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Current-voltage characteristics (CVC's) of superconductor —normal-conductor-superconductor
junctions and their dependence on temperature and mean free path are calculated in a relaxation-
time model for quasiparticles moving in a constant electric field between the walls of the pair poten-
tial well. By forming wave packets from the nonequilibrium electron and hole solutions of the
time-dependent Bogoliubov-de Gennes equations, a detailed microscopic picture of quasiparticle
acceleration and electron-hole (Andreev) scattering is obtained. Computing the time-averaged
current density from these wave packets, one obtains the characteristic features of experimentally
observed CVC s in microbridges, SNS sandwiches, and point contacts (including such with high-T,
superconductors). They are the "foot" at low voltages V && 5/e, negative differential conductivity,
and subharmonic gap structure (SGS) for V ~ 2A /en, n = 1,2, 3, . . . , and the excess current if e V is

much larger than the maximum value b of the pair potential. Pronounced arches appear for volt-

ages in the SGS regime, if one takes into account the weakening of Andreev reflection by normal

scattering from the outer surfaces of relatively thin S layers. The theory is valid at any temperature
below T, and for any mean free path.

I. INTRODUCTION

Superconductor —normal-conductor —superconductor
(SNS) junctions in their various shapes and structures'
represent a class of superconducting weak links where
Josephson-like macroscopic quantum phenomena occur
that cannot be seen in the classical tunneling contacts.
The low capacitance of SNS junctions is advantageous for
certain applications of the Josephson effect. Phase
coherence between the superconducting banks can be
maintained over much longer distances than in tunneling
contacts. It is mediated by quasiparticles that move un-
scattered from one superconducting bank to the other. If
the proximity effect creates a finite although reduced pair
potential in short N layers, phase coherence is enhanced
by Cooper pairs.

In wide N layers with vanishing pair potential, currents
influenced by phase coherence are essentially carried by
electrons and holes that are localized in the N region and
generate each other periodically by Andreev scattering '

in the NS interfaces, inducing supercurrents in the S lay-
ers. These bound electron-hole states determine the elec-
tronic properties of SNS junctions with sufficiently deep
pair-potential wells. (Even small spatial variations of the
order parameter result in electron-hole interferences that
have been observed, e.g., in the Tomasch effect. ' ) For
clean SNS junctions with infinite mean free path I, Ishii
and Bardeen and Johnson have calculated the dc Joseph-
son current carried by the spatially quantized electron-
hole (Andreev) states. Svidzinsky er al. investigated in
detail the contributions from the bound and the continu-

um states to the Josephson current, which largely cancel
each other. For finite mean free paths I of the order of
the normal region thickness d ( )& coherence length) Ku-
lik and Mitsai' obtained the dc Josephson current pro-
portional to sin/exp( —1/d ). Octavio, Skocpol, and
Tinkham" measured current-voltage characteristics
(CVC s) of tin variable-thickness microbridges at temper-
atures between 0.82 T, and T„which exhibit a rapid rise
of the current with small voltages (the so called "foot" or
"shoulder" ) and the excess current at high voltages
V&)2b, /e; pronounced, archlike structures with indica-
tions of negative differential conductivity (NDC) are ob-
served at low temperatures for V(2b, /e. After these au-
thors had discussed the supercurrent enhancement in the
light of the theories of Aslamazov, Larkin' and Golub'
as a consequence of nonequilibrium quasiparticle distri-
butions in the microbridge, Schmid, Schon, and Tink-
ham' analysed the quasiparticle dynamics in short mi-
crobridges, where the motion of the order parameter in
the bridge leads to a deficit of quasiparticles bound in the
pair-potential well, and thus, to an effective cooling and
enhanced supercur rent. Computing nonequilibrium
quasiparticle distribution functions from Boltzmann's
equation as well as using the quasiclassical Green's-
function approach they found the "foot" structure. For
point contacts or sufficiently short microbridges Ar-
temenko, Volkov, and Zaitsev' computed the excess
current from the equations for the ordinary Green's func-
tions and the Gorkov functions. In a series of papers,
starting with a semiphenomenological one-dimensional
"semiconductor model" that explained the "subharmonic
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gap structure" (SGS) in weak links Klapwijk, Blonder,
Tinkham, ' ' and Octavio et a/. ' pointed out the funda-
mental importance of Andreev scattering for a physical
understanding of the observed (positive) differential con-
ductivities and CVC's. They also took into account a
possible mismatch of the Fermi velocities in the N and S
layers. ' ' This stimulated further investigations of An-
dreev scattering and its influence on CVC's (Refs. 22 —24)
and partly motivated the attempt of this paper to give a
detailed microscopic description of charge transport in
SNS junctions based on wave-packet solutions of the
Bogoliubov-de Gennes equations. The resulting theory
of weak link current voltage characteristics complements
the existing ones and offers a unified explanation of the
principal phenomena, including the ones that have
remained unexplained so far like the arches in the CVC's
of microbridges and the NDC associated with the foot
and the subharmonic gap structure.

In Sec. II we discuss the relaxation-time model that is a
generalization of the conventional description of electron
dynamics in normal-conductivity theory to inhomogene-
ous superconductors. The time-averaged current densi-
ties carried by accelerated, multiply Andreev reflected
quasiparticle wave packets localized in the depression of
the pair potential are calculated in Sec. III, and the re-
sulting current voltage characteristics with foot, NDC,
SGS, and excess current are computed in Sec. IV. A dis-
cussion of the simple physical picture that explains these
phenomena by the interplay between quasiparticle energy
gain from the electric field and multiple Andreev
reflections under the influence of inelastic and surface
scattering, a critique of the model, and comparison with
experiments conclude the paper.
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feet voltage bias should be possible only in a resonant cir-
cuit, and acceptable approximation is to shunt the sample
by a resistance of optimized magnitude in order to intro-
duce a dc voltage much larger than the amplitude of the
oscillating component. This method has been used by
Octavio for variable thickness bridges and by Klein
et al. ' for the measurement of flux flow in thin super-
conducting films.

The physical picture of quasiparticle motion in such a
junction, with an electric field in negative z direction per-
pendicular to the NS interfaces, is illustrated by the ex-
ample of Fig. 1: At time t =0 a quasiparticle of energy
Ek starts its motion in the N region from the position
z = bas —an electron (

—e); k stands for three quantum
numbers that characterize an equilibrium quasiparticle
state. Its momentum component in z direction, mU„ is
opposite to the electric field. Under multiple Andreev
reflections it climbs up the pair-potential well until it is
being scattered or leaves the well and travels into the
field-free superconductors as an imbalanced excitation.
Each Andreev reflection (AR) is associated with the con-
version of an electron into a hole (+e) and vice versa and
the induction of a supercurrent in the S regions. Quan-

II. QUASIPARTICLE DYNAMICS
AND THE RELAXATION TIME MODEL F = -e~V/2a (b)

There are several methods to analyze nonstationary
charge transport in weak links. If one is dealing, e.g.,
with dirty normal metals of SNS bridges into which su-
perconductivity has been induced by the proximity
effect, ' phase-slip centers in dirty superconducting fila-
ments near T, (Refs. 25 and 26) or short weak links the
time-dependent Ginzburg-Landau equations are a
powerful tool. In addition there are the Green's function
and Boltzmann-equation methods. ' If, on the other
hand, one wants to avoid restrictions by temperature,
mean free path, and sample dimensions and get a detailed
quantum-mechanical picture of quasiparticle motion and
its repercussions on the ground state, the time-dependent
Bogoliubov-de Gennes equations ' (BdGE) are ap-
propriate. In order to treat our problem, they are com-
bined with the following relaxation-time model for
charge transport under the influence of an electric field
and inelastic scattering.

