for the holelike branch.

Within the semiclassical approximation and neglecting
nonunitary contributions to the energy gap, the appropri-
ate KE's are' '

=I+[5f+ l (27)

where

(28)

is the efFective local excitation group velocity; thus parti-
clelike excitations travel parallel to their momentum and
holelike ones travel antiparallel. I+ is a collision integral
that vanishes when 5f+ =0, where the deviation from
equilibrium distribution functions are defined by

5f+(p, s;r, t) =f+(p, E;r, t) —fo(E)

with

1fo(s)=0 P+1

(29)

(30)

the equilibrium Fermi distribution function.
The above KE [Eq. (27)] must be supplemented by the

boundary conditions

(1) 5f+(p, s;r, t)—:0 for s(~h(p, r, t)~, (31a)

which states that the two branches of the distribution
function must coincide at the point where they join [the
bottom of the energy band, s =

~ b(p, r, t)
~ ].

Boundary condition (2) states that branch conversion
can take place at (r, t) for those excitations with energy
c= ~h(p, r, t) ~; for example, an incoming localized parti-
clelike wave packet with energy c. can, after reaching a
point in space where a= ~6(p, r, t)~, be converted to a
hole by undergoing Andreev reflection, provided there
are no allowed states available to it along the original tra-
jectory. Thus we have the important result that ballistic
Andreev reflection processes that may take place in the
presence of inhomogeneous order parameter ftelds -are de
scribed in the semiclassical KE formalism by an appropri
ate boundary condition on 5f+ as a function of energy in
real space. '

It can also be shown that the relationship between the
particle and excitation pictures is simply'

f+(p, c, =E&(r, t), r;t) for s )0
(32)f (p, s=E~(r, t), r;t) for c. (0,vp(r, t)=

where for our problem E (r, t) is defined in Eq. (15).
For a planar interface moving steadily at a velocity v in

which simply states that for the set of excitations whose
distribution is governed by the semiclassical KE, which
does not include any bound levels, there can be no excita-
tions with energies below the local gap;

(2) 5f+(p, s= ~di(p, r, t)~;r, t)

=5f (p, s= ~h(p, r, t)~;r, t), (31b)
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the +x direction, Eq. (27}reduces to the KE

—vB„5f+(p, s;u)+ v+ (p, E; u)8„5f++

iminated the troublesome force term that appeared in the
momentum representation KE [Eq. (25)], but using

= v [8„i Ch (p, u ) I ] (33)
=fo+ 85f+

BE,

where

fs2 —~Q(p u)Ill'~2
(34)

is the x component of the excitation group velocity, and
we have again used a RTA for the collision integral.

In going to the energy representation KE we have el-
I

where fo —= (Bfo/Bc. ), we see that the driving term on the
RHS of Eq. (33) now depends on the distribution function
5f+ itself. With this complication the above KE is in
general difficult to solve, but as we shall shortly see the
KE is in a form suitable for being solved in powers of the
small quantity v /vF', first we recast the full KE (33) in the
form of an integral equation:

a5f.„,a„,[~a(p, u ) ']
5f+(p, s;u)=y+(p, s;u) C+(p, s)+ f du' fo+ (p, s;u') X+'(p, s;u') (35}

where C+(p, e, ) is an integration constant independent of
u and

yz(p, s;u }—= exp
'r+(p, s; u)

(36)

Here

r+(p, s;u) —= du'
Qp vz(p, s;u') —v

(37)

is, loosely speaking, an effective local ballistic propagation
time in the sense that if ~+(p, s; u }&&~, then the QP state
(p, s) at u can be treated as being in the collisionless limit
[i.e., the collision term sin -Eq. (33) can be neglect-
ed]. In the EBL (1»d) such ballistic states predominate
in the interface region. That the above integral equation
is equivalent to the KE [Eq. (33)] can be checked by
direct substitution, and this integral equation will be im-
portant when it comes to fixing the (Andreev) boundary
condition (2) Eq. (31b) (see below).

In the EBL there are essentially three distinct spatial
regions to be considered: the core region of the phase
boundary where the order parameter is changing on the
length scale -d, the intermediate regions (distances from
the core region »d, but & 1) where the order parameter
and QP distribution functions are out of (local) equilibri-
um but still essentially constant, and the distant regions
(distances &1) where the order parameter is essentially
constant (very nearly assuming its bulk forms) and be-
cause of inelastic collisions the nonequilibrium QP distri-
bution is relaxing on a length scale I. In the important
core region, where energy transfer between the QP's and
the interface takes place, dimensional arguments show
that the first three terms on the LHS of the KE (33) have
roughly the relative ratios, v /v„:1:d/I. Thus for d /I «1
and as long as v/v~ &&1 only the second term, which is
the streaming term that arises from gradients in the dis-
tribution function, is important in the EBL. On the other
hand in the extreme hydrodynamic limit (EHL) (I «d)

only the third (collision) terin is important (see Sec.
IV D). The above considerations imply that as along as
v/v„«1, the ratio ~/(d lv), which comes from the ratio
of the first and third terms in the KE, does not play a
dominant role in determining the various dynamical re-
gimes for the motion of the A Binterf-ace (see Fig. 1).
The ratio ~/(d/v) will, however, play an important role
in understanding how to cut off a formally divergent in-
tegral over QP momentum direction in the expression for
the Andreev friction coefficient, I,„d,and in attempting
to estimate the contribution to the friction coefficient
from the QP states with an x-component group velocity

l v+ (p, s; u ) I

& v [these are the QP states with P„«I

(grazing angles) and/or e~~b, (p, u)~].
In the distant regions dimensional arguments show

that the first three terms on the LHS of the KE have
roughly the relative ratios, v /vF. 1:1,and thus the second
and third terms must be kept, giving the exponential re-
laxation of the QP distribution to equilibrium on a length
scale I. In general, depending on which of the three
terms on the LHS of the KE (33) dominates, the physics
will be very different [just which term does dominate de-
pends critically on the QP state (s,p) in question and the
value of u]: (1) In the situation where the first term dom-
inates, v » ~v+(p, E;u ) ~, d/r and the QP's can be treated
in a collisionless, sudden approximation, where the QP s
have time neither to propagate nor co11ide as the inter-
face sweeps by. (2) If the second term dominates then the
QP's move ballistically and get transmitted across or An-
dreev rejected by the interface as it passes. Since this is
the case for the vast majority of the QP states in the EBL
under consideration in this section, this situation is dis-
cussed in great detail below. (3) If the third term dom-
inates then the QP's are never far from local equilibrium
and we have the hydrodynamic regime discussed in Sec.
IV D. As we shall discuss in Sec. V, for some grazing an-
gle QP states normal scattering processes may dominate,
but such processes are not accounted for in the superAuid
KE formalism.
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Since both the driving term on the RHS of Eq. (33) and

5f+ are -0(v), to get 5f+ to first in v we can replace
df+ IBe by f0 to arrive at a relatively simple KE formal-

ly linearized in v /vF:

v+(p, e;u)B„5f+(p,s;u)+

=v[8„lh(p,u)l] fo . (38)

As discussed earlier it is also suScient to use the static

gap configuration as a function of u in the KE [see Eq.
(26)].

The idea now is to solve Eq. (38) for 5f+ and then use

Eqs. (24) and (32) to calculate C~ . [Since we will only
need 5f+(p, E;u) for E)0, we drop the absolute value
operation on c, in the expression for v+(p, s;u), Eq. (34).
Upon comparing Eqs. (25) and (33) we see that, indeed,
the energy representation is the natura1 choice for the
problem at hand.

Since Eq. (38) is a simple first-order ordinary
di6'erential equation in u, we can immediately write down

the general solution in terms of a quadrature:

5f+(p, s;u) =f+(p, e;u ) C+(p, e)+ du'g+'(p, s;u')
vF 2p„"o [s —h(p, u') ]'

(39)

where f+(p, s;u) is y+(p, s;u) [Eq. (36)] with v =0. This
general solution is rather complicated and unwieldy and
generally cannot be simplified further. However, since it
is valid for arbitrary MFP l and MFT ~, it can handle
both the EBL considered in this section and the EHL (ex-
treme hydrodynamic limit) considered in Sec. IV D, and
in both these limits the general solution simplifies enor-
mously. In the EBL it not only contains the appropriate
behavior of the distribution function in the core region,
but the exponential relaxation in the distant region as
well.