We consider a voltage-biased SNS junction with a con-
stant electric field in the N layer and negligible field
penetration into the superconducting banks. We disre-
gard all influences of possible ac voltage components that
oscillating supercurrents might induce in the impedance
of the external electrodynamic system. Although a per-

&s

N

FICi. 1. (a) A weak link modeled by an SNS junction of nor-
mal layer thickness 2a, total sample thickness 2D, and cross sec-
tional area L,L». (b) Quasiparticle wave packet in the pair-
potential well of an SNS junction gaining energy from a con-
stant electric field F in the N layer: At time t =0 motion starts
at energy E/, , the initial position of the wave-packet center is at
z = —b (with b =a in the shown example). Andreev reflections
change electron ( —e ) into hole (+e) wave packets and vice ver-
sa; j, is the supercurrent density induced by Andreev reflection.
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turn mechanically this acceleration process is described
by the electron and hole wave-packet solutions uz+(r, t)
and U„+(r,t) of the time-dependent BdGE (Ref. 32) given
by Eqs. (2.9)—(2.18). These equations also show the wave
packets u& and u& with momentum in negative z direc-
tion, which at time t =0 originate from electrons with
center at z=+b and E&, and which climb down the
pair-potential well. In the relaxation-time approximation
one assumes, that with probability exp —t/Tz the quasi-
particle is freely accelerated by the electric field until
time t, where T~ is the average scattering time. The
effective current carried by such a quasiparticle is propor-
tional to the time average of the instantaneous velocity,
taken between the moment when the equilibrium state is
left (which one may think to be the moment when the
electric field is switched on) and infinity.

The observable current density is proportional to the
sum of the time averages of all (gauge-invariant) electron
and hole velocities, where one has to take into account
the rate 1/t, at which quasiparticles start their motion
from the respective initial states k. Let us assume that 2a
is the effective length of the region where a finite electric
field exists. Then the time interval between two quasipar-
ticle "takeoffs" is

"mesoscopic" case of ballistic transport at velocity u,
through a normal conductor of length 2a, which is short-
er than the mean free path I =v, /Tz of the electrons, and
beyond whose boundaries no electric field exists: whenev-
er an electron of velocity u, leaves the normal conductor
through one boundary another one enters it through the
opposite boundary. This model conception is consistent
with the Pauli principle and yields the usual Sharvin
current of ballistic electrons in the electric field of a
contact, see Eq. (3.22). (The velocity gain in the field is
assumed to be small compared to the initial velocity v„
which is true for practically all electrons at the Fermi
surface. ) Thus, in computing the stationary part of the
current density by averaging the quasiparticle momen-
tum densities over a time interval —T~ t &+T with
T~ ~, we have to count the contributions from all the
quasiparticles that at the time t =vt p,—T/tp~v +T/t„have started their motion in the
field from the equilibrium states k. The corresponding
wave-packet functions are ut,

—(r, t vt, )
—and

vt,
—+(r, t vt, )—. Averaging also over the normal layer

thickness 2a facilitates handling of the spatially extended
wave packets. Thus, with the gauge-invariant (kinetic)
momentum operator

2a lu„ if 2a lu, (Ts

Tz, otherwise.

(2. 1a)

(2.1b)

and

eP = —.V+ —A
C

(2.2)

Equation (2.1b) corresponds to the usual relaxation-time
model for electrons that are freely accelerated in a (very
long) normal metal until they are scattered, then return
to their initial state k and begin anew their motion in the
field. Equation (2.1a), on the other hand, holds in the

e=+/e[,
where A(z, t) is the vector potential related to the electric
field by Eq. (A2), we obtain the time and spatially aver-
aged current density as

+ T/i,

(j)=— 2 lim g g f dt f dze
2m T- I, & T/, 2T T 2a a

c

—(t —vr )/Tc S

X( [fp(E& )[ul,+'(r, t vt, )pul,+(r, t —vt,)—
+u& '(r, t vt, )pu„(r,t —vt, )]—
+ [1 fp(EI, )][Ul,+(r,—t vt, )PU&+'(r, t vt, )— —

+ v I, ( r, t vt, )PUI, '( r,—t vt, ) ] ] +c.c. ) .—

(2.3)

Equation (2.3) is the current density in the formalism of the Bogoliubov-de Gennes equations ' ' adapted to the non-
stationary case of accelerated and scattered wave packets. fp(E&) is the Fermi distribution function that gives the
probability of finding a quasiparticle excitation in state k before the electric field is applied. The term independent from
fp(Eg ) is the contribution from the quasiparticles that are excited out of the ground state by the electric field. We do
not discriminate between thermally and electrodynamically excited quasiparticles, assigning to all of them the same
average inelastic-scattering time T, . The sum over the quantum number triples k of the equilibrium eigenstates ex-
cludes the spin (which is taken into account by a factor of 2 in front of the sum). The states with opposite momenta
perpendicular to the NS interfaces are treated as degenerate states ' and the rnomenturn densities of the wave packets
starting out of them are given in the curly bracket by u&+*Pu&+, Ut,+Pui,+* (positive z momentum) and u„*PuI, , ut, PU&

'
(negative z momentum).

A quasiparticle that at the time t =vt, starts the acceleration process in the N layer from a state of energy Ez con-
tributes to the time integral in Eq. (2.3) only during the time interval vt, t vt, +r, where r=r(k) is the time after
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which the quasiparticle has been accelerated to the edge of the pair-potential well and left the X layer into one of the su-
perconducting banks. Thus, the time integral can be split into intervals of magnitude r and the right-hand side (rhs) of
Eq. (2.3) simplifies to an expression of the form

+ T/t,

v= —T/t

+ T/t vt +r
f dt s(t v—t, )= g f dt s(t v—t, )—T 2T T/

C

+ T/t,

J ds s(& ')'g 1=—f ds sIs) .
2T 0 T/, tc 0

C

(2.4)

It is well known that to each triple k of quantum numbers there is a positive- and a negative-energy solution of the
BdGE. A complete set of solutions of the BdGE includes positive- and negative-energy states, transitions between
which are transitions between excited states and the ground state. The current density does not change if instead of
summing over all positive-energy states one sums over all negative-energy states or adds both sums and devides by 2.
It is convenient to rewrite Eq. (2.3) formally as the sum over the complete set of positive- and negative-energy eigen-
states EI, . This is indicated by a caret over the summation sign:

—I

2 (2.5)

Since electron wave functions of negative energy are identical to hole wave functions of positive energy, * see Eqs.
(A24} and (A25), we thus obtain the current density in a form where the quasipartieles start their acceleration in the
field with 50% probability as electrons and with 50% probability as holes, i.e., we have a true projection of the station-
ary electron-hole states into the dynamic wave packets.

Using Eqs. (2.4) and (2.5) and defining the averaged momentum densities

(ui,—*Pu&+ )= — —f 'dz f 'dt e
'

ui,
—'(r, t) Pu 1(r, t),2at, —a 0

(2.6)

(ut—, Pui,
+—') = —f dz f dt e ut—,+(r, t)Pvt —,+*(r,t),2at —a 0C

(2.7)

we obtain the averaged current density in the relaxation-time approximation as

(j)= — ([f (E„)((u„+*Pu„+)+(u„'Pu„)}+[1 f (E„)]((u&+—Pul,+*)+(ut, Pvt, '))]+e c ). . .2' (2.8)

The quasiparticle wave packets uz
—+ and v&

+—
, which move in the electric field because of the applied voltage V, are calcu-

lated in Appendix A, where we also explain the details of the theoretical model for the potentials and fields used in the
time-dependent BdGE. They define the upper and the lower component of a spinor that represents the quasiparticle
wave packet in the N region:

ui,
—+(r, t )

q'~(r t Et, )=
ut rst

+~ 0 ik
u„+—(z, t k)+

1
u„—(z t k) e

oo

Quasiparticle propagation parallel to the interfaces is described by

{i')e, k~—=e„k„x+ek~y,

(2.9)

where the spectrum of the wave vectors k and k is determined by periodic boundary conditions in x and y directions
with periodicity lengths L and L .

u„—represents the wave packet of the quasiparticle when it is an electron during the time interval between the 2nth
and 2n +1st Andreev reflection, then it becomes a hole described by the wave packet U„—until the next Andreev
refieetion, which produces an electron again, and the energy of the quasiparticle is steadily increasing (+) or decreasing
( —). This can be easily seen from the explicit forms of the u„—and u„—,which are given by equations (2.10)—(2.18):
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—tE t /fi + t(k —It. )z . + 5
u +(z, t, k)=¹ '" e '" e'+ exp — (4na +b +z —v t)pg 7 zf

zf

u„+(z,t, k)=¹ '"+' e '"+' e'~
—iE t/A +i(k —tt. )z +

2

A 2„Ek+ eV
b

2Q
(2.10)

Xexp — [(4n+2)a+b —z —u, t] 6
2AU f

E+(z)=meV+( —1) eV +Ek+eVz b

2Q 2Q

E+
k+ =k,f+( —1)

AU f

2
b

A2 +i Ek+ eV
20

(2.11)

(2.12)

(2.13)

—tE t /A —t(k —It. )zu„(z, t, k)=¹ '" e '" e'P exp — (4na +b —z —v, t)
2AUzf

2
b2„Ek—

2
eV

2Q
(2.14)

X exp — [(4n +2)a + b +z u,f t ]—5

2AUzf

E (z)= —meV+( —1) eV +Ek —eV
z b

2Q 2Q

b
A2 +i Ek eV

2a
(2.15)

(2.16)

k =k,f+( —1)
i6Uzf

(2.17)

Ak,f is the z component of the Fermi momentum
irikF=(2m@)'i . This momentum component and the
corresponding velocity U,f normal to the phase boun-
daries are related to the quasiparticle momenta A'k, and
Ak parallel to the phase boundaries by

dence of this probability P~ upon 2Q, the length D —Q of
a superconducting bank and the penetration depth
A, =A' k,f /m(b, —E )' of a quasiparticle of energy
E & 6 into a thick bank is given by

k,f =(kF —k„—ky)', u,f=fik,flm;
(2.18)

Ptv(E) =
2Q +2k

(2.19)

a. =eVz/4Au, fa .

A2„(Ek+beV/2a) and A2„+,(Ek+beV/2a ), as defined
by Eqs. (A32) —(A34), (A17), and (A18) are the probability
amplitudes that a quasiparticle that at energy Fk starts to
move as an electron against (+) or with ( —) the field
reappears in the N region as an electron after 2n Andreev
reflections and as a hole after 2n + 1 Andreev reflections,
respectively.

According to Eqs. (2.10)—(2.17) the E*and k —are the
instantaneous local energies and momenta of the quasi-
particle wave packets. This has been discussed in detail
in Ref. 32 (where the notation is slightly different). Note
that, because of the restriction —Q &z&+Q, with in-
creasing time t the value of n increases for which the
(Gaussian) wave packets are maximum. The energy pa-
rameter Ek is the starting energy of the quasiparticle at
time t =0 and wave-packet center position at z=+b.
The constant 5 is the energy spread of the wave packet,
see Eqs. (A35) —(A37). q&

—and f* are irrelevant phase
factors.

The normalization factor N is determined by the prob-
ability of finding the quasiparticle in the N region—a (z (+a, where the electric field exists. The depen-

with

k,f for E &A, A, &D —Q(g2 E2)1/2

D —Q, otherwise.

Supposing that for 5 (2 eV the condition

'2
4Q5 »1

2f1U f
(2.20)

L Ly &2MUzf
(2.21)

is sufticiently well satisfied, the overlap of wave packet
components of different n can be neglected in the normal-
ization integral of the total wave-packet function (2.9); at
a given time only one n matters so that the normalization
factor becomes
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III. WAVE-PACKET CURRENTS

We insert u„—and u„+—as defined by Eqs. (2.9)—(2.18)
into Eqs. (2.6) and (2.7) for the averaged inomentum den-
sities. A number of terms that result from the spatial

derivatives cancel, and in the sum over k of the current
density (2.8) the contributions from the positive and neg-
ative k and k cancel, too, Thus, the current is deter-
mined by the z-momentum densities that can be written
in the form

&~„+-*P,~„-)=+e,2INI'y ~;+„E„+evb

2a

(u„P,u„+')=— +e,2lNl g Az*„+, E„+ eV
2a

2

2

(&Xk,*„„)&,

(3 1)

(3.2}

where

((fik z„))=—f dt e f dz ))ik i~„exp —2 (4na+ b+z —u,f t )
C

2Q —a 2~Uzf
(3.3)

(()rtkz„+))) =—f dt e f dz Akz„+)exp —2 [(4n +2)a+b+z u,ft]—
t o 2Q —a 2AUzf

(3.4)

k ~„=k, + (+4na +z+b )
2aAU, f

kz„+)=kb [+(—4n +2)a z+b]—+ eV
2aAU,f

Ek
eh zf-

i6Uzf

(3.5)

(3.6)

(3.7)

These are just the classical time changes of electron and
hole momenta in the electric field e V/2a.

Integration of the Gaussians between z=+a may be
extended to +Dc, with the integrals being multiplied by
the products of two-step functions that are nonzero only
during the time intervals when the Gaussians are large
for lzl (a, see Appendix B. One obtains

h 2

(3.8)

eV t
ki—„+)=kb+ —=ki—„+)(zb—) .

2a A
(3.9)

The relative momentum change of a quasiparticle during
one passage through the N region is small and the mo-
menta vary slowly compared to the Gaussians. There-
fore, the rhs of Eqs. (3.5) and (3.6) may be replaced by
their values for z in the rnaximurn of the Gaussians at
Ze, h

f dz'exp —2
2Q 2~Uzf

z2

1 ~—tiuzf 1 1

2a 5 lNl' 0 (3.10)

where the last equality follows with Eq. (2.21);
Q&=2QL, L is the volume of the normal conductor.
The remaining time averages between t =0 and ~ are cal-
culated in Appendix B. With that Eqs. (3.3) and (3.4) be-
come

eV Ts
e

—(a+b)/l) —e a +b —(a+b)/l
2a 2a Uf

Vzf

eV, &I eV 4na —a+6 4na+a +bT
1 —e ' + e

2a R 2a

« ' "' '+ ' 'e(4na —a+b) +g(i ), (3.1 1)

fi k„' (1— ' ')
t h+2a R

(&ak,'„„&)=
N Ql((

eV 4na +a+&+
2a Uzf Uf

4na +3a +b —2a /I —(4aa +a +b) /le( (3.12}
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8 is the step function. The functions h(~) and g(r) are irrelevant, because when they are nonzero the Andreev
reliection probabilities

~

A„—~, n integer, vanish so that they drop out of the momentum densities (3.1}and (3.2}. The
mean free path 1 in the exponentials, where we replace U,f by its average over the Fermi surface U, is defined as

I=U, TS .

According to Eq. (2.1),

Ts/t, =(l /2a )8(l /2a —1)+8(1—I /2a ) .