We conveniently choose the origin of the u axis to lie
somewhere in the interface region (perhaps where the
gradient in the gap is largest, for example, although the
precise definition is not important). For the interface
moving with respect to the lab frame fixed by the cell
walls, we must supplement boundary conditions (1) and
(2) [Eqs. (31)] with a third that says that the QP distribu-
tion must relax to equilibrium far (lu l

)&I ) from the in-
terface region. The boundary conditions for our problem
are then

(1) 5f+(p, s;u):—0 for s & ld(p, u )l,
(2) 5f+(p a=le(p, u}l;u)=5f (p, a=le(p, u)l;u),

(3) 5f+(p, E;u) 0 as lul

Since the semiclassical KE formalism cannot handle
any bound levels that might be localized near a minimum
in the gap located in the interface region [states with en-

ergies s &b, ;„(p)],we supplement boundary condition
(1) with (1') 5f+(p, E;u) —=0 for s & bm;„(p).

Boundary condition (3) above and simple physical con-
siderations (essentially causality arguments) also lead us
to the important constraint that the incoming excitations
(in single-particle language these are the excitations in-

cident on the interface from both the A and 8 phases)
must be in thermal equilibrium with the ce11 walls outside
the interface core region; in other words,

5f+(p, c.;u)—=0 for P„&0and u &)+d,

5f+(p, e;u)—=0 for P„&0and u « —d,
5f (p, E;u)—=0 for P„&0and u )&+d,
5f (p, E;u)=0 for P„&0and u « —d .

These constraints will be important below when it comes
to finding the solutions to the KE that obey the appropri-
ate boundary conditions.

Using Eq. (32), the irreversible power absorbed and
then dissipated by the QP fiuid, 8 g [Eq. (24)], can be
written, after some manipulation, as

dn +- +- ~[l«p )l']
h ~„'=—vN(0) f f du f ds, ,

" „',„,5v, (u)
4~ P

[ 2+lan( ) 2]ll2

dn= —2vN(0) I I du I ds, [5f+(p, s;u)+5f (p, c,;u)] .
4~ -- ~a~r ~ 2[e' —la(p, u)l']'"

(40)

We must find the solutions Eq. (39) that satisfy boundary
conditions (1}—(3), then substitute these solutions into
Eq. (40), and finally extract the friction coefficient
r =—i~'rv'.

C. Andreev friction coefBcient I,„d

We now concentrate on obtaining the Andreev
coefficient. Since the integrand in Eq. (40) is essentially



42 SUPERFLUID KINETIC EQUATION APPROACH TO THE. . . 4021

nonzero only in the interface core region ( Iu I

(d ) where
the gap strongly depends on u, to get O'O we only need

the form of fif+ valid in this region. In the EBL the vast

majority of the QP states (p, e) in the core region do not
feel the effects of collisions and can be treated in the
ballistic (collisionless) approximation. Quantitatively we

define the ballistic states at a given u by the condition
that r+(p, e;u) «~ or in other words g+(p, c.;u}=1. In
general the relatively small number of states that do not
satisfy this ballistic condition (i.e., those states with

P„~Oand/or a~local gap edge) can be difficult to han-

dle; the situation is complicated because besides the semi-

classical breakdowns of the ballistic solutions, there is

also a quantum breakdown due to the fact that the condi-
tions for Andreev scattering breakdown for grazing angle

I

QP's. A detailed discussion of this breakdown will be
postponed until Sec. V (see also Appendix C), where we

will also attempt to estimate the contribution to the fric-
tion coefficient froin some of the QP states that cannot be
described by the simple ballistic solutions; we will find

that in the region of the phase diagram where

v/u~ &(d /1 (i.e., for not too low T, see Sec. V below) at
least some of the grazing angle QP states can be treated
hydrodynamically even in the EBL, and a rough estimate
shows that they seem to give rise to a contribution to the
interface mobility on par with the Andreev contribution.

For the ballistic states the collision integral in the KE
(38) can be dropped and f+(p, e; u ) can be set equal to 1

in the general solution Eq. (39). We then find the follow-
ing simple result for the ballistic states:

I

fif (p, e;u)=c (p, e)+
„

I[e' —I~(p, u)l']'" —[e'—I~(p, uo}l']'"}, (41)

where we are free to choose uo and C+(p, e) is to be fixed

by the boundary conditions.
From now on in this section we neglect all QP states

(p, e) in the core region for which Eq. (41) is not a good
approximation to the exact solution of the full KE (33)
[or, equivalently, the integral equation (35)]. The above
solution [Eq. (41)] will break down when any one of the
terms in the KE neglected in the derivation of the ballis-
tic solutions becomes comparable in magnitude to the
term that was kept (the second term on the LHS of the
KE). We find that the first (time derivative) term on the
LHS of Eq. (33) can be neglected roughly when

(p„/e)[e —Ilk(p, r, t)I ]' &)v/uz,

the term dropped in the driving term on the RHS can be
neglected roughly when

(I/s)[e —Ih(p, r, t)I ]' &)u/v~,

and the third (collision) term can only be neglected when
roughly P„)&d/1. These breakdowns of Eq. (41) natural-
ly provide semiclassical cutoffs for a divergent integral
over p„that will arise in the expression for 6 o [Eq.
(40)]. In Sec. V and Appendix C we present a discussion
of the cutoff procedure and show that there is also a
quantum cutoff that at not too low temperatures takes
precedence over the semiclassical cutoffs described above.
Even though Eq. (41) formally diverges as P„~O,the ex-
act solution to the KE remains finite in this limit; the
divergence is just a signal that the states with p too

I

small can never be in the ballistic camp, and therefore the
solution Eq. (41) is not at all a good approximation for
them. For the present purposes, the Andreev friction
coefficient I,„d will be loosely defined as the friction
coefficient that is due to the QP states for which the
above ballistic solutions are a good approximation to the
exact solutions. In summary, we find that in the EBL
(1))d) and for small front velocity (v/vz (& 1), Eq. (41)
is an excellent approximate solution to the nonlinear KE
(33) for the vast majority of the QP states in the impor-
tant core region of the interface.

Since the approximate ballistic solutions [Eq. (41)] are
rather simple, we can readily write down the appropriate
solutions obeying the boundary conditions (1)—(3). In or-
der not to complicate the analysis unduly, we will make
the simplifying assumption that the gap Ib, (p, u }I is either
monotonic or has a minimum within the phase boundary
region, but no maximum. With this assumption h, „(p)
is the true maximum value of the gap anywhere in the
system. Even though this is not the most general case, it
does seem to correspond ' to the variational and nu-

merical results for the configuration of the order param-
eter in the boundary region.

We first consider the set of QP states with energies
above the gap maximum, e & b, ,„(p),which in the ballis-
tic one-particle language consists of the QP's that can be
transmitted across a static interface. The appropriate
ballistic solutions [Eq. (41)]—valid for

I
u «1—

satisfying the boundary conditions (1)—(3) and the con-
straint that the incoming excitations are in equilibrium
with the cell walls are

5f+(p, e;u)=

t

[[e'—I~(v, u }I']'"—[e' —I~,.(p) I']'"} «r p. &0
F Px

I

[[e —Ih(p, u)I ]' —[c, —Ih,„(p)I]' } for P„&0
UF P

(42)

and
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2 ~ 2 1/2 2[[e —Ib(p, u)l ]' —[e —lh, „(p)l ]' I for P„&0
UF P

5f (P, e;u)= '

I [a —lb(p, u)l ]' —[e —lb, ,„(p)l ]' I for P„&0.
(43)

%hat is happening is physically reasonable and quite
simple (see Fig. 2): since in the EBL collisions are rare in
the interface core region, the A-phase QP distribution is
effectively frozen as the interface advances, but the local
equilibrium distribution is modified from the global 3-
phase equilibrium one to a new local one characterized
by the local instantaneous value of the gap Ilk(p, r, t)l.
Since the two distributions are not in general equal, the
moving kink in the gap creates a distribution of QP's out
of local equilibrium, and these nonequilibrium excitations
then propagate ballistically far from the interface core re-
gion until they are effectively damped by QP collisions at
large distances ( &l »d) from where they were born.
Thus in the collisionless situation that occurs near the
core region, the deviation from the local-equilibrium QP
distribution is finite both because the actual occupancies
of the local QP states change through ballistic QP motion
and also because the local equilibrium distribution
changes as the kink in the gap advances.

We next consider the QP states with

;„(p)&e& b, ,„(p)and lu I
« l. [As we discussed ear-

lier there may be QP states with e &6, ;„(p)localized
near a minimum in the gap if one happens to exist in the
interface region, but these bound states are outside the
scope of the KE formalism. ] With our earlier assump-
tions on the behavior of the gap Ih(p, u )I (either mono-
tonic or has a minimum, but no maximum, in the bound-
ary region), it is clear that for QP energies

5f+(p, c,;u)=C+(p, e)+ [e —Ib(p, u )I ]'~
F Px

(44)

where C+ (p, e) must be fixed by the boundary conditions.
For e&b,„(p},boundary conditions (1) and (2) [Eqs.
(31)] imply that

and

5f~(p, e;u)—:0 for u &uo(s), (45)

5f+ ( p, e =
I ~(p, uo(e) ) I; uo(s) )

=5f (p, e =
I &(p, uo(e) ) I; uo(s) ), (46)

where in writing Eq. (45) we have assumed without loss
of generality (valid to lowest order in U /vF ) that
&,„(p)= I h(p, —~ ) I.