(3.13}

(3.14)

In the following, for the sake of simplicity, we present only the calculations for the clean limit 1&)20 where
exp( —2a /l ) = 1 —2a /1. The results for arbitrary I are given at the end of this section.

Inserting the relations (3.11) and (3.12) into the momentum densities (3.1) and (3.2) we obtain
2

(uk—'P, uk—
+ ) =+ Ptv(Ek) g /I ~„Ek+eV

N 2a

X
a+b

Ak,
+eva+b 5 + Ak,

+ev 2 + b

2a '
u,j 4a "'

(

'
u,I 2a

X e ( na —a + b)/)8(4na a + b ) (3.15)

and

(uk P, uk
—}=+—

&
Pz(Ek) g Az„+) Ek+eV+ +g + b

N o 20

2

Uzf 20
—(4na +a + b) lle (3.16)

with

Ek
k, =k,f+

flUzf

Ek
kq =k,f-

AUzf

The current density (2.8), whose x and y components are zero, becomes, with Eqs. (3.15) and (3.16),

(3.17}

e 1 a+b
g g PN(Ek) 'fD(Ek}

m +N n=0 2Q
Az. Ek+ evb

20
eV a+b
U,f 4a

b
A E — eV2n k

k —eV a+b
U,f 4a

A, n E, + eV+ b

2a

2

—)4na —a + b )/!

2

b
A E —— eV2n k

XB(4na a+6) (1 f (E )])rtk e
—)4na a+ )/ b!

2

+ bX Az„+, Ek+ eV
20

+ 2 + b e V —(4na —a+b) /I

2Q Uzf

b
A zn+) Ek — eV

20

n Ek+ eV
b

20

b+ A,„E,— eV
2Q

2

fo(Ek )B(4na —a +b)

—(4na+a-+b) II
2Q Uf

2 2
b

A,„+,E, + eV
20

b+ Az +) Ek eV
20 t 1 —fo«k ) l (3.18)
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Equation (3.18) may be split into two terms:

&j&=&jN&+&j~R& ~ (3.19)

( jN ) is the term proportional to 5„o,which is nonzero
only for n =0. With Eq. (A34) it becomes

2
'2

(. )
e V a+b

3N
Pl 20

PN Ek 0 Ek
QN UzI

(3.20)

In the ohmic limit of vanishing Andreev reflection proba-
bilities, when all terms with n%0 are zero, (j~ ) would
be all that is left. In the clean limit 20 & v, T„when the
"takeoff" intervals are given by t, =2a lu„all quasiparti-
cles start their motion in the field at z = —0 or z = +0 so
that b =0. The overwhelming majority of them is in con-
tinuum states above the gap that extend throughout the
total junction of length 2D so that PN=2al2D. We
define

1 UzI 0 Ek

$ fo(Ek }

a «)1,
VF

(3.21)

observe that here Pz IQN = 1/QsNs (Qszs 2DI.„I.——
=volume of the junction} and that the sum gk fo(Ek)
over one spin and z-momentum orientation and all
positive- and negative-energy states is one-fourth of the

total electron number, and end up with

' ~ I. I.
V

0 x y

1 4PF 1R
« 'p LxLy

(3.22)

where p is the electron density of the junction and
pF=(2nip)' is the Fermi momentum. (j~) corre-
sponds to the Sharvin current density.

In the current density due to Andreev reflections,
(jAR), the remaining four terms of Eq. (3.18) are com-
bined. With the relations

1 —fo(+ IEI)=fo(+IEI),
k~(+ IEI)=k, (+IEI),

I ~ 2-. ( + IEI )I'= I &,„(+IEI )I',
(+ IEI)I'=I~ . (+IEI)I',

(3.23)

(3.24)

(3.25)

(3.26)

the gk can be rewritten again as the sum gl, over posi-
tive energies E„~Oonly. Equations (3.25) and (3.26) re-
sult from Eqs. (A32) and {A33) in combination with Eq.
(A17} for IEI (b, and Eq. (A18) for IEI )6 (where in the
case E & —5 the sign of the square root has to be
changed). After some reordering and recasting of terms
the Andreev reflection current density becomes

(j )=—,— g g P (E„)fiIf (E„)k,—[1 f (E„)]k„—}
N k n=0

2

X A2„Ek+ eV —A2„Ek— eV
b b

20 " 20

+~[f (E }k -[1-f {E })k ~e-~ -"" '

2

2

B(4na —a +b )

2

X A2 +) Ek+ eV+ b

2Q
J

+ 2 + b eV —(4na —a+b)/I
20 Uy

2

b
A 2„)Ek — eV

2Q

2

X A 2+„Ek+ eV
2Q

b+ A 2„Ek— eV
20

B(4na —a +b )

—(4na+a+b)/I
2Q Uzf

2
b bX A2„+, Ek+ eV + A2„~, Ek — eV

20 2Q

2

(3.27}

The first two terms in Eq. (3.27} contain the equilibrium momenta haik, and irikl, of Andreev reflected electrons and holes
and the last two terms are proportional to the momentum changes in the electric field. Because of condition (A4) these
changes are small compared to the equilibrium momenta and their contribution to the current can be neglected. {This
has been confirmed by explicit numerical computation; the Ek dependence of k, and kl„in fact, is negligible, too. )

Thus, the current in the electric field —e, V/20 is essentially due to the fact that quasiparticles with positive z-
momentum components starting (with negative charge) from states below the Fermi level complete many more Andreev
reflection cycles before leaving the pair-potential well than quasiparticles with negative z-momentum components.
[Because of Eqs. (3.25) and (3.26) I A„.(E) I

=
I
A„+, ( E)I, n' being 2n or 2n+ 1;—the main contribution to the current
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comes from the momenta fikk of states below the Fermi level as can be easily seen for T=O K when fo(Ek)=0].
The terms with even and odd indices of the Andreev reflection probabilities can be written as one expression if we re-

place 2n by n' in the even and 2n +1 by n' in the odd terms; then we drop the prime again: n'~n. We observe that
the n =0 terms cancel because of Eq. (A34), and end up with the final AR current density that cotnprises the voltage
dependence only within the difference of the multiple AR probabilities:

&jAR) e g g g PN(Ek}'~If'(Ek}k [1 fo(Ek}]kkje
k n=1

X A„(Ek+ eV) —A„Ek— eV
b

2

(3.28)

The total current density for arbitrary mean free path I is
found, if one multiplies (jz ) of Eq. (3.22) by the function

( Ts It, )[(a +b ) I(2a ) ] ( l /a )

X [1—exp( —2a /I ) —(2a /I )exp( —2a /I ) ]

and ( j~a) of Eq. (3.28) by (Tslt, )[1—exP( —2a/I)],
where, according to Eq. (3.14),

Tslt, =(1/2a )e(1/2a —1)+e(1 I /2a —) . (3.29)

IV. CURRENT-VOLTAGE CHARACTERISTICS

There are two yet undetermined parameters in the
theory: the inelastic-scattering time Tz and the absolute
value of the starting position, b. While T& for
quasiparticle-phonon interaction can be calculated in
principle from time-dependent perturbation theory with
the BdGE, ' ' we take it here as a phenomenological pa-
rameter, estimates of which are given in Ref. 14. The po-
sition parameter b, on the other hand, has to be chosen in
accordance with the relaxation-time model. When the
mean free path 1=v, T~ is smaller than the normal con-
ductor length 2a so that a quasiparticle is scattered be-
fore it can cross the N region once, the starting position
is equal to the average position where the quasiparticle
appears in the N region at the beginning (and the end) of
a relaxation cycle. Then the proper choice is b =0 for
takeoff from bound states and b =a, if Ek belongs to the
continuum states. This choice was made indiscriminately
for all situations in Refs. 40 and 42. It has to be correct-
ed for the case I)&2a when the interval t, between
takeoffs is not Ts but 2a/U, according to Eq. (2.1a).
Then all quasiparticles start their motion in the field from
the boundaries of the X region and b =a is appropriate
for all Ek.