In applying boundary condition Eq. (46} we have to be
careful because we found earlier that the ballistic solu-

b, ;„(p)& e & b, ,„(p),there is a unique value of u, uo(e),
for which Ilk(p, u )I =e (see Fig. 3, below). Since we are
free to do so, we choose uo=uo(e) for e & 5,„(p)in the
integral equation (35). Then with this choice the ballistic
solutions [Eq. (41)] for e & b, ,„(p)reduce to
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FIG. 2. Schematic diagram of the nonequilibrium QP distri-
bution induced by the moving A-B interface for energies
c )h,„{p)in the ballistic regime.

FIG. 3. Schematic diagram of the nonequilibrium QP distri-
bution induced by the moving A-B interface for energies
4,„(p}& e & h, „(p)in the ballistic regime. The QP's are An-
dreev reflected at uo(c).
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tions Eq. (41) break down for states with energies too
close to the gap edge (s—+lb, (p, u }I). Luckily, with our
judicious choice of uo we can work directly with th= ex-
act integral equations (35) to find

5f+(p, E =
I &(p, up(E) ) I i up(e) )

=C (p, E =
I &(p, u, (e) ) I ), (47)

and then Eq. (46} yields C+(p, E}=C (p, E)—:C(p, s) for
5;„(p)«s&h,„(p). Thus even though the ballistic
solutions Eq. (41) break down near the gap edge they take
on the correct values, C+(p, a=lb, (p, u)l }, right at the
gap edge s=lh(p, u)l, and therefore the ballistic solu-
tions will themselves end up satisfying the Andreev
boundary condition Eq. (46).

Since the QP's with s & b, ,„(p)are abruptly scattered
at up(e), 5f+(p, a=le(p, u)l, u) need not be continuous
at u =up(E), and this implies that C(p, e) may be
nonzero [see Eq. (44)]. Now we need to fix C (p, e).

Recall that a particlelike excitation (particle for short,
+branch) with p„«&0 has group velocity v&&«0, while a
holelike excitation (hole for short, —branch) with p„&«0

I

I

[
2 lg ( )I2]li2

v, Ip
(48)

[Even though C(p, E) is fixed by boundary conditions on
the distribution function in the regions where the ballistic
solutions are valid, it is also the exact value of the distri-
bution function right at the gap edge, which is one of the
regions where the ballistic solutions forn1 ally break
down. ] Using Eq. (44) we then arrive at the complete
solutions for b, ;„(p)«s «h, „(p)and 1 &)u & up(E):

has a group velocity v" &«0. To fix C(p, E) we use the fact
up(s)~ —oo as s~h, „(p) to argue that

5f+(p„&0;u}and 5f (p„&0;u) [the incoming excita-
tions from the h,„(p}phase] with a& b, ,„(p)should
coincide for s~b, ,„(p) with the solutions (42) and (43)
obtained for 5f+ with E~b, ,„(p)+. Using Eqs.
(42)—(44) and (47), applying the above continuity argu-
ment to 5f+(p„&0}and 5f (p )0} for s~b, ,„(p),
and making use of the constraints discussed above Eq.
(40) we find that

5f+(p, s;u)= '

2 ~ 2 ii2
„

I[s' —l~(p, u)l']'"+[a' —l~;.(p)l']'"I for P.»
UF P

I

I [s —lh (p, u ) I']'"—[s'—
I a,„(p)I']' '} «r p„&0

'F Px

(49)

and

v fp 2 ~ 2 i/2 2[[E —li};„(p)l]' —[s —lib(p, u)l ]'
I for p„&0

"F 5'x
5f (p su)= '

+ " '
I [s2 —

I ~(p, u )12]'i2+ [s2—
I &;„(p)I2]'i2I f«p, & 0 .

F S'x

(50)

From Fig. 3 we see how the incoming, say, particles are
pushed out of equilibrium by the moving interface and
then are Andreev refiected at up(s); after the incoming
particles undergo branch conversion at up(s}, they reem-
erge as holes and then propagate deep into the b, ;„(p}
phase where they are damped by QP-QP and QP-wall
collisions.

The above solutions satisfy all the boundary conditions
(1)—(3), as can easily be checked. One can also easily
check that 5v„(u) constructed from the above solutions
for 5fz(p, E; u ) [Eqs. (42), (43), (49), and (50)) and Eq. (32)
satisfies the excitation KE [Eq. (25)] to first order in
v/vF. [Although these solutions for 5v (u) are rather
simple they appear to be difficult to obtain by directly
solving Eq. (25).]

Before proceeding to the calculation of the Andreev
friction coefficient, we first discuss the breakdown of the
ballistic solution near the local gap edge [see discussion
below Eq. (41)]. Even though the ballistic solutions for-

mally break down near the local gap edge, they coincide
with the exact solution to the full KE right at the gap
edge, and they are perfectly finite over the whole region
near the gap edge; this behavior should be contrasted
with the divergence that occurs for the grazing angle
(p„~O)QP's. Furthermore, the interval in energy near
the local gap edge where the ballistic solutions break
down is very small, as will be the error made by extrapo-
lating the ballistic solutions right down to the gap edge.
For example, in Sec. V we will see that for T not too low
d/i » v&2i /vF, and we then find that the QP states near
the gap edge can be treated hydrodynamically even in the
EBL. In this case we estimate that the relative error in-
curred by extrapolating the ballistic solution right up to
the gap edge is —(v„~/vF ) (i/d) && l. (A similar sort of
argument should hold in the lower T region where
d/I «v„ti/vF. ) Thus from now on (in the EBL) we will
use the ballistic solutions over the whole (E, p) phase
space except in the region of grazing angles,
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P„-maxId/l, U&s/uF I.
To get the irreversible energy absorbed by the QP fluid

due to the motion of the interface, we simply insert the
solutions Eqs. (42) and (43) for e) b, ,„(p)and the solu-

I

p)

min & max &

tions Eqs. (49) and (50) for b, ;„(p)& e & h, „(p)into ex-
pression (40) for 6'P~~ and evaluate the elementary in-
tegrals obtained after using the following interchange in
the order of integration:

(51)

which is valid provided that 5f+(p, e;u) =0 for e ( b, ;„(p),as we have assumed.
Using the ballistic solutions for 5f+(p, s;u) we find that to an excellent approximation, the relevant integrals can be

shown to be

(52)

for e )h,„(p),and

I du, „",, [5f+(p,e;u)+5f (p, E;u)]=2 [e' —l~;„(p)l']l~(p u)l[~, l~(p u)l] U fo
[e lh(p, u)l ] UF P,

(53)

for b, ;„(p)& e & b, ,„(p),where we have used property
that the only place where [B„lh(p,u)l] (and therefore the
integrand in the above integrals) is nonzero is in the core
region of the interface, and for most QP states in this re-
gion 5f+(p, e;u) is given to an excellent approximation
by the ballistic solutions.

After inserting the above results in Eq. (40), we arrive
at an expression for I,„d=6O /U which is in complete
agreement with Kopnin's quasiclassical result [see Eqs.
(8) and (9)]. We can see right away that in order of mag-
nitude I,„d-UF 'N(0)ho. In the limit T~ T„wecan at-
ternpt to expand I,„din powers of the small quantity
b,s(T)/T„and although it turns out that I,„dis nonana-
lytic in this expansion parameter a rough estimate gives
(up to nonanalytic terms)'

[&s(T)]'I,„d-vF 'N(0) ln(1/p, ) —(1—T/T, ), (54)

which is in agreement with Kopnin" (p, is the QP
momentum cutoff, see Appendix C).

In summary, we have solved the nonlinear KE to lead-
ing order in U/vF in the EBL to find the nonequilibrium
QP distribution induced by the motion of the A Binter--
face. We then directly calculated the nonadiabatic ener-

gy transfer from the moving interface to the QP fluid and
finally extracted the friction coeScient I,„d. We have
also suggested how a dynamical equation for the order
parameter, which depends self-consistently on the QP
distribution function (via the dependence of the QP KE
on the gap itself), can in principle be used to obtain the
modification of the moving phase boundary from its stat-
ic form, although we have also demonstrated that to get
the interface friction coeScient to lowest order in u/UF
there is no need to actually obtain an explicit expression
for this modification.