The Andreev reflection current density of Eq. (3.28) is
given by the sum over all initial states k for which there
are appreciable Andreev reflection probabilities

~

A„—
~

as
they are defined by Eqs. (A32), (A33), (A17}, and (A18).
These probabilities are valid for quasiparticles with ener-
gies below the gap, if the quasiparticle completely decays
in the superconducting banks, inducing a supercurrent
there. This means that the quasiparticle penetration
depth A, given by Eq. (2.19) has to be less than the thick-
ness (D —a) of the superconducting banks. Otherwise,
there is a finite probability of electron-electron and hole-

hole reflection from the outer sample surfaces that weak-
ens (j~a). We take this into account in the simplest
possible way by transforming gk into an integral over
(one-fourth of) the density of all states

g(E)=gg;(E)

and by weighting the two-dimensional density of states
g;(E) of subband i by the probability P(k,f, ,D —a) of
electron-hole scattering in the superconducting banks,
which depends essentially only on the z component haik, f,.
of the Fermi momentum in subband i at energy E, and
the S layer thickness D —a. This filters out the effective
number of states with k,f appropriate for perfect An-
dreev reflection cycles. P(k,f,D —a) has been calculated
in Ref. 36. For small values of k,f it rises from zero to a
maximum close to unity in the vicinity of
k,f =(2m b, /fi )' and then decreases again with increas-
ing k,f. This decrease is the stronger the thinner the su-

perconducting layers are. For thick S layers with
D —a »X, P(k,f,D —a ) is unity for all but the smallest

k,f. Thus, we define a filtered density of states gF(E) by
writing in Eq. (3.28)

g=( —,')fdEQ g; (E)P(k,f;,D —a }:( ,')fgz(E)d—E,—
k

(4 1)

where the factor —,
' takes into account that only one spin

and one z-momentum direction are to be considered. En-
ergy integration goes from zero to a Bardeen-Cooper-
Schrieffer (BCS) cutoff h ~o.

The quantum number triple k consists of the wave
numbers k, k, and the subband index i of the energy ei-
genvalues E,(k„,k ) of the stationary BdGE for the SNS
junction. The two-dimensional density of states g, (E) is
defined as

g, (E)=2(L„L/4m ) fdk„dk o(E —E;(k„,k )) . (4.2)

The factor of 2 counts the spin and L„L is the junction
area.

Quasiparticle spectra and densities of states have been
computed for SXS junctions of various S and X layer
thicknesses, where the competing effects of Andreev and
surface scattering may be quite different. The details of
these calculations will be presented elsewhere. Here, we
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FIG. 2. Density of states g (E) of an SNS junction with su-
perconducting banks of thickness D —a much larger than the
coherence length: D =70000 A, a =4000 A. Since
P(k f„D—a) =1 in this case, gF(E) =g(E). T, =3.72 K;
T=0.82 T„kF=1A

FIG. 3. Density of states g(E) and filtered density of states
gF(E) of an SNS contact with superconducting banks of thick-
ness D —a comparable to the coherence length: D=6000 A;
a =4000 A. T„T,and kF as in Fig. 2.

just report and interpret the results relevant in our con-
text.

If the thickness D —a of the superconducting banks is
much larger than A, , which in turn is comparable to the
BCS coherence length for practically all E & 5, the ener-

gy spectrum E;(k„,k ) consists of the quasicontinuum
states, which can be approximated by those of a homo-
geneous superconductor of effective constant pair poten-
tial h[(D a)/D]'—, and of the spatially quantized
bound Andreev states that satisfy the energy eigenvalue
equation

E;(k,f ) =A k,f[im+arccos(E;/6)]/2ma,

i =1,2, . . . . (4.3)

The corresponding total density of states g(E) is shown
in Fig. 2. Besides the BCS peak at E=A there is a
subgap peak at E & b. It results from the fact that with
increasing energy and k,f the Eo(k,f ) dispersion curve of
the lowest subband in the spectrum of the bound An-
dreev states Battens out, because the quasiparticle wave
functions penetrate more and more into the supercon-
ducting regions, see A. of Eq. (2.19); the lowest subband
that yields the overwhelming contribution to the density
of states terminates at k,f =k~; thus, at Eo(kF ) the densi-

ty of states changes abruptly to the small density from
the higher subbands. With decreasing thickness D —a of
the S layers the BCS peak in the density of states van-

I y(E) I'= e(&—E )e(&+E ), (4.4)

these probabilities can be approximated by a step-
function product:

ishes, because the quasiparticles in the states !E!& b,

essentially "see" the N region only. If D —a becomes
comparable to the coherence length, the spectrum of the
states with! E!& b, still contains Andreev states at a given
(low-lying) energy for sufficiently small k,f. However, at
the same energy but for k,f so large that the quasiparticle
wave functions extend into the S banks with only little
damping, one has also states with the dispersion relation
of a particle in a box with infinite walls at z =+D. In the
situation of Fig. 3, Andreev states and "particle in a box"
states accumulate in the energy range of the subgap peak
in the density of states, and the peak is the consequence
of this accumulation. The filtered density of states curve
in Fig. 3 shows the number of the Andreev states that
still originate from nearly perfect electron-hole scattering
in the thin superconducting layers.

When calculating the current density ( j~R) by in-
tegrating over the filtered density of states one has a finite
integrand only in the range of nonvanishing multiple An-
dreev scattering probabilities ! A„—! . These result from
the amplitudes (A32) and (A33) and Eqs. (A17) and
(A18). Neglecting over-the-barrier reflections (which is
quite appropriate for rounded-off pair potential edges)
so that

E+ eV
2a

2

y E+ v+ ——eV
b l

2a 2

2

T

b eV 6 eV=e a+E+ l+— 8 b +E—neV+ 1 ——
a 2 a 2

(4.5)
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In Eq. (3.28) the terms with [1 f—o(Ek }]ki, ~ A„~ refer to
quasiparticles of positiue z momentum that start out of
the ground state, see Eqs. (3.25) and (3.26). They dom-
inate in ( jAR ). For them the range of integration is lim-

ited by the step functions in Eqs. (4.5) to

Eo ~E ~6+ 1+— (4.6)
a 2

with

2.0

1.5-
lh

C
1.0

0

0.5

Eo= '

b eV
0 for neV — 1 —— —6 ~0

2
r

b eV
ne V — 1 —— —5 otherwise.

0 2

(4.7)
0,0 i l
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e V/5

For a given number n of multiple Andreev reflections this
integration range shrinks to zero when the voltage V ap-
proaches the value V„defined by

eV„= 2h
71 1

(4.8)

This restriction of the possibility of multiple Andreev
reflections to voltages below certain limiting values V„is
basically the physical reason for the subharmonic gap
structure and the associated negative differential conduc-
tivities. We will return to that in the discussion.

Numerical computation of the Andreev reflection
current density (3.28) within these approximations and

FIG. 4. Current-voltage characteristic of SNS junctions with
thick superconducting banks, calculated with the parameters
and the density of states of Fig. 2. 13 = 15a; l4 =Sa.

with the (filtere) densities of states of Figs. 2 and 3 re-
sults in total averaged current densities (3.19) that are
shown by the current-voltage characteristics of Figs. 4—6.
The temperature dependence of the pair potential is that
of the BCS theory. The excess current is defined as the
Andreev reflection current at "high" voltages V»h/e.
In this limit (when only one Andreev reflection is possi-
ble) Eq. (3.28) becomes

(j,„,) —= (j„„(eV»b,)) = —e, e '+ '~' J dE w(E)tanh' 4m Q~ [].+(bla))(ev/2, )
—5 2k' T

(4.9)

where

w(E) =g k,f;P(k,f;,D —a )P&(E)g; (E) .

( j,„,) = e, (6ep—/4pF )htanh(e V/2k' T)e 2'~' . (4.12)

(4 10} Here

Only quasiparticles from continuum states with ~E~ =eV
can be pulled into the subgap region —5 & E & +5 by
the electric field and contribute to the excess current. In
the case of a junction with thick superconducting banks
their energy spectrum may be approximated by the con-
tinuous BCS spectrum of a homogeneous superconductor
of pair potential b, ; furthermore P(k,f, , D —a }=1for all
(but the very smallest} k,f, , and Pz(E)=2a/2D Thus, .
w(E) becomes

E=2a y 2m E 2Dk2w(E) =
2D 2~ g2 (E2 g2)1/2 (4.11)

With b =a the range of integration in Eq. (4.9) is
eV —6~E&eV+b, . Within this range tanh(E/2k2iT)
[= 1 —2fo(Ek ) ] varies only slowly, because
e V &&kz T,h. Thus, it may be approximated by
tanh( e V/2kii T ). The remaining integral over
E/(E 5)' yields 2h, —and we obtain the excess
current

kF
P

6ep 6 1 1

4pF a eRO I. I.

(4.13)

V. DISCUSSION

A. Physical interpretation of the results

The current voltage characteristics of Figs. 4—6 show a
steep rise of the current density j at low voltages for

This current density is twice as large as the one calculat-
ed in Refs. 40 and 42. The latter missed the electron-hole
degeneracy of each state k in the continuum above the
gap. The numerical difference between the excess current
from Eqs. (4.12), (4.13), and the one from Ref. 16, i.e.,
6/a instead of —", , is due to the average (3.21) over the
Fermi surface. In addition we have the exponential
dependence on the mean free path. '
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suSciently large mean free paths 1. This is the charac-
teristic "foot" of weak links. It is due to the large extra
charge transfer associated with the very many Andreev
reflections each quasiparticle undergoes before it is scat-
tered or leaves the pair-potential well. Very many AR
are possible at low voltages before a quasiparticle, which
changes energy by e V between two AR, would be driven
out of the pair-potential well. At very low voltages the
number of Andreev reflections is essentially limited by
the mean free path I and is about n =l/2a. Thus, with
decreasing mean free path l this number decreases and
the foot shrinks. This is clearly seen in Fig. 5. At higher
voltages and large mean free paths, the number of AR
within the pair-potential well becomes energy limited. It
decreases as the energy gain per AR increases. There-
fore, for voltages increasing from about 0.1 to 0.5 6/e
the current decreases rapidly and the differential conduc-
tivity is negative; and for eV&h there is only little
difference between the current-voltage characteristics for
large but different mean free paths.

In the voltage range between 0.5 b, /e and 26/e pro-
nounced arches are resolved in the CVC's of Figs. 5 and
6. The nth arch extends between the voltages V„+,and

V„,where, according to Eq. (4.8), V„=26,/(n —1)e is the
voltage above which only n —1 or less AR are possible
within the pair-potential well. (One AR, giving rise to
the excess current, is always possible at arbitrarily high
voltages V, which pull electrons from the energy range
between —eV —6 and —eV+5 into the pair-potential
well. ) This is the subharmonic gap structure, and the
negative-differential conductivities associated with it
occur, whenever the decrease of the Andreev reflection
current (jztt )—caused by the loss of starting states for
n Andreev reflections as V approaches V„—is stronger
than the increase of the ohmic (Sharvin) current (jz ).
With increasing temperature, (j„„)and the SGS associ-
ated with it wither away, as it is shown by Fig. 6, because
the number of thermally excited starting states increases

0.5

0.4

0.3
C

0.2

0.1

0.0 I

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

e Y/h,

FIG. 5. Current-voltage characteristic of SNS junctions with
thin superconducting banks and various mean free paths 1 in the
N layer, calculated with the parameters and the filtered density
of states gF(E) of Fig. 3. 1, =400; 1, =25a; 13 15a; 14=5a.
Also shown is the ohmic part of the current.

0.4
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lA
~~

0.2
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Cf
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voltage (mY)
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FIG. 6. Current-voltage characteristics of an SNS junction
with thin superconducting banks, D=6000 A; a=4000 A, at
various temperatures below T„calculated with gF(E) for
1=25a; kF=, 1 A . T„=0.82 T, ; Tz =0.90 T, ; T, =0.99 T, ;
TD = T, =3.72 K.

so that more and more quasiparticles with negative z
momentum, moving down" the pair-potential well, can
have as many AR as quasiparticles with positive z
momentum starting out of the ground state and "moving
up" the well. This is seen from Eq. (3.28) if one ob-
serves the symmetry relations (3.23)—(3.26) and
[A„(E beV/2a—)~

~
~
A„+(E+beV/2a)~ .

The SGS at the V„ofEq. (4.8) is seen so clearly in Figs.
5 and 6, because the density of the states with significant
AR probability gF has only a small peak in junctions with
thin S layers, see Fig. 3. The high BCS and subgap peaks
in the density of states of SNS contacts with thick S
bands, on the other hand, introduce additional structures
in the CVC's of Fig. 4 that somewhat obscure the
1/(n —1) law. The current densities are several times
higher in Fig. 4 than in Figs. 5 and 6, because in the case
of thick S banks practically all quasiparticles contribute
to the AR current, whereas only quasiparticles with k,f
less than about kF/10 are subject to Andreev scattering

0
in the 2000-A thin superconducting layers. The nearly
linear increase of the sum of ohmic and excess current
beyond voltages higher than about 3h/e is the same in
Figs. 4 and 5. It is determined by the (Sharvin) conduc-
tivity of Eq. (3.22).

B. Critique of the model

For vanishing voltages the condition (A37), 8 (2e V,
which results from wavepacket matching, becomes in-
compatible with the condition (2.20) for the neglect of the
overlap of wave packets with different n. As V and 6 ap-
proach zero the wave-packet wave functions defined by
Eqs. (2.9)—(2.21) turn into the stationary solutions of the
BdGE with the energy eigenvalues Ek. [In Eq. (2.9) the
infinite sum of the vanishing normalization constants
given by Eq. (2.21) becomes the normalization constant of
the stationary waves. ] Of course, the current carried by
the quasiparticles in these stationary states vanishes-
and in this sense our results are also valid in the limit
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V~O—if the influence of a possible current bias at zero
voltage is not included in the energy eigenvalues Ek. It is
well known ' ' that a constant ground-state current
with momentum Aq per electron results in the energy
spectrum

Ek =Ek+pk. &q~m, (5.1)

C. Comparison vvith experiments

The current-voltage characteristics of variable thick-
ness tin microbridges measured by Octavio, Skocpol, and
Tinkham" show the foot, the subharmonic gap arches
and the approach to the excess current that are also seen
in Figs. 5 and 6. The relevant voltage range and the tem-
perature dependence is that of Fig. 6. There is not the
low-voltage current peak that the theory yields at low
temperatures and large mean mean free paths, but rather
a plateau similar to the plateau in the CVC's of Fig. 5
that corresponds to the mean free path I3. However, the
experimental plateau may also be a cut through the range

where Ek is the energy eigenvalue for q=O and p„is the
appropriate quasiparticle momentum in state k. In our
calculations of CVC's we have used Ek. In order to in-
clude a zero-voltage current in the model, Eq. (3.18) has
to be evaluated with Ek of Eq. (5.1) being inserted into
the Fermi distribution functions and Andreev scattering
probabilities. This is a subject of work in progress.