The numerical evaluation of the And reev friction
coeScient I,„drequires a discussion of the appropriate

cutoff in the divergent integral over the QP momentum
direction, and we postpone this until Sec. V after we have
discussed the hydrodynamic and gapless regimes. We
will find that our theoretical estimates based on the An-
dreev friction mechanism alone overestimate v~~ by
roughly a factor of 2. As we will discuss in detail below,
this leads us to suspect that the grazing angle QP states,
not taken into account in I,„„,may play an important
role even in the EBL. For not too low T we find that
these states may be treated hydrodynamically, and a
rough estimate seems to show that they do indeed give
rise to an important contribution. Before doing all this,
we first generalize our calculation of I,„dto a special
class of nonunitary interface configurations and show
that result is the same. This generalization will be impor-
tant when we discuss (in Sec. V) the grazing angle contri-
bution to the friction coefBcient in the EBL and the fric-
tion coefficient in the extreme hydrodynamic limit (EHL)
in Sec. IVD.

Generalization to nonunitary interface conftgurations
In the previous sections we showed how to use the
superAuid KE's to study the dynamics of a unitary phase
boundary. Here we will generalize slightly to allow for a
special class of nonunitary interface configurations. This
is the first step in attempting to deal with the general
nonunitary problem. This generalization is also needed
to study the dynamics of the A-8 phase front in large
magnetic fields of the size (H-2 kG) currently being
used in the Los Alamos (LANL) experiments, where the
front is propagating through an already magnetized
liquid. The bizarre and complicated results (for details
see Refs. 10, 35, and 36) coming out of these experiments
at low temperatures seem to indicate that the simple sig-
nal originally identified at higher T as the magnetization
front connected with the A-8 phase boundary has split
into two objects. The data are not yet in a form where it
is at all easy to sort things out, but it is clear that one of
the objects is moving at -800 cm/sec, which is close to
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the condensate spin-wave velocity. These complicated
experimental results are very likely connected with the
magnetized, nonequilibrium QP distribution induced by
the moving interface plus the local conversion of QP spin
into the spin-wave collective modes in the condensate.
Since at low T there are essentially no QP's in the B
phase and all the QP"s in the A phase are reflected back
into the A phase, the interface should shovel QP magne-
tization in front of it like a snowplow, and local conver-
sion of QP~condensate spin should take place rather
sharply near the interface region. Since there is no
time for local relaxation of the condensate spin, there
should be spin currents propagating into the bulk phases.
(This spin conversion is analogous to the normal
current~supercurrent conversion that takes place at a
normal-superconductor interface due to Andreev scatter-
ing processes). Once the actual A-B front (which may be
distinct from the magnetization front) surpasses the
spin-wave velocity it also appears as if a Cherenkov spin
shock wave should appear in the system (cf. Ref. 37), and
this may provide an explanation for at least some of the
phenomena observed in the experiments (see also Ref.
36). The above discussion is speculative, and we have not
even begun to work out many of the details.

With this motivation we now consider nonunitary
phase boundaries. The generalized Kaul-Kleinert (KK)
variational ansatz for the gap matrix of the static inter-
face can be written in the form

b, tax(p, x) =A(x)A,"tt(p)+a(x)b ti(p),

where

(55)

0 for x~ —oo

k(x)= '
1 for x~+ oo

(56)

and

1 for x~ —Oo

it(x)= '

0 for x~+ ao . (57)

For the static interface, A, and ~ are determined by
minimizing the static free energy. The simple KK ansatz
takes X=1—~, and the A-8 surface energy determined
using this form for the order parameter is not too far oF
the more accurate numerical calculations in the GL re-
gime (which agree surprisingly well with the experi-
ments performed at melting pressure .) The orientations
of the bulk A and 8 phase order parameters are fixed by
appropriately choosing the unit vectors w, , w2, and d for
b, "& and the rotation matrix R„for 6 ~. We will now
show that if we choose b, '&(p, u)=Z

& (p, u) for the
zero-order moving gap configuration, then we arrive at
the same expression for I,„dthat we obtained earlier with
the unitary assumption.

We begin by observing that in the KE (25) the direc-
tion of the momentum p enters simply as a parameter
(this result is valid to within small terms -b,o/EF, which
we are consistently ignoring. ) It can also be shown '

that the EK gap matrix IEq. (55)J can be diagonalized
prouided that the QP spin quantization axis, z, (p), is
chosen appropriately for each p separately The correct.

here

(p, u }
(58)

b+(p, u)=tA(u)4„(p.w, +ip wz).

+a(u)As(+~dXp ~+ip" d} (59)

with
~ 6+(p, u )

~ going over asymptotically to the A

phase gap as x ~+ ~ and the 8 phase gap as x ~ —oo.
With the simple KK ansatz (A. +x = 1), it is possible to

check explicitly that the gap ~b, +(p, u)~ never has a max-
imum in the region of the interface; although we have not
checked it, we will assume that the same conclusion holds
for the generalized KK form. We now generalize the KE
(25) by affixing a spin index, o(p) to both the QP distri-
bution function and the gap to get v and ~b, (p, u)~,
with o (p) =+. The KE then decouples into two indepen-
dent KE s one for the up-spin distribution function and
the other for the down spin, and the QP energy

E& = [ez +
~

b, (p, u ) ~

)' becomes spin dependent. The
KE's can be solved exactly as before and the solutions in-
serted into the expression for the irreversible energy
transfer [Eq. (24}] with the momentum-dependent spin
sum performed before the angular integral:

6 ~„'=N(0)f g f dx f dE, (5v, t},E, ) . (60)
4m.

[ )

In the EBL the contribution of each spin species to 6 O

depends only on the asymptotic forms of the gaps
I& (p, u )I [see discussion after Eq. (51)], and since these
forms are the same for both species, both spin species
contribute equal amounts to I,„d,and the sum of the two
contributions equals our previous result. On the other
hand, in situations where 8 ~ depends explicitly on the
structure of the gap in the interface region, as in the hy-
drodynamic regime discussed in the next section, both
spin species will not contribute equal amounts to the fric-
tion coefficient.

D. Hydrodynamic (local approximation) regime

In this section we consider the extreme hydrodynamic
limit (EHL), which is the opposite limit from the EBL
considered in the previous section (cf. Ref. 39). The
essential requirements are that the liquid is hypercooled,
while at the same time bor)&1, and the QP MFP satisfies
the inequalities go « l ( T}« d ( T) —g( T). Further details
outlining the conditions for the EHL are given in Appen-
dix A, where we also show that there exists a small por-
tion of the P, T phase diagram near the PCP, given
roughly by 10 & [1—T/T, (P)] & 10, where the sys-
tem is in the hydrodynamic regime and the A-8 transi-
tion is still strongly hypercooled. Within this window,
we expect the dynamics of the interface to be governed by
the hydrodynamic theory described here. In analogy
with the hydrodynamic theory of orbital relaxation in the
A phase, the hydrodynamic regime can be called the nor-

choice is z, (p)=dXp, where (p"), =R„p;,and with
this choice of spin axis

b, +(p, u)
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6 0
y[b, ]B,b, = —

&
=N(0)(AV b, +ah —Plb, l b, ), (6l)

where Vo[b„b, ] is the static GL free energy,

mal locking regime, since the motion of the interface is
strongly coupled to the QP fiuid thorough the depen-
dence of the QP energy on the instantaneous gap and the
efficient relaxation of the nonequilibrium QP distribution
through inelastic collisions. For temperatures very close
to T„box.&&1, and provided the liquid is hypercooled
the dynamics of the interface should be described by the
gapless theory discussed in the next section.

In both the hydrodynamic and gapless regimes, the
QP's can be eliminated from the problem (integrated out)
and the superfluid dynamics can be reduced to an
effective dynamics for the condensate order parameter
alone. In both these regimes the dynamical evolution
equation for the gap has the following schematic diffusive
TDGL form:

order parameter it is not completely trivial to derive the
hydrodynamic TDGL equation for the moving interface,
and we will not attempt it here. We will instead compute
the power dissipated directly in terms of the QP distribu-
tion function, as we did in the EBL calculation of the pre-
vious section.

The starting point is the semiclassical KE, Eq. (25), in
the particle representation, but now that we are in the
EHL (l «d), instead of neglecting the collision term (as
we did in the EBL), we neglect the streaming and force
terms which are smaller than the collision term by at
least a factor of I/d (again using u/uF « I ). The simple
RTA that we use here for the collision integral has been
shown to be asymptotically exact in the limit T~T„
and since this is the only place where the local hydro-
dynamic approximation applies anyway, the RTA should
be quantitatively correct and not just a crude approxima-
tion.

The resulting KE is of the usual form for calculating
transport coefficients in the hydrodynamic limit,

V, =N(0) Algal' —alai'+ —foal' (62)

i,„,= fax B,A+H. c.

= —2fd y[~]IB,~I'. (63)

We can then identify the friction coefficient from
6;„,= —I v; i.e.,

a:—I —T/T, is the reduced temperature, P-((o/uF)
—

l
5(0)l, and A —go. In the EHL the effective

diffusion coefficient y-N(0)ldll/T can be obtained
from the generalized gap equation by taking into account
the deviation of the QP distribution from local equilibri-
um.

Once we have an expression for the coefficient y we
can use irreversible thermodynamic arguments to calcu-
late the energy dissipated per unit area during the propa-
gation of a moving 1D kink in the gap,
b(x, t)=b, (x —ut):

lb, (p, u)l Bv~ (u)
v[B, lb, (p, u)l]

Ev u BE

5v

7
p

(65)

where the LHS is the driving force and the RHS is the
response of the QP fluid. As discussed in the previous
section, the spin index tr(p)=+ is related to a choice of
spin quantization axis that depends on p. Equation (65)
also shows that in the EHL the QP distribution function
only deviates from local equilibrium in the region where
the local gap is changing (see Fig. 4); this should be con-
trasted with what happens in the ballistic regime (see
Figs. 2 and 3) where the nonequilibrium QP distributions
only relax far from the interface core region.

Using Eq. (65) in the expression for the irreversible en-
ergy dissipated yields

I „„=2f dx y[b, ]lB„b,l (64)

Thus in the EHL the friction coefficient and therefore the
terminal velocity v„~=AG„&/I depend on the detailed
structure of the moving kink and on the QP collision
time (this is in contrast to the EBL). Although the above
discussion contains the essential physics (and is entirely
correct for a hypothetical s-wave neutral Fermi
superfluid), it is only schematic for superfluid sHe where
the presence of the tensor order parameter makes it
necessary to keep track of spin and orbital indices, etc.

We will confine ourselves to the KK type of A-B inter-
face configurations, for at this stage we are only interest-
ed in obtaining a reasonable estimate of the hydrodynam-
ic friction coefficient (for which the KK form should be
entirely adequate), and we do not want to deal with the
complication of general nonunitary interface
configurations. Even with the simplification of the KK
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FIG. 4. Schematic diagram of the nonequilibrium QP distri-
bution induced by the moving A-8 interface in the hydro-
dynamic regime.
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O'Q„=f dx g 6v (u)B,E (u),
P~7(P)

ib (pu)i Bv (u):—v f dx g r [B„ib,(p, u)i]
Ep (u) BE

(66)

This expression should be compared with Eq. (63). (We have also checked that the rate of energy dissipation,
6'Q„=—TfdxB, S, calculated from the rate of change of the entropy density, where S = —g

~ I
[v lnvpo(p)+ ( 1 —

v~ )ln( 1 —
v~ ) ] agrees with Eq. (66).)

A normalized form of the gap for the KK order parameter is

g. (p, )= — ' =[[-«)p" + ( )ld&&p"I]'+[~( ) p" + ( )p .d]'f'",
B

(67)

where in the GL regime r = b,
„

/he is a number —l.
After some manipulations using the above results, we

find that the hydrodynamic friction coeScient
rhyd=8 QP/v2 has the form

2

h&d= 4T g(T) & && T
(68)

where

f '"ds, r,
ih (p, u)i Bv (u)

Ez (u) BE

m. ib, (p, u )ir
4T

(70)

which holds for T~ T, and the property that in the GL
regime the gap can only depend on u in the dimensionless
combinations g= u /g( T) (here r is to be interpreted as
the QP MFT in the normal state evaluated on the Fermi
surface at T = T, ).

We conclude from Eq. (68) that near T, the tempera-
ture dependence of I h„d-(1—T/T, ), which differs from
the T~T, limit of I,„d,and the difference in exponent
should be experimentally observable in measurements of
UAB.

E. Gapless regime

For temperatures very close to T, (but still outside the
temperature range where critical Auctuations destroy the
validity of mean-field theory) the magnitude of the gap is
smaller than the energy width —1/r (due to inelastic col-
lisions) of the QP states making up the Cooper pairs.
This so-called gapless regime (b.v~&&1) covers reduced
temperatures 10 ~ 1 —T/T, tg p) 10 or 10

—= f

deaf

4 X g. (p 0)[Bcg.(p 0)]'
0(p)=+

is a temperature-independent dimensionless integral —1

that depends on the structure of the interface and the
textural boundary condition between the A and B phases;
the general form [Eq. (68)] for I h„d, including the temper-
ature dependence, should be generally valid, independent
of the KK ansatz. In deriving Eq. (68) we have also used & o~aa =—

Ql
gpss'

ai

where Vo[b,„b„]is the static GL free energy (including
bending terms) and the diffusion coefficient is

(71)

~X(0)
7 (72)

which is independent of 6, as was expected from the s-
wave calculations where y = [mN(0) /8T].

The derivation of the gapless dynamics is valid only if

where vF/$0-ho(0) —T, and the characteristic time and
length associated with the dynamics of the gap are
d —~(1/b, )Bb, /Bx

~

' and t —~(1/b, )Bb, /Bt
~

'. For a
moving kink in the order parameter the above inequali-
ties translate into

r, T, « t-d/v, (o«d-d .

The approach to equilibrium of the nonequilibrium gap
in the gapless regime (also valid for fiuctuation effects
above T, ) occurs through the Cooper-pair formation and
pair-breaking caused directly by the inelastic QP col-
lisions. For Ao~((1 these processes are important be-

Since it may be very diScult to perform A-B interface ve-
locity experiments that close to T„this section may be of
only theoretical interest, and we will be very brief. (This
conclusion may be too pessimistic: The gapless dynamics
of the A phase I vector is discussed in Appendix B, where
it is suggested that the crossover from local hydrodynamic
to gapless behaUior may haUe already been seen in experi-
ments investigating orbital relaxation ).

The gapless dynamics is a purely quantum-mechanical
many-body effect, and therefore recourse must be made
to a suitable microscopic theory. Many derivations of
the gapless dynamical equation have been given for a hy-
pothetical s-wave Fermi superAuid, ' with the result
that the gap obeys a simple TDGL equation. By general-
izing this work to the p-wave ( He) case we find that the
evolution equation for the He tensor order parameter,
b,„,is
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(73)

We can now substitute a form for the zero-order moving
kink b, ', (u } [for example, the KK ansatz Eq. (55)] to get

~gapl

n.N (0)b, ~ T
12T((T} " T,

(74)

cause the QP energy gap is smeared out by collisions
since the width —1/r of the QP energy states making up
the Cooper pairs is bigger than the pair binding energy

Ap. This is in contrast to the hydrodynamic regime,
where such direct processes are not important, and gap
relaxation takes place almost entirely through the
inelastic-scattering processes that relax the nonequilibri-
um QP distribution with the gap adjusting essentially adi-
abatically through the instantaneous gap equation (see
Sec. IV D).

Using the gapless diffusion coefficient and the irreversi-
ble thermodynamic arguments, Eq. (63), for the power
dissipated, we find that in the gapless regime the friction
coefficient for a moving planar interface A-B interface
has the form

spection of the expression for I,„d[Eq. (8)] suggests that
the Andreev friction coefficient ought to depend strongly
on the angle that I makes with n, the normal to the inter-
face (by convention, pointing towards the B phase). As
shown in Refs. 8 and 9, for all but the slowest interface
speeds the A phase l vector is effectively frozen in the
configuration it had before the B phase nucleated. If we
define p=l-n, then, due to the influence of the cell walls
and the applied magnetic field on the 1 vector, p =0
should hold in the LANL experiments' (this value for p
turns out to correspond to the minimum-energy
configuration for the static interface ).

As we discussed earlier, to get an approximate numeri-
cal estimate for I,„dthe forrnal logarithmic divergence in
the integral over the momentum component p should be
cut off at the largest value of p for which the approxima-
tions inherent in the calculation breakdown. The two
semiclassical cutoffs, d/l and U„z/UF, come directly out
of our analysis of the kinetic equation (see Sec. IV), and
as discussed in Appendix C, the quantum cutoff
—(T/EF }' comes from a breakdown in the conditions
for Andreev reflection. Thus the appropriate choice of
cutoff should be

where p max[uAB/UF d/~ (T/sF)'") (76)

AB
B

(75)

is a temperature-independent dimensionless integral —1

that depends on the structure of the interface and the
textural boundary conditions between the A and B
phases (again g=u/g). Thus we see from Eq. (74) that
the exponent of the temperature dependence for I is —,

' in

the gapless regime, which differs from the hydrodynamic
result, 2.