The CVC's shown in Figs. 4—6 have been calculated
assuming 1)2a. For dirty junctions with mean free
paths l smaller than the N layer width the modifications
indicated below Eq. (3.28) have to be taken into account
in the numerical computations.

The proximity effect has been neglected. Thus, in a
strict sense the theory is limited to weak links in which
the normal region is several times larger than the coher-
ence length. However, we expect qualitatively the same
results for shorter N regions, because the basic physics is
in the multiple Andreev reflections that are present
whenever there is a spatial inhomogeneity of the pair po-
tential.

The theory neglects possible mismatches of the Fermi
velocities as they may occur in SNS junctions involving
different materials. They give rise to normal potentials at
the interfaces and a weakening of AR (Refs. 18, 20, 21,
and 44) especially for larger momenta parallel to the in-
terfaces, ' i.e., small k,f. This may be one reason why
the subgap structures of the CVC's of Fig. 4 have not yet
been observed in SNS sandwiches made from different
materials, whereas the ones of Figs. 5 and 6 show all the
features found experimentally in microbridges made from
one material" (with thin superconducting surface layers
where Andreev scattering is weakened for large k,f).

Anisotropies of the pairing interaction and the pair
potential are disregarded. However, recently a general-
ized version of the BdGE for anisotropic and nonlocal in-
teractions has been derived. We expect that with their
solutions one will be able to show in detail that the CVC's
of weak links made from the high-T, ceramic supercon-
ductors should exhibit essentially the same AR related
features as one has in isotropic systems.

of negative-differential conductivity following the initial
current peak in Figs. 5 and 6 for larger mean free paths.
Besides this agreement between the theoretical and exper-
imental CVC's the sample situation in Ref. 11 corre-
sponds to the model underlying Figs. 5 and 6 in an im-
portant detail: The normal region of the bridge is embed-
ded in a groove in the substrate and there should be
only thin superconducting layers between the N region
and each wall of the groove formed by the substrate.
These thin S layers then grow into thick superconducting
banks beyond and above the groove so that the current
can flow through the junction around the edges of the
groove but the quasiparticles in the active part of the
junction feel essentially only the thin S layers and the
hard substrate wall where they suffer normal electron-
electron or hole-hole scattering for k,f larger than, say,
kF/10. The resulting reduction of the peak of the An-
dreev density of states gF as it is shown in Fig. 3, is the
reason why the arches and the I/(n —1) law for the
subharmonic gap structure so clearly show up in Figs. 5
and 6.

In Nbo 53Ti047/Ge multilayers backed by two thick

( & 5000 A) superconducting Nb layers Song et al. have
observed CVC's that are similar to the I3 curve of Fig. 5

(without the SGS arches) at T=7.5 K when the multilay-
ers are normal conducting. At T=5.7 K, when the
niobium in the multilayers is superconducting, the
current decreases with increasing voltage after a low-
voltage peak. In their paper the authors conclude that
their essential conductance mechanism is tunneling, be-
cause they did not observe excess currents with the prop-
erties expected from the theory of Ref. 17. However,
things may be difFerent, if one does not consider the semi-
conducting layers as essentially insulating barriers but
rather normal conductors with a small number of free
carriers. Thus, the recent conjecture that the observed
CVC s in superconducting-semiconducting multilayers do
have something to do with multiple AR and the present
theory is the subject of ongoing research on the adapta-
tion of the accelerated wave-packet formalism to
superconductor-semiconductor-superconductor junc-
tions.

Hysteresis in the low-voltage regime, indicating
negative-differential conductivity, has been observed in
the CVC's of Pb/Ag multilayers. Weakly coupled
grains of Y-Ba-Cu-0 films show the same effect. I-V
curves of point contacts made from high-T, supercon-
ductors also exhibit the "foot," followed by a regime of
either low or negative-differential conductivity. ' In
their shape the curves are similar to some of the CVC's in
Figs. 4—6, and a proper choice of parameters and averag-
ing over different magnitudes of the pair potential can
even improve the qualitative agreement. However,
wave-packet solutions of the generalized BdGE for super-
conductors with anisotropic pairing interactions will be
required in order to obtain more confidence that multiple
Andreev reflections are responsible for the observed
CVC's of high-T, and conventional weak links alike.

Nevertheless, despite of the necessity of further
theoretical improvements the wealth of macroscopic
quantum-charge-transport phenomena that are related to
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the one microscopic process of electron-hole scattering
by spatial variations of the pair potential, demonstrates
the fundamental role of Andreev scattering in the under-
standing of the static and dynamic properties of inhomo-
geneous superconductors.
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APPENDIX A: ACCELERATED QUASIPARTICLE
WAVE PACKETS

We approximate the spatial variation of the pair poten-
tial in the SNS junction by the step function b,8( ~z~

—a ):
It is zero in the range —a &z &+a and 6 otherwise.
Plehn has shown that more realistic variations of the
order parameter have relatively small inhuence on
the density of states, whereas the probability of over-the-
barrier Andreev rejections is significantly reduced.
Thus, for our present purposes the widely used step-
function model should be sufFicient, if we disregard An-
dreev scattering at energies above the gap edge. We
neglect the magnetic field of the current. Equal Fermi
velocities in the N and S regions are assumed. This is ap-
propriate for variable thickness microbridges consisting
of the same material everywhere. Charge accumulation
is supposed to occur right in the NS phase boundaries at
z =ka so that the electric field F due to the voltage V is

2 (A3)
8

lA—U=-
at 2m p ——A(r, t) —p v+68(~z~ —a)u;e

C

p denotes chemical potential; e =+ ~e~. &heir exact solu-
tions involve the Airy functions. These can be expanded
into a form that is just that of the electron-hole states of
the junction in equilibrium for V =0, with the difference
that energy and momentum are no longer good quantum
numbers but depend on E+eVz/2a; E would be the ener-

gy eigenvalue for V=O. The expansion is valid if

fi k ))~E+eVI, &,
2m

where

(A4)

(A5)

Defining a spinor 4, whose upper (lower) component is
the electron (hole) wave function u ( v) we can write one
solution of the BdGE (A3) in the %layer —a (z (+a as

PN(E, r, t)=e ~ C, 0 u~+C, 0 u~

, 0 0
+C2

1
UN +C2 (A6)

with

+ + e
—(i /R)[E+eV(z/2a )]t ' +

Q~ —e

+ —(i /fi)[E —eV(z/2a )]t I( — K)z
U~ =e e

(A7)

2

i' —u=+ p+ —A(r, t) —p u+b, 8(~z~ —a)U,8 1 e

Bt 2m c

F= —e, ( V/2a )8(a —
~z~ ) = —c '3 A/dt .