V. TERMINAL VELOCITY OF THE A-B INTERFACE:
THEORY VERSUS EXPERIMENT

In Sec. IV we attempted to derive expressions for the
friction coefficient (inverse of the mobility) for the A-B
interface moving under hypercooled conditions for three
dynamical regimes: the gapless, hydrodynamic, and ex-
treme ballistic. The terminal velocity data published so
far' lie in the extreme ballistic regime, for at all pres-
sures at which the published data were taken the ratio
d/I &&1 already at T„sand is decreasing quickly with
temperature, and the pair-breaking contribution to the
dissipation is expected to be negligible. In the EBL our
first guess might be that since the vast majority of the QP
states participate in the Andreev processes, the experi-
mentally measured interface mobility should be given to a
good approximation by the Andreev contribution alone
(see Sec. IVC). This turns out not to be the case, and
below we attempt to account for this discrepancy. A
rough estimate will show that the grazing incidence QP
states not accounted for in I,„dmay be as important as
the Andreev contribution, although this is not the only
possibility.

Since the A phase energy gap is strongly anisotropic
around the Fermi surface with nodes appearing at +I, in-
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FIG. 5. The three possible QP momentum direction cutoffs
for I,„das a function of T/T» at P =34 bars.

Since each of these quantities depends on pressure and
temperature, the choice of cutoff will depend on the posi-
tion in the P, T phase diagram. In Fig. 5 we plot the pos-
sible cutoffs as a function of T/T„s at P =34 bars (we

use the temperature dependence for the MFP I estimated
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AG„~(P,T) = T, I 1.01[(T/T, ) —
( T„~/T, )2]

—l. 88( T/T, —T„~/T, ) ), (77)
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FIG. 6. Terminal velocity U~z of the planar phase boundary
as a function of T/T~~(P). Circles (crosses) are from Ref. 10
for P =33.6 (24.5) bars and magnetic fields H=100 (200} G.
Triangular data point is from Ref. 35 for P=30 bars. Dotted
and dashed curves are the theoretical results for p= l.n= 1 and
0, respectively, at P =34 bars and H=0. Solid line is the
theoretical result for @=0 at P =24. 5 bars and H =0.

in Ref. 25). In the temperature range for which pub-
lished interface velocity data exist (T/T„~~0.65) the
clear choice of cutoff is p, —( T/Ez)'~, while for lower T
the appropriate cutoff should be v„&/vF. Although the
expression for I,„d takes on fairly simple forms as
T~0," the data lie in a region where the full
integral expression must be evaluated numerically to
get quantitatively accurate results. In Fig. 6, using

U„s=bG„&/l,„d,we plot our theoretical estimates for

U„z versus T/T„~ for two pressures, P =24. 5 and 34
bars; also plotted are the published LANL data. In
evaluating I,„dwe used experimental data from Ref. 44
to get T„~,N(0), vz, etc. and used the quantum cutoff in
the integral over p . To estimate the temperature depen-
dence of the A and 8 phase energy gaps we used standard
interpolation formulas for the gap maxima, which ac-
count for strong-coupling renormalizations of the gaps
near T, and reduce to the weak-coupling BCS values for
T =0. In evaluating v„Bat P =34 bars we used an ex-
pression for EG„&in ergs/cm derived in Ref. 8 from ex-
perimental entropy data:

where T, is in mK. For P =24.5 bars we used

2

AG„,(P, T) =10
T. T,

T
1 ——

TAB
(78)

in ergs/crn', which was obtained in Ref. 46 from dynamic
magnetic susceptibility data. [b,G„~estimated from stat-
ic susceptibility data (cf. Ref. 8) tends to overestimate
AG„s (as checked, for example, by latent heat measure-
ments) by about a factor of 2. This discrepancy arises
from the puzzling discrepancy between the static and dy-
namic B phase susceptibilities, a problem that to this day
has not been cleared up. ].

Comparing the dashed curve (1 in the plane of the in-
terface, appropriate for the LANL experiments, and
P =34 bars) in Fig. 6 with the data shows that, except for
the lowest T data, the theoretical predictions overesti-
mate vAB by a factor -2. There are not really enough
data points at P =24. 5 kbars to allow us to draw any firm
conclusions on how well theory and experiment compare
at this pressure, but again theory seems to overestimate
vAB. Since there are no adjustable parameters in the
theory, we cannot try to fit the velocity data. Since I,„d
diverges only logarithmically as the cutoff goes to zero
(and therefore depends only weakly on the exact value of
the cutofI), it is difficult to believe that the fault lies in our
estimate of the quantum cutoff. [As shown in Appendix
C, the true quantum cutoff for a QP state with momen-
tum p is actually -(s~/sF)', which we have approxi-
mated as (T/EF)' . This replacement is not likely to
give rise to a factor of 2 in I,„d.] Furthermore, since we
have previously shown' ' that the moving planar A-8
interface is linearly stable, we do not believe that the
above discrepancy can be explained away by invoking a
nonplanar interface. At this point we can only offer some
possible explanations.

(1) The LANL experiment actually measures the speed
of the magnetization profile that accompanies the moving
A-B interface. The v„Bthat we have computed is the
predicted speed of the kink in the superfluid order pa-
rameter. As pointed out by LY (Ref. 9) it is conceivable,
but at first sight perhaps implausible, that the magnetic
signal and the kink are traveling at different speeds. In
fact the latest data coming from LANL (Ref. 36) reveal
that the propagation of the phase boundary shows a
much richer behavior than was previously imagined, with
two distinct signals traveling at different speeds. Still it is
difficult to believe that in the simpler high-temperature
regime such an effect could give rise to the above-
mentioned factor of 2 discrepancy.

(2) The nontrivial transmission coefficients that LY
claim should appear in the expression for I,„dwill tend
to increase the friction coefficient (over the barrier quan-
tum Andreev reflection leads to a greater momentum
transfer to the QP fluid) and therefore decrease U„~.
Since the effects of the nontrivial transmission coefficients
should disappear at lower T (the only important QP
states at low T are the ones near the nodes in the A phase
and they are all reflected), the semiclassical theoretical
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prediction for v„~should come into agreement with the
data at lower T, which very roughly seems to be the case,
at least for P =34 bars (see Fig. 6). There is no quantita-
tive prediction for how much realistic nontrivial
transmission coefficients would modify the value of I,„d,
and in any case Kopnin's quasiclassical GF calculation
implies that the nontrivial coefficients do not even ap-
pear.

(3) We now come to the most plausible explanation for
the discrepancy. As we already mentioned, it could be
that even in the EBL the relatively small number of graz-
ing angle QP states gives rise to a contribution to the fric-
tion coefficient comparable with I,„d.This can occur if
their small number is compensated by a large energy
transfer per state. It will also be important, especially for
low temperatures, that for I in, or close to, the plane of
the interface (the probable LANL experimental
configuration), the low-energy QP states (with momenta
near the nodes in the A phase gap) will be among the
grazing incidence states. The QP states with momenta
within the quantum cutoff region cannot undergo An-
dreev reflection, and there are then three possibilities for
such states: (I) they may behave hydrodynamically by
undergoing inelastic collisions within the boundary re-
gion, (2) they may remain frozen and respond under a
sudden approximation, or (3) they may be scattered in the
ordinary (non Andreev) way, and which process actually
occurs depends on the relative sizes of the various cutoffs
and the state (s,p) in question [see discussion above Eq.
(38)]. To study normal QP scattering process in the pres-
ence of the A-B interface requires going back to the mi-
croscopic Bogoliubov —de Gennes equations or the micro-
scopic GF's, since the terms that account for these pro-
cesses have been systematically dropped in the quasiclas-
sical and semiclassical theories. However, an estimate of
the normal scattering contribution to the interface mobil-
ity can probably be made along the lines of the method
LY used for the Andreev processes. Unfortunately, we
have not yet been able to sort out the details of how to
consistently and quantitatively evaluate the contribution
to the friction coefficient from the QP states neglected in
the derivation of l,„d.We can, however, use the hydro-
dynamic results discussed in Sec. IVD to estimate the
contribution to the friction coefficient from some of the

grazing angle QP states and see how these states can give

rise to an important contribution. In the not too low
temperature region of the phase diagram where the quan-
tum cutoff is the correct one and d/I »uzi/uF (see Fig.
5), we expect the QP states with d /I & ~P„~& ( T/E~)' to
be scattered in the ordinary way (no branch conversion)
since they are still behaving ballistically and Andreev
refiection is forbidden, while for ~P„~& d/I we expect the
QP states to behave hydrodynamically (i.e., relax due to
collisons in the region of the interface). Using the hydro-
dynamic solutions obtained in Sec. IV D, we can attempt
to estimate the contribution of these hydrodynamic states
to the interface mobility in the EBL. Even though the
simple RTA to the collision integral in the QP KE is
probably not quantitatively reliable in the EBL, the QP
collision time ends up dropping out of the final expression
for the hydrodynamic contribution, I hyd lending some

credence to our final estimate. We find that the hydro-
dynamic solution in Eq. (65) is indeed accurate in the
EBL for those states with ~P„~& d/I provided that
d/I »u„~/uF. For these hydrodynamic states Eq. (68)
for I h„dshould hold, but with the angular integration re-
stricted to angles for which ~P„~& d/l. It is then easy to
see that the small factor d /I arising from the angular in-
tegration is compensated by the large factor l/d appear-
ing in the expression for I hyd resulting in
I h„d-uF 'N(0)ho, which is independent of r and ap-
parently of the same order of magnitude as I,„d.Whether
or not the contribution to the interface mobility from the
grazing angle states can bring the theoretical prediction
for v„z into line with the experimental data requires a
careful numerical estimate in the EBL of both I hyd and
the contribution due to the QP states that undergo nor-
mal scattering, and this had not yet been carried out.
Since the mean-field theories for superfluid dynamics are
expected to produce quantitatively accurate results, this
program seems worth carrying out, especially considering
that in one setting there is the opportunity to study such
a rich variety of kinetic phenomena.

VI. SUMMARY AND CONCLUSIONS

We have studied the motion of the A-B interface using
superfluid KE's and have attempted to calculate the mo-
bility of the interface in three different dynamical re-
gimes: the extreme ballistic, the extreme hydrodynamic,
and the gapless regimes. For the first two regimes we
were able to use semiclassical theories, while a micro-
scopic quantum treatment was needed to get the dynam-
ics in the gapless regime. We are in the process of at-
tempting to use the superfluid KE's to study the low-
temperature ( T/T, & 0.5) regime where pairbreaking
processes dominate the dynamics. [LY (Ref. 9) have
done some calculations in the pair-breaking regime, and
they argue that the friction coefficient should be roughly
temperature independent there. ] The difficulty here is
that since the pair-breaking regime is (like the gapless re-
gime) outside the scope of a semiclassical treatment, it is
necessary to use the quantum (4X4) matrix KE's or the
quasiclassical GF equations of motion (see Sec. II). We
also believe that both the quasiclassical GF and matrix
kinetic equation formalisms can be used to shed further
light on whether or not nontrivial transmission and
reflection coefficients appear in I,„dand to obtain a quan-
titative estimate of the effective mass of the phase bound-
ary, which plays an important role in the theory of the
oscillations of the pinned interface.

We have found that the semiclassical KE result for the
Andreev friction coefficient I,„dagrees with the quasi-
classical GF calculation of Kopnin, but not with the
semiphenomenological calculation of LY as reported in
Ref. 7. The probable reason for this discrepancy was dis-
cussed in Sec. III, where we explained that it now ap-
pears likely that the original LY calculation missed a
term by using an incorrect ballistic approximation for the
QP transmission coefficient when the interface is in
motion.

In the limit T~T„wecan summarize the results for
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the friction coefficient I by writing the temperature
dependence as

(79)

and displaying the various results for the exponent q:

apply, the following inequalities must be satisfied:

g, «l(T) «d(T),
b,, ' «r(T),
v~a &&vF .

(A2)

(A3)

3
27

g 2p

3

Kopnin and KE s, Ballistic regime, e & 10

hydrodynamic regime, 10 & a & 10

gapless regime, a &10
(80)

where a=(1—T/T, ) is the reduced temperature and we
have glossed over the crossover regimes where the tern-
perature dependence will deviate from a simple power
law. Very close to T„zthe diffusion limited dynamics
should come into play, but we have not discussed this re-
gime at all here. We have also compared the theoretical
predictions for the terminal velocity of the interface
(determined from the Andreev friction coefficient in the
ballistic regime) with experiment and find that the theory
appears to overestimate the LANL data' by about a fac-
tor of 2, a discrepancy that we have tried to attribute at
least partly to the neglect of the grazing angle QP's.

The moving A-8 interface shows a rich array of
dynamical behavior and therefore is an excellent setting
in which to study superfluid dynamics. So far only the
ballistic regime has been studied experimentally, and we
hope that the investigations reported here will motivate
some experimental work at high temperatures near T, to
check the limiting form of the Andreev friction
coefficient and to probe the hydrodynamic and maybe
even the gapless regimes (experimental work studying the
low-T regime is already in progress at LANL).

Note added in proof We have as. sumed throughout this
work that it is possible to expand the relevant quantities
in powers of v /vF. We have no proof, however, that the
relevant quantities are analytic in this parameter; thus we
must keep in mind the (perhaps unlikely) possibility that
by expanding in v /vF we have missed important nonana-
lytic terms, and this may be another (or additional)
reason for the discrepancy between theory and experi-
ment. I thank Nils Schopohl for discussions on this
point.
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APPENDIX A: HYDRODYNAMIC
AND GAPLESS WINDOW

FOR THE MOTION OF THE A-8 INTERFACE

In this appendix we show that there exists a portion of
the phase diagram in the vicinity of the PCP where the
motion of the interface should be governed by the hydro-
dynamic and gapless dynamics developed in Secs. IVD
and IV E. In order for the local hydrodynamic theory to

The LANL experiment can be run at very small ambient
magnetic fields -5—10 G. In such small fields the split-
ting of the A transition into the A

&
and A z transitions

will be very tiny (1 —T,z/T, —10 ), and T„s(P,H) will

be shifted only slightly down from its H =0 value. For
purposes of demonstration, we will work at exactly the
PCP pressure -21 bars, but any pressure in the vicinity
will do.

Near the PCP and in zero field, b.G„s(P,T)=10t xo
ergs/cm, where xo(P)—:1 —T/Tze(P, H =0). In a finite
field b G„sbecomes (in ergs/cm ) (Refs. 38 and 46)

b, G„~(P,T,H) =10t xo y~atH—
where gz =9X 10 is the normal-state susceptibility and
a =2. 3. At the PCP pressure in zero field
T„s(P)=T,(P) and xo=t The reduced . temperature of
the A Btransition in a fi-eld is then t„s(H)=ay~H'/10
ol t && 7 + 10 & t hyd in a 5 G field, so there is no prob-
lem there. Near the PCP superheating of the 8 phase has
also been observed, so that velocity measurements might
be possible both above and below T„s(H).

From the definition of the latent heat, we find that L
as a function of the reduced temperature t has the form,

L(P, r, H)=— T ~~GAB +AG„s(P,t, H) .
T, at

For the gapless theory to apply we need Aov «1 instead
of Eq. (A2) and this only occurs very close to T, . As em-

phasized by LY the first of these inequalities is not
satisfied over most of the phase diagram, and therefore
the extreme ballistic and pair-breaking regimes discussed
in Secs. II and IV apply for almost all P and T. Here we
are interested in the small region near the PCP where the
above inequalities do apply.

Using d(T)-cg(T) (c —5 —10), I) 10 A above the
PCP pressure, and go-100 A we find that l(T)(d(T)
for t & thyd

—10, where in this appendix we write the
reduced temperature as t =1—T/T, (P) and introduce a
reduced temperature thyd that marks the crossover from
the ballistic to hydrodynamic regime. Conveniently, the
other two inequalities, Eqs. (Al) and (A2) are extremely
well satisfied for t & thyd.

We now must make sure that the transition is still hy-
percooled in the hydrodynamic window, for otherwise la-
tent heat effects govern the dynamics and the system is in
the well-studied diffusion-limited regime. The system will
be hyper cooled if the undercooling parameter
h„=H(T)/L ( T) )) 1, where L ( T) is the latent heat and
H ( T) is the heat necessary to warm the B phase up from
T to T„~.If the specific heat C is roughly constant be-
tween Tand T„z,then H(T)=C~(T —T„ii)and

h„(P,T, H) =C (T —T„s)/L .
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where the LHS is the torque on 1 due to bending energies,
walls, dipole forces, etc. , and the RHS is a viscous torque
that gives rise to energy dissipation with JM the orbital
viscosity.

The energy per unit area dissipated during the motion
of a planar / soliton (cf. moving interface problem) would
be B=pf dxiB, /(x, t)i (see, e.g., Ref. 11). The hydro-
dynamic regime' (b,or » 1, and cur, ql « 1, etc.) is some-
times also known as the normal locking regime, because
the QP energy depends on the instantaneous position of
the I vector, and the motion of / is hindered by collisional
damping of the QP's as they try to follow the motion of l.
In this regime the well-known result for p in the limit
T~ T~ 1s

' 3/2

1—
T.