The vector potential

A= —cFt

(A 1)

(A2)

(i/A)[E+ eV(z/2a )]g '(k+ )

Q~ =e e

—(i /fi)[E —e V(z/2a )]1e

E+e Vz /2a
7

Uzf

(A9)

(A 10)

(Al 1)

is in a gauge that makes the pair potential real and
satisfies the Josephson equation for the time variation of
the gauge-invariant phase difference. The scalar poten-
tials are zero. Thus, the time-dependent BdGE for elec-
tron wave function u =u(r, t) and hole wave function
U=U(r, t) are

1 eV zK—
2 Au f 2a

Uzf
=

m
and in the superconducting banks ~z ~

)a we have

(A12)

(A13)

1

.r
lk z+D—

2

for E &6,

(E t) e l(E fi e/' g D+ ek +D e '" +D+

(g2 E2)1/2
kzf—

zf

1 —ik ze
.r

(A14)

(A15)

(E2 g2)1/2
=k +zf—k = k + (E &)'—

zf for E)6, (A16)

E —i(b, —E )'r= for E &6, (A17)

for E&h . (A18)
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For most of the quasiparticles close to the Fermi surface the relation

k,f ) k,f =+2mhlfi (A19)

is true and the probability of electron-electron reQection at the interfaces is very much smaller than electron-hole
scattering in the phase boundaries. Thus, electrons and holes with the same direction of z rnomenturn are coupled to-
gether by Andreev scattering and are decoupled from the electrons and holes with the opposite direction of z momen-
tum. As a consequence the wave functions (A6} and (A14) split into the two independent solutions

@tv(E r t) e C) 0 14~ +Cp
1

U~ (A20)

T

4+(E r t)=e ~e ' "" D~+ e+ '8(z a)+—D&+
&

e'" '8( —z —a) (A21)

and

ik
+tt(E, r, t ) =e

1 0
1 0 "N 2 1 N (A22)

ik 1 1

4s (E,r, t)=e ~e ' "" Dz, e '" '8(z —a)+D, e '" '8( —z —a) (A23)

where the superscript + ( —} refers to positive (negative) z momentum.
The relation between the positive- and negative-energy solutions of the BdGE is

u'-( —IEI)=0+*(+IEI),
U-( —IEI)= —a+'(+ IEI),

(A24)

(A25)

and the most general solution of the time-dependent BdGE (A3) is the sum of all positive- and negative-energy solutions

%s(r, t)= f dE+s(E, r, t),
qI~(r, t ) = f dE+~(E, r, t ) .

(A26)

(A27)

Here the coefficients C and D in the wave functions (A20) —(A23) depend on E. Matching the normal region wave func-
tions (A27) to the wave functions (A26) at the phase boundaries ka results in the following recursion equations for the
coefficients of the X-layer wave functions:

C,+(E+n2eV)=C,+(E)exp i(4nE+4n eV)
'AU f

A q+„(E), (A28)

Cz+ (E+n2eV)=C,+(E eV)ex—p i [(4n +2)E eV+4—n eV]
'RU f

Az+ +&(E) (A29}

C& (E —n2e V)=C& (E)exp i(4nE 4n eV)—
AVf

A ~„(E), (A30)

C~ (E n2eV)—=C, (E+eV)exp i[(4n+2)E+eV 4n eV]—
flVzf

+ &
(E) (A31)

with the multiple Andreev reAection probability ampli-
tudes

I

and

Ao (E)=1 . (A34)
2n

A —„(E)=Py E+ V+
2

2n +1 eV~;„+,(E)= g y E+veV+ '
v= 1

2

= y E+2ne V+ A z„(E),
2

(A32)

(A33)

Iy(E)I is the probability that an Andreev refiection
occurs at energy E in the phase boundary of a semi-
infinite superconducting bank. According to Eq. (A17) it
is unity for E (A. For E ) b, it decreases rapidly with E
and may be approximate by zero for self-consistent pair
potentials with rounded-o6' edges.

Because of the recursion relations (A28) —(A31) the
coefficients C2 are completely determined by the
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N —[(E—
yk )/s) i(E/Au &)b

e k

&~s'
(A35)

with

nk2eV yk (nk+1)2eV, (A36)

n& integer and

5 &(2eV) (A37)

coeScients C +—

, that in turn can be chosen freely only

within an energy interval of width 2eV. We choose a
Gaussian spectral density

This defines the wave packet of a quasiparticle that starts
its motion in the Geld from state k at position z = —b; yi,
is the wave-packet energy in the center of the N-layer be-
fore the first Andreev reflection occurs, see Eqs. (A43},
(2.12), and (2.16); b a. Since equilibrium states with
positive and negative z rnomenta are degenerate, we
choose the same initial energy distribution (A35) for wave
packets with opposite momenta. The inequality (A37)
makes sure that the amplitude of Ci (E) is small outside
the interval (A36). With the help of the recursion equa-
tions (A28) —(A31) we can split the integral of Eq. (A27)
into energy intervals of width 2e V and relate these inter-
vals to the initial one defined by Eq. (A36}. This results
in the normal-layer wave function

0'tv(r, t, Ek ) =

with

ut(r, t)

v„(r,t)—
+ oo

u„(ztk)+
1

v„(ztk) e
n = —oo

(A38)

and

~nk+1)2eV
u„+(z,t, k)= f dE C)+(E+n2eV)u& (E+n2eV),

nk 2eV

(nk+1)2eV+eV
v& (z t k}=f dE Cz+(E+n2eV)vtv+(E+n2eV),

nk 2eV+eV

(nk + 1)2eV

u„(z,t, k)= f dE C) (E n2eV)ug—(E n2eV), —
k

(nk + 1)2eV —e V

v„(z,t, k)= f dE Ci (E—n2eV)v& (E n2eV) —.
nk2eV eV

(A39)

(A40)

(A41)

(A42)

In Eq (A38) summation over n formally runs to —M because integration over E in Eqs. (A26) and (A27) does. Howev
er, u„and vn are vanishingly small for n &0.

We evaluate the integrals (A39)—(A42) with the help of Eqs. (A7) —(A10) (where E is replaced by E+2neV), the rela-
tions (A28) —(A34) and the Gaussian (A35). With the definition

b
yk —=Ek+eV

2a

this results in Eqs. (2.10)—(2.17).

(A43)

APPENDIX 8: TIME INTEGRATION IN THE AVERAGED MOMENTUM DENSITIES

We combine Eq. (3.10), multiplied by the appropriate step functions, with Eqs. (3.3) and (3.4) and get

+ ~x 1 eV t((fik2„))= —f dt e i)t'k, + —e(4na+a+b —v, t)e(a 4na 6+v, t)—,
—

o
' 2a irt

zf zf

2 fi

Xe((4n +2)a+a+6 v,ft)e(a (4n +—2)a —6+v,ft) . —

The limits for time intergration in (B1) and (B2) are given by

4na —a+b ~ v,ft ~4na+a+b

and

(4n +2)a —a+b ~ v,ft ~(4n +2)a+a +b,
respectively. Thus, the time integrals may be split into intervals:

(B2)

(B3)

(B4)
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I2.(o,r)—= dt e SA k, + —8(4na+a+b —v ft)8(a —4na —b+u, ft)eV t (B5)

+Ip„,'i [8(v,fr 4n—a +a b—)8(4na +a +b —
uf r)]

4na —a +b
Uzf

(B6)

Iz„+&(O,r)—:I dt e fi kh+ —8((4n+2)a+a+b v—ft)8(a (—4n+2)a b+—uft) (B7)

+=Izn+i
(4n+2)a —a+b (4n+2)a+a+b [8( }8( (4 +2}

Uzf Ugf

(4n+2}a —a +b [8(v,fr (4n—+2}a+a b)8—((4n+2)a+a b ——
ufo'}] .

Uzf

(B8)

The integrals defined by Eqs. (B5) and (B7) have the solutions

2a s (B9)

2a 2a s (B10)

Inserting these results into Eqs. (Bl) and (B2) we arrive at Eqs. (3.11) and (3.12). The neglect of the functions g(r) and
h (r) corresponds to r~ ae in Eqs. (B6) and (BS).
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