(B2)
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FIG. 7. Undercooling parameter b „asa function of the re-
duced temperature x = 1 —T/T» at the PCP pressure in a 5 G
magnetic field.

The specific heat of the superAuid phases near T, is
C-90 (ergs/cm mK) and it is roughly constant over the
small temperature range of interest here. Then using the
above expressions and estimates for L, AG~~, and C, we
can plot b, „(x),where x = 1 —T/T„tt(P,H). We find (see
Fig. 7) that unless x is very tiny, & 10 [and T is there-
fore extremely close to T„~(P,H)], b,„()&x&1. Since

th„d—10 and the crossover to the gapless regime takes
place over 10 ( t (10,we see that in the vicinity of
the PCP there is for small fields a hydrodynamic and gap-
less window in the phase diagram where the A-8 transi-
tion is still strongly hypercooled. Within this window the
dynamics of the interface should be governed by the local
hydrodynamic and gapless theories discussed in Secs.
IV D and IVE.

To obtain p in the gapless regime (hor «1) we make
some simplifying assumptions. We assume that the sys-
tem is homogeneous and take the equilibrium A phase
order parameter to be

5b =ho(5w, +i5w, )=ho( —5/, i5/„)—y . (83)

Next we use the simple TDGL equation with
y=[nN(0)/24', and insert the separable A phase order
parameter h„=d,b, ;. Assuming that the spin (d) vector
is fixed, the TDGL equation becomes

b &(p)=(i&, dz)~ted, h p~5
&

with the (fixed) spin d vector chosen along
the y axis and the equilibrium orbital config-
uration b,o= b 0( w', '+i w '2 ') (thus in equilibrium
/=lo=w, 'Xw2 '=y). If for simplicity we consider
only a restricted set of rotations

5Q =x(5Q„)+z(5Q, ),
of 1 so that

51=5Q X/0 =x(51„)+z(5/,),
then

APPENDIX B: ORBITAL DYNAMICS
OF THE A PHASE l VECTOR

In this appendix we calculate the orbital viscosity of
the A phase 1 vector in the gapless regime using the
TDGL equation [Eq. (71)] and use this result to suggest
that the crossover from the low-T hydrodynamic regime
to the high-T gapless regime may have already been seen
in orbital viscosity experiments. This problem is simpler
than the interface problem because the system remains at
all times in the unitary A phase, although the symmetry-
breaking 1 vector is moving.

Near T, in the hydrodynamic and gapless regimes the 1
vector obeys a dissipative equation of motion of the form

We now use Eq. (B3) to get

520—yb, (B,I, +iB,1 )y=
5h, * (B4)

and

Re[8, I, +iB,I„)(IX6 ")]=6(I XB,I),

and then by applying the vector operator (/0 X 5 0 )/0 to
Eq. (B4), taking the real part, and making use of

5V, „5V,„„5p,„=(/Xb *) I +(/Xb, ) .I
51 56* 5h,

I X =p(1 xB,l),
51

(B1) we find an equation of the form of Eq. (Bl), but now with
p given by
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n.X(0)ho
12T

and therefore the temperature dependence of the orbital
viscosity changes in the gapless regime from its hydro-
dynamic form [cf. Eq. (82)]. Since the exact expression
for p (valid even in the crossover region b,o&-1) has al-

ready been worked out in detail using other nonequilibri-
um techniques, ' we will settle for calculating the
asymptotic result obtained above. In Fig. 8 we plot the
exact expression Iu (obtained from Ref. 49) as a function
of reduced temperature, and compare it with the limiting
forms, phyd and pg p] clearly the hydrodynamic result
fails very close to T, as the dynamics becomes gapless at
a crossover temperature given roughly by
(1—T/T, )-10 . The crossover from the low-T hydro-
dynamic exponent —', to the high-T gapless exponent 1 is

clearly visible in the log-log plot.
A deviation from the hydrodynamic —', power-law tem-

perature dependence for p seems to have been observed
in Ref. 51 in what we would expect to be the crossover
temperature region; the trend of the deviation is just
what one would expect for the crossover to the gapless
behavior, although more data closer to T, are really
needed to tell for sure if the gapless theory works quanti-
tatively. This possible crossover to gapless dynamical re-
laxation may be the first time such behavior has been ob-
served in pure Fermi superfluids (the gapless regime in
pure superconductors is way beyond experimental resolu-
tion), although gapless relaxation has been observed for
heavily doped superconductors with a high concentration

of magnetic impurities, which are efficient Cooper pair
breakers, and can therefore lead to 507'

p
(1.

The gapless form of the orbital viscosity also has impli-
cations for the mutual friction between vortices and the
normal component in superfluid He. The current
theoretical predictions ' for the mutual friction
coefficient for continuous vortices in the A phase, which
were obtained using the hydrodynamic (Cross-Anderson)
form for p, do not agree with experiments performed
very close to T„and it is conceivable that the experi-
ments are seeing the crossover to the gapless behavior.
More work is necessary to sort this out.

APPENDIX C: QUASIPARTICLE
MOMENTUM CUTOFF

In this appendix we address the question of the proper
cutoff for the logarithmically divergent integral over QP
momentum direction in the Andreev friction coefficient,
I",„d.The Andreev reflection of a QP incident on the A-
B boundary (here with normal n=z) involves a branch
conversion particle (e )0)~hole (Ez (0) with p,
changed but p~ conserved. For simplicity we consider
the reflection of a QP off of a static A Bbounda-ry, since
this should be sufficient for estimating the order of mag-
nitude of the cutoff'. In this case the total QP energy
E =[a +b „(p)]' is conserved in the scattering pro-
cess p, ~p,'. Here e~ =p, /2m '+p j /2m ' —c,~ with
sz=p~/2m". The Andreev reflection occurs when a QP
scatters from outside to inside the Fermi surface (or vice
versa) with E~ =a~, p and the sign of p, conserved, and
only a very small change in the magnitude of p,
(bp, &(pz); this is in contrast to normal scattering pro-
cesses where the QP undergoes specular reflection with

A 'o

0
~ ~ lO

M0
V
M

O

~ ~ Q

Igl

C) =
i'h d

ormal
ttering

Final
tate

C)
-6

10
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(p-p )
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FIG. 8. A plot of the A phase orbital viscosity p as a func-
tion of the reduced temperature 1 —T/T, showing the crossover
from the Cross-Anderson (hydrodynamic) form at low T to the
high-T gapless form. Also shown are the limiting low-T (hydro-
dynamic) and high-T (gapless) forms for p.

FIG. 9. Schematic diagram of the Andreev and normal
scattering processes that take place in the presence of the inho-
mogeneous order-parameter field associated with the A-8 inter-
face. I =initial state and F =fina state. p, is the quantum
cuto6' where the Andreev scattering mechanism breaks down
(not to scale).
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[E2 g (~ )2]1/2
P'=2&2

E,F
(Cl)

there are three possible final states for an incident QP,
but only the Andreev process is important for p, -pF. In
this case the other processes require a momentum change
of -2pF, and since the kink in the gap has a width
d-g))pF ', the scattering potential does not have the
appropriate Fourier components to induce such large
transfers of momentum [in other words, the matrix ele-
ments for such processes are suppressed by factors
exp( —gpF)]. On the other hand, for p, (p, only normal
scattering processes take place (see Fig. 9); now the

p,'= —p, and retains its original branch character. Fig-
ure 9 clearly shows that Andreev processes can only take
place if p,

' &0 when, for example, p, (0. A simple bit of
algebra shows that for ~p, ~

)p„where

momentum change 2p, ((2pF is small enough, so that
normal processes are not exponentially suppressed.

The upshot of the above discussion is that the diver-
gent integral in the expression for I,„dshould be cut off

at p, )p, —QE /sF, where at the intermediate tempera-
tures of experimental interest in the EBL (T/T„s)0.7

near melting pressure) a typical QP kinetic energy is
s-T-bo(T). There are, however, other possibilities for
the cutoff, which come from other approximations made
in the derivation of I,„d. Roughly speaking, the true
cutoff should be taken to be p,, -max[+a /sF,
v„s/v F, d /l], where the last two candidates for the
cutoff enter for obvious physical reasons that are dis-
cussed in further detail in Sec. IVC. Over most of the
temperature range of current experimental interest the
appropriate cutoff is the Andreev cutoff defined in Eq.
(Cl) (see Fig. 5). We can now estimate the angular cutoff

p, -(T/sF )' and proceed with the evaluation of I,„d.
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